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Graphical Abstract 

Layered oxychalcogenides: structural chemistry and thermoelectric 
properties 

 

Son D N Luu and Paz Vaqueiro*  

 

This review provides an overview of the structural chemistry of layered oxychalcogenides, which are 
described using a building block approach, and on the potential of these materials for thermoelectric 
applications.  
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Abstract 

Layered oxychalcogenides have recently emerged as promising thermoelectric materials. 

The alternation of ionic oxide and covalent chalcogenide layers found in these materials often 

results in interesting electronic properties, and also facilitates the tuning of their properties 

via chemical substitution at both types of layers. This review highlights some common 

structure types found for layered oxychalcogenides and their interrelationships. This review 

pays special attention to the potential of these materials for thermoelectric applications, and 

provides an overview of the thermoelectric properties of materials of current interest, 

including BiCuSeO. 
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1. Introduction 

Layered oxychalcogenides are mixed-anion compounds, in which oxide and chalcogenide 

anions (Group 16) indirectly bound via one or more cations, creating a stack of alternating 

oxide and chalcogenide layers. The coexistence of ionic oxide anions and more covalent 

chalcogenide anions leads to a highly distinctive structural chemistry. Owing to the 

preference of “hard” non-polarisable cations to coordinate to smaller oxide anions, while 

“soft” more polarisable cations preferentially coordinate to larger chalcogenide anions, 

quaternary oxychalcogenides tend to adopt structures in which oxide and chalcogenide anions 

are segregated, with each coordinating preferentially to one type of cation, as early noted by 

Guittard et al [1]. This often results in structures with low-dimensional characteristics, and 

structural low dimensionality may lead to highly anisotropic electronic band structures, 

together with interesting electronic properties. In addition, the covalent character of the 

chalcogenide layers promotes high-mobility semiconduction, whereas low thermal 

conductivity is favoured by the more ionic interactions of the oxide blocks. The alternation of 

distinct layers found in oxychalcogenides also facilitates the tuning of their properties via 

chemical substitution at both the oxide and chalcogenide layers. The coexistence of 

low-dimensionality together with covalent and ionic bonding offers great for potential for 

thermoelectric applications, and can also result in a wide range of unexpected and fascinating 

properties. For instance, Ce2O2S nanoparticles anchored on graphitised carbon has been 

recently found to be a promising anode material for Li-ion batteries, with a stable specific 

capacity up to 627 mA h g-1 after 180 charge-recharge cycles [2]. Sm2Ti2S2O5 has attracted 

considerable attention as a photocatalyst for water splitting [3], and LaOCuS is considered a 

promising p-type transparent semiconductor for optoelectronic applications [ 4 ]. 

Superconductivity has been recently reported in bismuth oxysulfides, although the Tc is rather 

low ~ 4.5 K [5,6,7]. An improvement of the superconducting properties of compounds 

containing [BiS2]
2- layers has been found in electron doped NdO0.5F0.5BiS2 (Tc ~ 5 K) [8] or 

LaO1-xFxBiS2 (Tc ~ 10.6 K) [9].  

Although oxychalcogenides can also adopt structures without low-dimensional characteristics, 

as exemplified by Eu5V3S6O7 and La10Se14O [10], throughout this review we restrict our 

scope to layered oxychalcogenides, with a particular focus on their potential for 

thermoelectric applications. The structures of some families of layered oxychalcogenides 

have been previously reviewed [1, 11, 12]. 
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2. Structural Chemistry of Layered Oxychalcogenides 

2.1. Common Building Blocks 

Structures of layered oxychalcogenides can be described as a combination of two (or more) 

types of building blocks. Certain inorganic slabs, such as perovskite, fluorite, or rock-salt 

blocks, which are encountered in many structures, can be considered as two-dimensional 

building blocks, and layered structures in which two or more types of such building blocks 

are stacked along a given direction, can be generated. Table 1 presents four common building 

blocks found in layered oxychalcogenides. In each case, the parent structure is shown, as well 

as a two-dimensional slab derived from each parent structure. Representative compounds 

containing these building blocks are discussed in the following sections. Chalcogenide anions 

are denoted as Q. 

