
KNIME: the Konstanz Information Miner
Conference or Workshop Item

Accepted Version

Berthold, M. R., Cebron, N., Dill, F., Di Fatta, G., Gabriel, T.
R., Georg, F., Meinl, T., Ohl, P., Sieb, C. and Wiswedel, B.
(2006) KNIME: the Konstanz Information Miner. In: Workshop
on Multi-Agent Systems and Simulation (MAS&S), 4th Annual
Industrial Simulation Conference (ISC), 05-07 June 2006,
Palermo, Italy, pp. 58-61. Available at https://reading-
clone.eprints-hosting.org/6139/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Reading’s research outputs online

KNIME: THE KONSTANZ INFORMATION MINER

Michael R. Berthold, Nicolas Cebron, Fabian Dill, Giuseppe Di Fatta∗, Thomas R. Gabriel,
Florian Georg, Thorsten Meinl, Peter Ohl,

Christoph Sieb and Bernd Wiswedel
Konstanz University, Department of Computer and Information Science

Fach M712, 78457 Konstanz, Germany
E-mail: Michael.Berthold@uni-konstanz.de

ABSTRACT

The Konstanz Information Miner is a modular environ-
ment which enables easy visual assembly and interactive
execution of a data pipeline. It is designed as a teaching,
research and collaboration platform, which enables easy
integration of new algorithms, data manipulation or vi-
sualization methods as new modules or nodes. In this
paper we describe some of the design aspects of the un-
derlying architecture and briefly sketch how new nodes
can be incorporated.

OVERVIEW

Large volumes of data are often generated during simu-
lations and the need for modular data analysis environ-
ments has increased dramatically over the past years.
In order to make use of the vast variety of data analysis
methods around, it is essential that such an environ-
ment is easy and intuitive to use, allows for quick and
interactive changes to the analysis and enables the user
to visually explore the results. To meet these challenges
a data pipelining environment is an appropriate model.
It allows the user to visually assemble and adapt the
analysis flow from standardized building blocks, at the
same time offering an intuitive, graphical way to docu-
ment what has been done.
Knime, the Konstanz Information Miner provides such
an environment. Figure 1 shows a screenshot of an ex-
ample analysis flow. In the center, a flow is reading in
data from three sources and processes it in several, also
parallel analysis flows, consisting of preprocessing, mod-
eling, and visualization nodes. On the left a repository
of nodes is shown. From this large variety of nodes,
one can select data sources, data preprocessing steps,
model building algorithms, visualization techniques as
well as model I/O tools and drag them onto the work-
bench where they can be connected to other nodes. The
ability to have all views interact graphically creates a
powerful environment to explore the data sets at hand.
Knime is written in Java and it’s graphical workflow ed-
itor is implemented as an Eclipse (Eclipse Foundation

∗G. Di Fatta is also with ICAR-CNR, National Research Coun-
cil, Palermo, Italy.

2005) plug-in. It is easy to extend through an open API
and a data abstraction framework, which allows for new
nodes to be quickly added in a well-defined way.
In this paper we will describe some of the internals of
Knime in more detail. More information as well as down-
loads can be found at http://www.knime.org.

ARCHITECTURE

The architecture of Knime was designed with three main
principles in mind:

• visual, interactive framework: data flows should be
combined by simple drag&drop from a variety of
processing units. Customized applications can be
modelled through individual data pipelines.

• modularity: Processing units and data containers
should not depend on each other in order to enable
easy distribution of computation and allow for inde-
pendent development of different algorithms. Data
Types are encapsulated, that is, no types are prede-
fined, new types can easily be added bringing along
type specific renderers and comparators. New types
can be declared compatible to existing types.

• easy expandability: It should be easy to add new
processing nodes, or views and distribute them
through a simple plug&play principle without the
need for complicated install/deinstall procedures.

