
A parallel genetic algorithm for the Steiner
Problem in Networks
Conference or Workshop Item

Accepted Version

Di Fatta, Giuseppe, Lo Presto, Giuseppe and Lo Re, Giuseppe
(2003) A parallel genetic algorithm for the Steiner Problem in
Networks. In: The 15th IASTED International Conference on
Parallel and Distributed Computing and Systems (PDCS
2003), 3-5 Nov 2003, Marina del Rey, CA, USA, pp. 569-573.
Available at https://centaur.reading.ac.uk/6149/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Reading’s research outputs online

A PARALLEL GENETIC ALGORITHM FOR THE STEINER PROBLEM
IN NETWORKS

Giuseppe Di Fatta, Giuseppe Lo Presti, Giuseppe Lo Re

ICAR – Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche
Viale delle Scienze, 90128 Palermo

Italy
{difatta, lopresti, lore}@pa.icar.cnr.it

Abstract
This paper presents a parallel genetic algorithm to the
Steiner Problem in Networks. Several previous papers
have proposed the adoption of GAs and others
metaheuristics to solve the SPN demonstrating the
validity of their approaches. This work differs from them
for two main reasons: the dimension and the
characteristics of the networks adopted in the experiments
and the aim from which it has been originated. The reason
that aimed this work was namely to build a comparison
term for validating deterministic and computationally
inexpensive algorithms which can be used in practical
engineering applications, such as the multicast
transmission in the Internet. On the other hand, the large
dimensions of our sample networks require the adoption
of a parallel implementation of the Steiner GA, which is
able to deal with such large problem instances.

Key Words
Steiner Problem, Parallel Genetic Algorithm, Internet
topology.

1. Introduction

The Steiner Problem in Networks (SPN) [22], is a classic
combinatorial optimization problem which in its general
case decision version has been shown [10] NP-complete.
Its applications cover many different scientific and
technological fields such, for instance, the VLSI and
pipeline design, the Internet multicast routing, the
telephone network design, etc. Given the importance that
the problem entails in many scientific fields, many efforts
have been produced in the last years to design
polynomial-time algorithms to determine sub-optimal
solutions. Several heuristics have been developed capable
of providing approximate solutions [11], [16], [19].
Mathematical proofs constrain the solutions determined
by these heuristics to the optimal solution, binding them
by some multiplicative factors. This property allows their
adoption for many practical applications. However, it
remains a scientific challenge to determine the optimal
solutions for those small instances treatable by exhaustive
algorithms, and the best sub-optimal solutions in the other
cases.

As previously mentioned, among the practical
applications of the SPN there is the construction of a
minimal distribution tree to connect a set of Internet
routers involved in a multicast transmission. The
extremely dynamic nature of this application imposes the
development of efficient and effective heuristics capable
of determining, in a very short time, sub-optimal solutions
that however may represent good approximations. Many
of such methods have been proposed in the last years,
with the further constraint to produce deterministically the
solutions. To validate the effectiveness of the proposed
algorithm it is useful to compare the approximations
obtained with the exact solutions. However the NP-
complete nature of the problem, at least to the current
knowledge, does not allow to perform complete
algorithms for graphs whose dimensions are comparable
with the current size of the Internet.
Among the most efficient approximating algorithms,
recently some meta-heuristics such as Genetic Algorithms
[5], tabu-search [7], and Simulated Annealing [4] have
been proposed. Although these approaches can be
considered the best approximating methodologies, they
suffer the disadvantage of their non-deterministic
behavior that does not allow their adoption in fields
requiring a distribute coordination among several
independent entities. However, the good performances
produced by these evolutionary methods suggested us the
idea to exploit their results as comparison term. The
approach that better than each other has been evaluated
suitable for exploiting the coarse grain parallelism
available in our laboratory was a parallel implementation
of Genetic Algorithm. This technique results extremely
scalable and the software implementation we carried out
allows us to extend its execution to very large grid
computing systems, which currently are becoming
available on the Internet. The relevant computing power
available allowed us to solve very large instances of the
problem, and in most of the cases to determine the best
solutions ever obtained.
The experiments have been carried out on several
different sets of graphs, characterized by different
topological features, with the aim to effectively evaluate
and compare the performances over a wide range of
samples. Furthermore, to demonstrate the general validity
of the methodology we tested our implementation over a
classical public library set of experiments, SteinLib [21],

which represents a commonly accepted comparison term
for the Steiner problem. The remainder of the paper is
organized as follows. The Steiner Problem in Network is
formulated in section II. Section III contains the
description of the parallel genetic algorithm, and section
IV discusses some topological metrics used to evaluate
the algorithm performances. Finally, section V describes
the experimental results, and section VI concludes this
work and discusses future directions.