2.2. Materials containing sheets of Q2- and (Q2)
2- anions 

Three related families of materials containing sheets of Q2- and/or (Q2)
2- anions, which 

alternate with oxide slabs, are known. Planar sheets of Q2- anions are found in [A2O2]Q, 

while [A4O4](Q2)(Q) contains both Q2- and (Q2)
2-, and in [A2O2]Q2 only (Q2)

2- anions are 

present. 

The crystal structures of materials with stoichiometry [A2O2]Q, where A is rare earth element 

(La-Yb, Y, Lu) or Bi, and Q is S, Se or Te, consist of alternating [A2O2]
2+ and Q2- layers. The 

oxygen anions are tetrahedrally coordinated by A3+ cations, forming A4O tetrahedra, while 

the Q2- anions form a planar chalcogenide array. Two distinct structure types are found, which 

differ markedly on the nature of the [A2O2]
2+ layers. Materials containing the heavier 

chalcogen Te, including [A2O2]Te (A = La-Nd, Sm-Ho Bi)[13,14] as well as the oxyselenide 

Bi2O2Se [15], crystallise in the tetragonal (space group I4/mmm) anti-ThCr2Si2 structure type 

(Figure 1a), while most of the remaining compounds ([A2O2]Q with A = La-Yb, Y, Lu; Q = S, 

Se) [16,17,18,19] crystallise in the trigonal (space group 13mP ) structure (Figure 1b) of 

La2O3. The structure of Bi2O2S, which is closely related to the anti-ThCr2Si2 type, has been 

described by Koyama et al. in an orthorhombic space group (Pnnm). This structure appears to 

be a slightly distorted form of the tetragonal structure of Bi2O2Se [20]. The anti-ThCr2Si2 

structure is also adopted by the oxypnictides [A2O2]X (A = rare-earth element, X= Sb, Bi) 

[21,22]. A commensurately modulated structure, arising from the distortion of the square nets 

of the pnictide ions, results in a lowering of the symmetry for Pr2O2Sb [23], but the single 
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crystal study of Bi2O2S provides no evidence for a modulated structure [20]. 

In the tetragonal anti-ThCr2Si2 structure, the A4O tetrahedra share four edges, forming 

fluorite-like two-dimensional slabs. The Q2- ion adopts an 8-fold square prismatic 

coordination and the A site is in a (4O+4Q) distorted square anti-prism. By contrast, in the 

trigonal structure, the A4O tetrahedra share three edges, forming 6 membered rings of 

tetrahedra (Figure 1c). Each chalcogenide ion is octahedrally coordination by A3+ cations, 

and each A3+ cation is seven coordinate with four short bonds to O and three longer bonds to 

Q.  

In the [A4O4](Q2)(Q) structure (A = La-Yb, Y and Q = Se), fluorite-like [A2O2]
2+ slabs 

alternate with chalcogen sheets, formed by chains of Se2- and (Se2)
2- anions [24,25].  

Depending on the size of the A atom, four closely-related structure types, labelled as the α, β, 

γ and δ-A4O4Se3 structures, exist [23]. The structure of α-A4O4Se3 phase is illustrated in 

Figure 2a. Whilst ordered chains of alternating Se2- and (Se2)
2- anions are found in the α and 

β phases, in the γ and δ types the Se atoms form “wave like” chains, which cannot be 

interpreted as a simple ordered array of Se2- and (Se2)
2-. More details have been presented 

elsewhere [23]. Neither sulfur nor tellurium analogues of A4O4Se3 have been reported to date. 

The structure of [A2O2](Q2) (Figure 2b) was first described by Wichelhaus, who reported 

compounds where A is La, Pr, Nd and Q is S [26], and is composed of alternating 

fluorite-type [A2O2]
2+ layers and (S2)

2- planar sheets. Although this crystal structure was 

initially described in the Pcam space group [24], J. Ostoréro et al. have shown that La2O2S2 

crystallises in the Cmca space group [27]. Selenium or tellurium analogues have not been 

described. 