In order to achieve this, a data analysis process consists
of a pipeline of nodes, connected by edges that transport
either data or models. Each node processes the arriv-
ing data and/or model(s) and produces results on its
outputs. Figure 2 schematically illustrates this process.
The type of processing ranges from simple data opera-
tions such as filtering or merging to more complex statis-
tical functions, such as computations of mean, standard
deviation or linear regression coefficients to computa-
tion intensive data modeling operators (clustering, de-
cision trees, neural networks, to name just a few). In
addition most of the modeling nodes allow to interac-
tively explore their results through accompanying views.
In the following we will briefly describe the underlying

Proc. of the 4th Annual Industrial Simulation Conference, Workshop on Multi-Agent Systems and Simulation, Palermo, June 5-7, 2006

Figure 1: An Example Analysis Flow inside Knime.

schemata of data, node, workflow management and how
the interactive views communicate.

Data Structures

All data flowing between nodes is wrapped within a
class called DataTable which holds meta-information
concerning the type of its columns and the actual data.
The data can be accessed by iterating over instances of
DataRow. Each row contains a unique identifier (or pri-
mary key) and a specific number of DataCell objects
which hold the actual data. The reason to avoid access
by Row ID or index is scalability, that is, the desire to
be able to process large amounts of data and therefore
not be forced to keep all of the rows in memory for fast,
random access. Figure 3 shows a diagram of the main
underlying data structure.

Nodes

Nodes in Knime are the most general processing unit
and usually resemble one visual node in the workflow.
The class Node wraps all functionality and makes use
of user defined implementations of a NodeModel, possi-
bly a NodeDialog, and one or more NodeView instances
if appropriate. Neither dialog nor view must be imple-

mented if no user settings or views are needed. This
schema follows the well-known Model-View-Controller
design pattern. In addition, for the input and output
connections, each node has a number of Inport and
Outport instances which can either transport data or
model(s). Figure 4 shows a diagram of this structure.

Workflow Management

Workflows in Knime are essentially graphs connecting
nodes, or more formally, a direct acyclic graph (DAG).
The WorkflowManager allows to insert new nodes and
to add directed edges (connections) between two nodes.
It also keeps track of the status of nodes (configured,
executed, ...) and returns, on demand, a pool of exe-
cutable nodes. This way the surrounding framework can
freely distribute the workload among a couple of parallel
threads or – in the future – even a distributed cluster
of servers. Thanks to the underlying graph structure,
the workflow manager is able to determine all nodes re-
quired to be executed along the paths leading to the
node the user actually wants to execute.

Views and Interactive Brushing

Each Node can have an arbitrary number of views as-
sociated with it. Through receiving events from a
HiLiteHandler (and sending events to it) it is possi-
ble to mark (the so-called HiLiting) selected points in
such a view to enable visual brushing. Views can range
from simple table views to more complex views on the
underlying data or the generated model.

REPOSITORY

Knime already offers a large variety of nodes, among
them are nodes for various types of data I/O, manipu-
lation, and transformation, as well as data mining and
machine learning, and visualization components:

• data I/O: generic file reader, ARFF and Hitlist
file reader, database connector, CSV, Hitlist and
ARFF writer.

• data manipulation: row and column filtering, data
partitioning and sampling, random shuffling or
sorting, data joiner and merger,

• data transformation: missing value replacer, matrix
transposer, binners, nominal value generators

• mining algorithms: clustering (k-means, sota, fuzzy
c-means), decision tree, (fuzzy) rule induction, re-
gression, subgroup and association rule mining.

• machine learning: neural networks (RBF and
MLP), support vector machines�, bayes networks
and bayes classifier�

• statistics: via integrated R�

• visualization: scatter plot, histogram, parallel co-
ordinates, multidimensional scaling, rule plotters,
line and pie charts�

• misc: scripting nodes.

(�: via external libraries or tools).

Figure 2: A Schematic for the Flow of Data and Models
in a Knime-workflow.

Figure 3: A Class Diagram of the Data Structure and
the Main Classes it relies on.