2. The Steiner Problem in Networks

Formally, the Steiner Tree Problem in Network can be
formulated as follows.
Definition 1. Let G = (V, E) be an undirected graph,
w : E → R+ a function that assigns a positive weight to
each edge, and Z ⊆ V be a set of multicast or terminal
nodes. Determine a connected subgraph GS = (VS, ES) of
G such that:
- Z ⊆ VS ;
- the total weight ∑

∈

=
SEe

S ewGw)()(is minimal.

The VS – Z set is called the Steiner nodes set and is
denoted by S. Since the weight function assumes positive
values, the resulting subgraph is called the Steiner
minimum tree T, which spans each node in VS.
Throughout this paper, let n = |V|, m = |E|, p = |Z|. Many
heuristics proposed in the past years are capable of
identifying sub-optimal solutions with polynomial time
complexities. Among these, the Distance Network
Heuristic (DNH) [22], the Minimum or Shortest Path
Heuristic (MPH or SPH) [19], the K-Shortest Path
Heuristic (K-SPH) [12], the Average Distance Heuristic
(ADH) [17], and the Stirring heuristic [2]. Some of the
heuristics used as comparison terms and exploited in our
algorithm are briefly described here. The DNH builds the
distance network Kz induced by Z, and constructs the
minimum spanning tree (MST) on the network Kz. It
replaces the virtual links with the real paths (the nodes
and links of the initial network), thus obtaining a
subgraph of the initial network, Gz. It then computes the
MST on Gz and finally prunes all the S-vertices of degree
one. The MPH builds a subtree of G in an incremental
fashion: it starts off by selecting an arbitrary node among
the terminal nodes (typically the source node) and then
progressively adds the terminal node nearest to the tree,
including the nodes and edges of the connecting path. The
K-SPH is an improvement of the MPH algorithm. It
builds a forest of subtrees joining together the closest
nodes or subtrees until a single solution tree has been
obtained. ADH is a generalization of K-SPH. It
repeatedly connects nodes or subtrees through the most
central node. ADH terminates when a single tree remains,
spanning all the Z-nodes. The ADH algorithm is the most
effective among these heuristics, though the better
performances involve a higher computational cost, O(n3)
versus the upper bound of O(pn2) of all other heuristics.
The Stirring heuristic is a local search optimization

method, constrained to assume a deterministic behavior,
which uses a solution found from the above heuristics to
determine better solutions. Furthermore, many algorithms
capable of identifying the optimal solution tree have been
proposed in the literature. All of them are characterized
by an exponential complexity. Among these, the
Spanning Tree Enumeration Algorithm [22], has
O(p2 2n-p + n3) complexity, and the Dynamic
Programming Algorithm with O(n3 + n2 2p-1 + n 3p-1)
complexity. However, their exponential nature does not
allow their adoption in any practical field.