2.3. Materials containing fluorite-like oxide blocks and transition-metal 

chalcogenide blocks 

Two distinct structural types, both of which contain fluorite-like [A2O2]
2+ slabs, are known: 

[AO][BQ] and [AO][BQ2], depending on the oxidation state of the transition metal. The 

monovalent transition metals Cu and Ag adopt the former, whilst divalent transition metals 

adopt the later structure. 

Materials with the general formula [AO][BQ] (where A is Bi, Y, La-Yb; B is a monovalent 

cation such as Cu, Ag and Q is S, Se, Te) [28,29,30,31,32], crystallise in the tetragonal 

ZrCuSiAs structure [33]. The A3+ ions had been limited to Y3+ and lanthanides until 1993 
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when Kholodkovskaya et al. [27] reported the substitution of Bi3+ into the A site. The 

[AO][BQ] crystal structure consists of fluorite-type [A2O2]
2+ and antifluorite-type [B2Q2]

2- 

slabs stacked alternately along the c-axis (Figure 3). This structure type has been reported for 

approximately 150 compounds, containing the anions oxide, fluoride, silicide, germanide, 

chalcogenide, pnictide, and hydride [ 34 ], and in particular, is also adopted by the 

superconducting oxypnictides LnOFePn (Ln = La, Pr, Ce, Sm; Pn = P and As) [35]. In 1980, 

Palazzi et al. reported ionic conductivity for LaOAgS [28], while in CeOCuS copper can be 

readily extracted from the [Cu2S2]
2- layers, to produce highly deficient copper phases [36]. 

The rare-earth containing oxychalcogenides have been primarily investigated for their 

optoelectronic properties, as many of them are transparent p-type semiconductors [37]. 

The structure of [A2O2][BQ2] is composed of [BQ2]
2- (B = Fe, Zn, Mn Cd; Q = Se) slabs 

separated by [A2O2]
2+ layers (A = La, Ce). In the chalcogenide layers, the B2+ cations occupy 

half of the available B sites of the antifluorite-type [B2Q2]
 slab in an ordered fashion. In the 

case of La2O2CdSe2, a checkerboard arrangement of corner-sharing CdSe4 tetrahedra is found, 

instead of the edge-sharing tetrahedra found in [AO][BQ] (Figure 4) [38]. It has been shown 

that different ordering patterns are possible depending on the composition, and in particular 

on the nature of the transition metal. The [BSe2]
2− layers can contain BSe4 tetrahedra that are 

exclusively edge-sharing (stripe-like), exclusively corner-sharing (checkerboard-like 

arrangement), or mixtures of both. Details of the different ordering patterns in [A2O2][BSe2] 

phases have been discussed in detail elsewhere [39, 40]. The investigation of the electronic 

properties of La2O2CdSe2 indicate that this material is insulating, with electrical 

resistivities >1010 Ωcm, and a band gap of 3.3 eV [36]. 

2.4. Materials adopting the [AO][BQ2] structure and related structures 

The repetition of fluorite-type [A2O2]
2+ blocks and rock-salt [B2Q4]

2- blocks, stacked in an 

alternating fashion along the c-axis, creates the layered structure of [AO][BQ2] (where A=La, 

Ce, Pr, Nd, Sm, Yb, Bi; B = Bi; Q = S, Se),[41] which is exemplified by LaOBiS2 (Figure 

5a). These materials are currently attracting considerable attention due to their 

superconducting behavior and have been recently reviewed,[11] hence they will not be 

discussed here in further detail. [A2O2][SnS3] (A= La-Nd) can be considered to be closely 

related to the [AO][BQ2] structure, as it contains fluorite [A2O2]
2+ blocks alternating with 

thinner and distorted rock-salt [SnS3]
2- blocks [1, 42] (Figure 5b).  
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2.5. Materials adopting the [A2MO2][B2Q2] structure and anti-type variants 

A representative compound of the [A2MO2][B2Q2] structure (A = Ba, Sr; M = Mn, Co, Ni, Zn; 

B = Cu, Ag; Q = S, Se) [43,44,45] is Sr2ZnO2Cu2S2 [46], which crystallises in the 

Sr2Mn3Sb2O2 (or Sr2MnO2Mn2Sb2) structure type [47]. This structure contains antifluorite 

[B2Q2]
2- chalcogenide layers and oxide [MO2]

2- planar sheets, which are separated from the 

[B2Q2]
2- blocks by A2+ ions (Figure 6). The [A2MO2]

2+ blocks can considered to be derived 

from the perovskite structure, through removal of the apical oxide anions in a perovskite 

block (Table 1), leading to the square planar coordination found for the M2+ cations.  