Figure 4: A Class Diagram of the Node and the Main
Classes it relies on.

EXTENDING KNIME

Knime already includes new plug-ins to incorporate ex-
isting data analysis tools, such as Weka (Ian H. Wit-
ten and Eibe Frank 2005), the statistical toolkit R (R
Development Core Team 2005), and JFreeChart (David
Gilbert 2005). It is usually straightforward to create
wrappers for external tools without having to modify
these executables themselves. Adding new nodes to Kn-
ime, also for native new operations, is easy. For this,
one needs to extend three abstract classes:

• NodeModel: this class is responsible for the main
computations. It requires to overwrite three main
methods: configure(), execute(), and reset().
The first takes the meta information of the input
tables and creates the definition of the output speci-

fication. The execute-function performs the actual
creation of the output data or models, and reset
discards all intermediate results.

• NodeDialog: this class is used to specify the dialog
that enables the user to adjust individual settings
that affect the node’s execution. A standardized set
of DefaultDialogComponent objects allows to very
quickly create dialogs where only a few standard
settings are needed.

• NodeView: this class can be overwritten multiple
times to allow for different views onto the underly-
ing model. Each view is automatically registered
with a HiLiteHandler which sends events when
other views have hilited points and allows to launch
events in case inside this view points have been hilit.

In addition to the three model, dialog, and view classes
the programmer also needs to provide a NodeFactory,
creating new instances. The factory also provides names
and other details such as the number of available views
or a flag indicating absence or presence of a dialog.
A wizard integrated in the Eclipse-based development
environment allows to quickly generate all required class
bodies for a new node.

WORK IN PROGRESS

Knime is continuously extended. A few extensions cur-
rently being actively under development are described
below.

Meta Nodes

The ability to wrap a certain workflow into an encapsu-
lating node provides a powerful abstraction mechanism.
A sub-workflowcan be included as a single component
of another workflow, namely a meta-node. Such nested
workflows introduce modularity and allow the user to
design complex workflows while focusing on different
level of details (abstraction). A meta-node can be ex-
ported to other users as a predefined module and allow
to create wrappers for repeated execution as needed in
cases such as, e.g. cross-validation, bagging and boost-
ing, ensemble learning etc.

High Performance Distributed and Parallel
Computing

Due to the modular architecture it is easy to designate
specific nodes to be run on separate machines. The
meta-node abstraction provides a mechanism to encap-
sulate workflows and to assign them to dedicated severs
for distributed processing, resulting in a significant ac-
celeration of the workflow execution. But to accommo-
date the increasing availability of multi-core machines,
also the support for shared memory parallelism becomes

increasingly important. Knime will offer a unified frame-
work to parallelize data-parallel operations as well as the
distribution of operations on a cluster or a GRID.

Chem- and Bioinformatics

A number of current projects focus on applications in
the Life Sciences. Nodes to process gene expression data
and high throughput, high content cell assay images are
under development.

Webservices

Experimental nodes to access webservices via SOAP
have been devised to call computation of chemical prop-
erties. Knime itself can also be seen as a potential server
for a webservice itself, allowing external users to run
predefined workflows.

ACKNOWLEDGEMENTS

We would like to thank numerous students of Konstanz
University for continuous feedback and bug reporting.
We thank, in particular, Kilian Thiel and Simona Pin-
tilie for their work, respectively, on Sota and the Parallel
Coordinates display.

REFERENCES

David Gilbert, 2005. JFreeChart Developer Guide.
Object Refinery Limited, Berkeley, California.
http://www.jfree.org/jfreechart.

Eclipse Foundation, 2005. Eclipse 3.1 Documentation.
http://www.eclipse.org.

Ian H. Witten and Eibe Frank, 2005. Data
Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, San Francisco.
http://www.cs.waikato.ac.nz/ ml/weka/index.html.

R Development Core Team, 2005. R: A language
and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria.
http://www.R-project.org.