3. The Parallel Genetic Algorithm

In this paper we will not describe the basic genetic
algorithms, and for their description we remand the
interested reader to [8]. To solve a problem using a
genetic algorithm, it is necessary to perform a mapping of
the problem elements into the basic components of the
GA. To perform the analysis of the solution space, a GA
needs the representation of the problem solutions as basic
individuals of its population, which are called genomes.
During the execution of the algorithm new individuals
will be generated by means of the mutation and crossover
operators. New generated individuals should own the
basic property to still represent feasible solutions. To
encode the feasible solutions of the SPN as binary
genomes, we adopted the following representation. For
each particular instance of the problem we define the
genome as a binary array whose length corresponds to the
dimension of the set V – Z, i.e. the set of all the nodes
which may be considered potential candidates for
belonging to a given solution. The value of the i-th bit
represents if the correspondent node i in the set V – Z
should be considered as complementary node to generate
a tree which connects the Z nodes. To follow the genome
indication of including the correspondent nodes in a
solution tree we map each genetic individual in a new
instance of the problem where the original Z nodes are
extended with the nodes coded by the genes. This new
instance of the problem is solved using the K-SPH
heuristic [12] and the solution pruned with regard to the
original multicast set. The fitness value is
straightforwardly calculated as the inverse of the tree cost,
thus to restrict the range of the fitness function to the
interval (0,1]. Among the heuristics presented in the
previous section, we chose the K-SPH as evaluation
criterion, since its performances represent a valuable
trade-off between execution time and solution
competitiveness.
Genetic Algorithms are naturally suited to be
implemented on a parallel architecture. Surveys on
parallel GAs can be found on [1] and [20]. Several
approaches to parallel implementations of GAs have been
proposed. In this paper we will consider a simple global
model. In this approach a master process is responsible of
the main execution of the genetic algorithm and exploit
the availability of different processors by allocating a
slave process on each of them. Each slave will be required

to execute the evaluation function for some individuals of
the current population on the basis of its availability. This
way, the master process has only to deal with the
genomes population, while the slave processes have to
deal with the more expensive computation of the
evaluation function. This allows a good scalability of the
algorithm with respect to the number of available slaves.

4. Topological metrics

Before evaluating the heuristics performances over the
sample graphs, we firstly need to establish some criteria
to objectively measure the topological characteristics of
the graphs. This is in order to compare the experimental
graphs with the networks coming from the application
world, such as the case of the Internet for multicast
transmission applications. Namely, the performances of
the heuristics can heavily depend from global network
parameters such as the maximum node degree and the
connection degree, that in turn depends from the type of
the examined graph. In this section we describe some
topological parameters used to characterize computer
networks, including the node degree, the node rank and
the degree frequency distribution (see table 1). Recently,
it has been shown [6] that, despite their apparent
randomness, current Internet topologies exhibit power
laws of the form y ∝ xα, where α is a constant, between
some topological parameters that are examined in table 1.

Metric Description
dc Connection degree, i.e. fraction of edges with

respect to a same-size fully connected network. It is

obtained as
)1(

2
−

=
nn
mdc .

dv Node degree, i.e. the number of outgoing edges
from the node v.

rv Node rank, i.e. its index ordering all nodes in
decreasing degree. It follows from the definition
that if ∃ two nodes v and w such that dv < dw, then
rv > rw.

fd Degree frequency, i.e. the number of nodes with
degree d.

Table 1 - Graph and node parameters used to characterize
network topologies.

With the above definitions, we are interested particularly
on the following well known power-laws, as they can help
in characterizing graphs typologies from each other:
The degree of a node is proportional to the rank of the
node to the power of a constant R:

R
vv rd ∝

The frequency of a degree is proportional to the degree to
the power of a constant O:

O
d df ∝

In a previous work [3] we found that in order to
characterize a network and evaluate its matching degree
with a real network structure such the Internet, we can
take into account the global network connection degree dc

and the regression coefficients R2, which determine the
fitness degree between the node parameters and the above
power laws. Namely, if a topology exhibits an Internet-
like structure the dc parameter is always very low (under
0.01) and the two R2 coefficients are relatively high, both
for the first and for the second law; on the other hand, if
the topology does not exhibit any particular structure, the
above distributions can assume very different shapes (e.g.
gaussian), with meaningless R2 values and the dc
parameter ranging in the whole interval [0, 1].

5. Experimental results

The parallel implementation has been carried out on forty
workstations arranged as a grid cluster managed by the
MPI system [15]. All nodes present the same hardware
and software configuration. Each of them is equipped
with an Intel Pentium 4 processor with a clock frequency
of 1.5 GHz, 256 Mbytes of RAM, four 100Mbps Ethernet
cards and managed by the Red Hat Linux 7.2 distribution.
A redundant degree of connectivity is achieved by means
of eight 100Mbps Ethernet switches.
In this section we discuss the experimental results
obtained on three different test sets of sample graphs,
taken respectively from the public SteinLib library, the
BRITE topology generator, and the Mercator project. All
the test sets are classified according to the topological
indices described in the previous section. On this
experimental testbed, we execute the parallel Genetic
Algorithm, the classical heuristics SPH, DNH, K-SPH,
and ADH, and the stirring heuristic. The GA parameters
are set as follows:
• population size = 120 individuals (three times the

processors number),
• number of generations = 30,
• probability of mutation = 0.05,
• probability of crossover = 0.8.