The [A2M2O][B2Q2] structure is a half anti-type of [A2MO2][B2Q2] in which A and M are 

monovalent cations. It comprises the same antifluorite chalcogenide layers [B2Q2]
2- and oxide 

M2O planar sheets, which are separated from the [B2Q2]
2- slabs by A+ ions. A representative 

compound is Na2Cu4OSe2 or [Na2OCu2][Cu2Se2], which exhibits p-type metallic behaviour 

due to a small sodium deficiency [48]. [A2O2][B2OQ2] is an anti-structure of [A2M2O][B2Q2]. 

The representative compound of this structure type is La2Fe2O3Se2 or [La2O2][Fe2OSe2] [49]. 

It consists of oxide fluorite-type slabs [A2O2]
2+, while the oxide M2O planar sheet separated 

from the [A2O2]
2+ layers by chalcogenide anions.  

2.6. Materials containing Thicker Oxide Layers  

Examples of materials containing thicker oxide layers include the following homologous 

series: [An+1MnO3n-1][B2Q2] and [An+1O2n][B2Q2] (n≥1), in which B is Cu or Ag and Q is a 

chalcogen. 

The structure of [An+1MnO3n-1][B2Q2] (A = divalent cation; M = di- or trivalent; Q = S, Se) 

consists of antifluorite [B2Q2]
2- layers alternating with perovskite-like [An+1MnO3n-1]

2+ slabs 

of different thicknesses (Figure 7). The structure for n = 1, [A2MO2][B2Q2] (Figure 6), has 

been already described in section 2.5, and is exemplified by Sr2ZnO2Cu2S2. For n = 2, 

[Sr3M2O5][Cu2S2] with M = Fe and Sc have been reported [43,50], while for n =3 

[Sr4Mn3O7.5][Cu2Q2] is known [51].  

In the homologous series [An+1O2n][B2Q2], antifluorite-type [Cu2Q2] layers are separated by 

fluorite-like [An+1O2n] oxide layers, in which A are trivalent cations (Bi, Y, La-Yb). The n = 1 

member of this series, for which a representative example is [Bi2O2][Cu2Se2] (or BiOCuSe), 
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has already been described in section 2.3. The n=2 members [Bi2LnO4][Cu2Se2] (Ln = Y, Gd, 

Sm, Nd, La) are known [52], but members with higher values of n have not been reported to 

date. 

2.7. Materials containing Thicker Chalcogenide Layers 

Homologous series containing thicker chalcogenide layers have been primarily investigated 

for transition metals, and are exemplified by the [A2MO2][B2n-δQn+1] series (A = Ba, Sr; M = 

Mn, Co, Ni, Zn; B = Cu, Ag; Q = S, Se) [53]. The n=1 member of this series was already 

described in section 2.5, while n=2 and 3 members have found, for instance, in 

Sr2MnO2Cu2n-δSn+1 [52]. As illustrated in Figure 8, members of this homologous series 

consist of perovskite-like [A2MO2] blocks alternating with antifluorite-like [B2n-δQn+1] layers 

of increasing thickness depending on the value of n. Intergrowth structures in which 

antifluorite-like [B2n-δQn+1] blocks with different values of n coexist have also been found, as 

illustrated by Sr4Mn2Cu5O4S5, which contains [Cu4S3] and [Cu2S2] layers [54]. It has been 

shown that in Sr2MnO2Cu2n-δSn+1 the copper ions can be replaced by lithium ions through 

topotactic ion exchange reactions [55]. 

3. Thermoelectric Properties of Oxychalcogenides 

Despite the numerous families of oxychalcogenides that have been discovered, many of the 

published reports are concerned with their optical and magnetic properties [12, 36]. Little effort 

has been devoted to the study of their thermoelectric properties, the exception being the 

copper-containing oxyselenide BiOCuSe, which has been extensively investigated as a 

promising thermoelectric material since 2010 [ 56 ]. Some representative examples of 

thermoelectric oxychalcogenides are given in Table 2, and their properties are discussed 

below. As evidenced by data in Table 2, a common characteristic of these materials is a rather 

low thermal conductivity.  

The first report of the thermoelectric performance of oxychalcogenides adopting the [AO][BQ] 

structure focused on La1-xSrxOCuSe [57], but interest in these materials grew considerably 

after the report of ZT = 0.76 at 873 K for the bismuth analogue, Bi1-xSrxOCuSe [58]. Since 

then, the number of publications on this family of oxychalcogenides has been increasing 

steadily. Higher ZT values are found for oxychalcogenides with smaller band gaps. Usually, 

the temperature at which ZT reaches a maximum value is related to the band gap [59]. This is 

because for a given band gap energy, there is a temperature at which the onset of intrinsic 
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conduction will occur, and the simultaneous excitation of intrinsic electrons and holes will 

reduce the Seebeck coefficient (S = Sp + Sn) and hence ZT. It has been shown that, for a given 

operating temperature T, the optimal thermoelectric performance will be found for 

semiconductors with a band gap of approximately 10kBT [60]. Bismuth-containing [AO][BQ] 

phases have significantly lower band gaps than those containing rare earth elements, due to the 

contribution of Bi 6p states to the bottom of the conduction band [61]. Although the lowest 

band gap is found for the oxytelluride for which ZT = 0.66 at 673 K, there is a very limited 

number of doping studies [62,63], and most of the effort in optimising the thermoelectric 

performance has centred on the bismuth oxyselenide. For instance, high values of the 

thermoelectric figure of merit, ZT, have been obtained by doping with divalent (Sr2+, Ca2+, 

Pb2+, Mg2+) [58,64,65,66] or monovalent cations (Na+, K+) [67,68]. Alternatively, p-type 

doping can be achieved by introducing vacancies at the copper site, which leads to a ZT value 

of 0.81 at 923 K for BiOCu0.975Se [69]. In addition, the thermal conductivity of Ba2+ doped 

BiOCuSe could be decreased by approximately 40% when reducing the grain sizes down to 

200 - 400 nm, resulting in an even higher ZT value of 1.1 at 923 K [70]. Similar reductions in 

thermal conductivity have been found for ball milled BiOCuSe [ 71 ], suggesting that 

nanostructuring may be an effective approach to enhance the thermoelectric response of these 

materials. The highest figure of merit, ZT ~ 1.4 (at 923 K), seems to have been achieved 

through the introduction of texture in Bi0.875Ba0.125CuSeO by hot forging [72]. More recently, 

dual vacancies at the bismuth and the copper site have been exploited to reduce the thermal 

conductivity and control the charge carrier concentration, leading to a ZT value of 0.84 at only 

750 K [ 73 ]. In general, the most common approach to achieve a high ZT in these 

oxychalcogenides is to tune the electrical conductivity via doping, given their naturally low 

thermal conductivity. Due to the high Grüneisen parameter of BiOCuSe [74], it has been 

suggested that the low thermal conductivity in BiOCuQ is related to the presence of the Bi3+ 

lone pair, which can reduce the lattice thermal conductivity due to bond anharmonicity [75]. 