Fig. 1 - Typical fitness evolution vs. number of generations.

We maintain these values constant for all the executions
in order to compare all problems on a homogeneous basis.
Furthermore, since a preliminary observation (see fig. 1)
revealed a fast convergence of the algorithm with regard

to the number of generations, we chose for this parameter
a relatively small value, thus to optimize the execution
times.
The first test set is a subset of the SteinLib library [21], a
public collection of Steiner tree problems in graphs with
different characteristics, taken from VLSI applications,
genetic contexts, computer networks applications, etc.
More specifically we adopt the subset constituted by
Beasley’s series C, D, E, formerly known as the OR-
library, which are random-weights graphs with sizes
ranging from 500 to 2,000 nodes. The connection degree
is relatively high, ranging from 0.1% up to 10%. This
network sample does not exhibit any power law as
regards the degree and rank distribution, which means
that its graphs do not present any similarity with the
Internet-like topologies. However we adopted it as test
for our parallel implementation of GA, because it
represents a commonly accepted comparison term since
the optimal solutions are known.

Fig. 2 - Cumulative cost competitiveness on C,D,E SteinLib nets.

Figure 2 shows the cumulative cost competitiveness of
parallel GA and the classical heuristics over the above
graphs. The competitiveness is determined as the ratio
between the costs of trees produced by heuristics and the
optimal ones. From the comparison of the solutions
obtained by the GA with the optimal values, it can be
observed that on 50 over 60 cases the GA is able to
determine the optimal solution, and for 55 instances the
obtained solution is at most 1% larger than the optimal
value.
The following set of experiments is devoted to investigate
the graphs with topological features similar to the Internet
graphs. BRITE (Boston university Representative Internet
Topology gEnerator) was developed to investigate the
growth of large computer networks [13], and to compare
several topology generation models. The key
characteristic of this generator is the incremental growth
(the network generation goes on in an incremental
fashion) and the preferential connectivity (the probability
that a new node is connected to a randomly selected target
node is positively correlated to the degree of the target),
used during the generation process; its authors claim that

these are the primary reasons for power-laws on the
Internet, since the generated topologies exhibit the power-
laws with a very high correlation. However, it should be
underlined that BRITE adopts an incremental growing
strategy, rather than a hierarchical mode; as noted in [14],
although it is commonly accepted the idea of a
hierarchical Internet, experimental tests have proved that
an incremental generator, based on the nodes degree, fits
the real networks better than a hierarchy based generator.
In our experiments, we tested several networks (~ 400)
with homogeneous topological characteristics and sizes
ranging from 1,000 to 5,000 nodes.

Fig. 3 - Cumulative cost competitiveness on Brite nets.

Figure 3 shows the cumulative cost competitiveness
curves for a test set composed of one hundred networks,
each of them with 1,000 nodes. In this and in the
following experiments, the competitiveness is determined
as the ratio between the costs of trees produced by
heuristics and the best-known sub-optimal solution. As it
can be clearly observed, GA finds the best-known
solutions on all the instances, thus confirming its
effectiveness to be used as a comparison term for the
other heuristics.
In the last experiment, the test set is created starting from
the real Internet data description produced by the
Mercator project [9].

Fig. 4 - Cumulative cost competitiveness on Mercator subnets.

This project has produced a real Internet snapshot, by
merging an enormous amount of measurements taken
over the time and gathered into a central database. The
resulting network, obtained in November 1999, includes
more than 280,000 nodes and nearly 450,000 edges, with
a connection degree lower than 0.001%.
The analysis of the cumulative cost competitiveness
curves, shown in figure 4, reveals the parallel GA
effectiveness since the best-known solutions are found on
45 instances out of 50.