Saha calculated the phonon band structure of the oxyselenide, and attributed the low thermal 

conductivity of BiOCuSe when compared to LaOCuSe to a stronger hybridization of acoustic 

and optical phonons in the former than in the later [76]. The origin of the unusual thermal 

transport properties of BiOCuQ has also been investigated using a combination of neutron 

diffraction and computational calculations [ 77 ]. This study has shown that the main 

contributors to the unusually large Grüneisen parameter of these phases are copper and the 

chalcogen, and that despite the presence of the lone pair, the bismuth contribution is relatively 

small, with the change in thermal conductivity associated with the Bi/La substitution related to 
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the variation in atomic mass. Vaqueiro et al. concluded that weak bonding of the copper atoms 

leads to an unexpected rattling vibrational mode of copper at low frequencies, which is likely to 

be a major contributor to the low thermal conductivity found for BiOCuQ [76]. Recent 

calculations of phonon transport and lifetimes in BiOCuSe indicate that there is a significant 

contribution of optical phonons, arising primarily from O vibrations, to the overall lattice 

thermal conductivity [78]. Calculations of the electronic band structure of BiOCuQ indicate 

that the top of the valence band consist of a mixture of light- and heavy-mass bands [79]. This 

is considered a desirable feature for good thermoelectric performance [80], given that a 

light-mass band promotes good electrical conduction, whilst a heavy-mass band can result in a 

high Seebeck coefficient. However, it should be noted that the hole mobility in BiOCuSe is 

small, ∼20 cm2 V-1 s-1 [81]. This is detrimental for the thermoelectric performance, because ZT 

is proportional to the mobility, according to the expression Z ∝ (m*)3/2µ (where m* is the 

effective mass and µ the mobility)[59].  

Other materials containing antifluorite-like [Cu2Q2] layers have also been considered as 

potential thermoelectric materials. This includes Bi2YO4Cu2Se2, which was described in 

section 2.6. In Bi2YO4Cu2Se2, copper has a nominal oxidation state of +1.5 instead of +1.0, as 

confirmed by X-ray absorption spectroscopy [82], and this results in metallic behaviour. The 

large charge carrier density associated with metallic conduction leads to a significantly reduced 

Seebeck coefficient (∼ 25 µVK -1 at room temperature), and a ZT value of only 0.03 at 673 K 

[83]. A small number of materials consisting of antifluorite [Cu2Se2]
2- layers alternating with 

perovskite-type oxide layers have also been assessed as potential thermoelectric materials. This 

includes A2FeO3CuQ (A =Sr, Ca, Q = S, Se) [84] and Sr2-xBaxCoO2Cu2Se2 [85 ]. The 

A2FeO3CuQ phases were found to be p-type semiconductors with high resistivity values of 

1-10 kΩ cm at room temperature [76], while for Sr2-xBaxCoO2Cu2Se2 a power factor of 1.5 µW 

cm-1K-2 at room temperature has been reported [77]. The thermal conductivity of 

Sr2-xBaxCoO2Cu2Se2 has not been measured, but given that their hole mobility of ∼33.3 cm2 

V−1 s−1 [42] is similar to that of BiOCuSe, doping studies of Sr2CoO2Cu2Se2, together with 

measurements of the thermoelectric properties as a function of temperature would be of 

interest, as these materials may exhibit good thermoelectric performance. There are also some 

preliminary studies of oxychalcogenides containing rock-salt blocks, including LaOBiS2-xSex, 

for which a ZT = 0.17 is reached at 743 K [86]. More effort has been devoted to the 

thermoelectric properties of Bi2O2Q (Q = Se, Te), which crystallise in the anti-ThCr2Si2 

structure type described in section 2.2. The thermoelectric performance of Bi2O2Se, which is 
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an n-type semiconductor with a ZT = 0.007 at 300 K, was first reported by Ruleova et al [87]. 

Bismuth deficiency has been shown to improve ZT [88], whilst doping with Sn at the bismuth 

site in Bi2-xSnxO2Se leads to a ZT value of 0.20 at 773 K [89]. The oxytelluride Bi2O2Te, which 

is a narrow gap semiconductor with a band gap of ∼ 0.23 eV, reaches a value of 0.13 at 573 K 

[90]. As evidenced by the values of ZT presented in Table 2, the performance of n-type 

oxychalcogenides to date is significantly lower than those of p-type phases, and the best 

performing material is still BiOCuSe. 

4. Concluding remarks  

While in the past research on layered oxychalcogenides has centered on their magnetic 

properties, these materials are rapidly emerging as promising thermoelectric materials. A 

common feature to all materials investigated to date seems to be a relatively low thermal 

conductivity, and further studies to clarify the origin of this behavior are needed. 