6. Conclusion

In this work we proposed the adoption of a parallel
implementation of genetic algorithm to obtain near-
optimal solution to the Steiner Problem in Networks for
large graphs with topological features similar to the
Internet ones. The results have shown that our
implementations achieved high competitiveness in all the
experimented test sets, differentiated for topological
characteristics. In most of the well known examples of the
SteinLib library we found the optimal solutions. On the
sample networks generated by the Brite tool or extracted
from the Mercator graph, which simulate the Internet
structure with the best accuracy, we almost always
obtained the best calculated sub-optimal solutions, thus
achieving a useful result for the comparison of the
competitiveness of the polynomial and deterministic
heuristics.
As regards the future directions, we are currently
developing more sophisticated genetic models, such as a
multi population model, with the aim of further improving
the GA performances and dealing with larger problem
instances.

References

[1] E. Cant-Paz, A summary of research on parallel
genetic algorithms, Technical Report 950076, Illinois
Genetic Algorithm Lab., Univ. Illinois Urbana-
Champaign, Urbana, IL, July 1995.
[2] G. Di Fatta, G. Lo Re, Efficient tree construction for
the multicast problem, Special issue of the Journal of the
Brazilian Telecommunications Society, 1999.
[3] G. Di Fatta, G. Lo Presti, G. Lo Re, Computer
Network Topologies: Models and Generation Tools,
CE.R.E. Technical Report 5, July 2001.
[4] K. A. Dowsland, Hill-climbing, Simulated Annealing
and the Steiner Problem in Graphs, Engineering
Optimisation, 17, 1991, pp. 91-107.
[5] H. Esbensen, Computing Near-Optimal Solutions to
the Steiner Problem in a Graph Using a Genetic
Algorithm, Networks: An International Journal, 26, 1995.
[6] M. Faloutsos, P. Faloutsos, C. Faloutsos, On Power-
Law Relationships of the Internet Topology, ACM
SIGCOMM, 1999.
[7] M. Gendreau, J. F. Larochelle, B. Sanso, A Tabu
Search Heuristic for the Steiner Tree Problem, Networks,
34, 1999, 162-172.

[8] D. E. Goldberg, Genetic algorithm in Search,
Optimization, and Machine Learning (Reading, MA:
Addison Wesley, 1989).
[9] R. Govindan, H. Tangmunarunkit, Heuristics for
Internet Map Discovery, Proc IEEE Infocom 2000, Tel
Aviv, Israel.
[10] R. M. Karp, Reducibility among Combinatorial
Problems, in R. E. Miller, J. W. Thatcher (Eds.),
Complexity of Computer Computations (Plenum Press,
New York, 1972, 85-103).
[11] L. Kou, G. Markowsky, L. Berman, A fast algorithm
for Steiner trees, Acta Inform., 15, 1981, 141-145.
[12] J. Kruskal, On the Shortest Spanning Subtree of a
Graph and the Traveling Salesman Problem, Proc. Amer.
Math. Soc., 7, 1956, 48-50.
[13] A. Medina, A. Lakhina, I. Matta, J. Byers, BRITE
Universal Topology Generator, 2001, cs-pub.bu.edu/brite.
[14] A. Medina, I. Matta, J. Byers, On the Origin of
Power Laws in Internet Topologies, ACM SIGCOMM
2000, 30(2), April 2000.
[15] Message Passing Interface Forum. MPI: A new
message-passing interface standard (version 1.1),
Technical Report, University of Tennessee, 1995.
[16] V. J. Rayward-Smith, The computation of nearly
minimal Steiner trees in graphs, Int. Math. Ed. Sci. Tech.
14, 1983, 15-23.
[17] V. J. Rayward-Smith, A. Clare, On Finding Steiner
Vertices, Networks, 16, 1986, 283-294.
[18] H. Tangmunarunkit, R. Govindan, S. Jamin, et al.,
Network Topologies, Power Laws, and Hierarchy,
SIGCOMM 2001, June 2001.
[19] H. Takahashi, A Matsuyama, An approximate
solution for the Steiner problem in graphs, Math. Japan,
1980, 573-577.
[20] M. Tomassini, Parallel and distributed evolutionary
algorithms: A review, in K. Miettinen, M. Mkel, P.
Neittaanmki, J. Periaux, Evolutionary Algorithms in
Engineering and Computer Science (Eds. New York:
Wiley, 1999, 113-133).
[21] S. Voss, A. Martin, T. Koch, SteinLib Testdata
Library, February 2001, elib.zib.de/steinlib/steinlib.php.
[22] P. Winter, Steiner problem in networks: a survey,
Networks, 17, 1987, 129-167.