Band structure calculations suggest that the electronic structures of layered oxychalcogenides, 

which have a clear two-dimensional character, may be considered as the superposition of the 

electronic structures of each type of layer, stabilised by charge transfer. For the p-type phases 

containing [Cu2Q2] blocks, the electrical transport properties will be primarily determined by 

the electronic structure of the [Cu2Q2] layer, as the top of the valence band is formed by states 

arising from the hybridisation of Cu 3d and chalcogen p orbitals [30], while the oxide block 

acts as a charge reservoir to control the Fermi level. For the n-type oxychalcogenides, which 

have been far less investigated as thermoelectric materials, the electrical transport properties 

will be dependent on the nature of the bottom of the conduction band. For instance, in 

LaOBiS2, the bottom of the conduction band is formed by unoccupied Bi 6p states hybridized 

with S 3p states, and has a clear two-dimensional character, with conduction electrons located 

in the [BiS2] blocks [91].  

From a thermoelectric perspective, the best performing oxychalcogenide to date is BiOCuSe, 

but given the variety of already known oxychalcogenides, there is a large field of unexplored 

materials that offer real prospects to improve ZT. The building block approach described here 

also offers ample opportunities to design and discover entirely new families of 

oxychalcogenides. 
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Fig. 1. Crystal structures with stoichiometry [A2O2]Q: (a) anti-ThCr2Si2 type along 

[010]; (b) La2O3 type along [100]; (c) polyhedral view of the [A2O2]
2+ layer in the 

La2O3 type structure, with the OA4 tetrahedra shown in blue. Unit cells are shown. 

Key: A, blue circles; O, red circles; Q, yellow circles. 

Fig. 2. View of (a) the α-A4O4Se3 crystal structure; (b) the La2O2S2 structure. Key as 

for Figure 1. 

Fig. 3. View of the crystal structure of [AO][BQ] along [010]. Key: A, blue circles; B, 

green circles; O, red circles; Q, yellow circles.  

Fig. 4. View of the crystal structure of [AO][BQ2] along [010]. Key as for Figure 2. 

Fig. 5. View of the crystal structures of (a) [AO][BQ2] and (b) [A2O2][SnS3]. Key as 

for Figure 2. 

Fig. 6. The [A2MO2][B2Q2]) structure-type. Key: A, blue circles; B, green circles; M, 

pink circles; O, red circles; Q, yellow circles 

Fig. 7. The n=2 and n=3 members of the homologous series [An+1MnO3n-1][B2Q2]. 

Key as for Figure 6. 

Fig. 8. The n=2 and n=3 members of the homologous series [A2MO2][B2n-δQn+1]. Key 

as for Figure 6. 
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Table 1. Common building blocks found in oxychalcogenides. 

Structure Unit cell Building block 
slab 

Key 

Fluorite  (CaF2) 

 

 

 

Ca2+ (blue) 

F- (green) 

Antifluorite (Na2O) 

 

 

 

Na+ (blue) 
O2- (red) 

Rock-salt (NaCl) 

 

 

 

Na+ (yellow) 

Cl- (green) 

Perovskite 
(SrTiO3) 

 
 

 

Sr2+ (green) 
Ti4+ (blue) 
O2- (red) 
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Table 2. Total thermal conductivity (at room temperature), together with maximum ZT 

values at a temperature T, for selected oxychalcogenides. 

Material p/n-type κ/Wm-1K-1 ZT T/K Ref. 

Bi1-xSrxOCuSe p-type 0.9 0.76 873 58 

BiOCuTe p-type 0.8 0.66 673 62 

Bi0.875Ba0.125CuSeO p-type 0.9 1.4 923 72 

Bi2YO4Cu2Se2 p-type 1.5 0.03 673 83 

LaOBiS2-xSex n-type 2.0 0.17 743 86 

Bi2-xSnxO2Se n-type 1.0 0.20 773 89 

Bi2O2Te n-type 0.9 0.13 573 90 
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