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Summary 

Using a method for detecting evolutionary rate changes along 

the branches of phylogenetic trees, we show that the cerebellum underwent rapid 

size increase throughout the evolution of apes, including humans, expanding 

significantly faster than predicted by the change in neocortex size. As a result, 

humans and other apes deviate significantly from the 

These 

results suggest that cerebellar specialization was a far more important component of 

human brain evolution than hitherto recognized, and that technical intelligence was 

likely to have been at least as important as social intelligence in human cognitive 

evolution. Given the role of the cerebellum in sensory-motor control and learning 

complex action sequences, cerebellar specialization is likely to have underpinned the 

evolution of humans’ advanced technological capacities, which in turn may have 

been a pre-adaptation for language. 
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Data and Phylogeny  

Data on cerebellum and neocortex volumes (mm3) in anthropoid primates were collated 

from six primary sources. Mean species values were log-transformed prior to analysis. In 

addition, we obtained one data set on neocortical and cerebellar mass (g) one on volume 

of the cerebellar granule cell layer (μm3), and one on neuron numbers. These data and 

associated references are presented in Supplemental Table 1 and Supplemental Figure 1. 

For phylogenetic analyses (see below), we used the 10k Trees consensus primate 

phylogeny with GenBank species names [32]. The tree was pruned according to the 

species in our data set.  

Phylogenetic and Statistical Methods  

To determine the branch-wise rates of evolution separately for the cerebellum and 

neocortex, we used the Bayesian reversible-jump variable-rates model of trait evolution 

[33]. This model allows us to trace the evolutionary history of shifts in the rate and 

timing of evolution without specifying in advance where these events are located. To 

examine the 

cerebellum volume is the 

dependent variable and log neocortex volume is the independent variable. This allows us 

to estimate the rate of cerebellum evolution while accounting for the neocortex. For each 

analysis, over the course of one billion of iterations after convergence, sampling every 

100,000 to ensure each subsequent sample is independent, we record for each branch in 

the tree what its mean rate is. These mean rates are then be used to scale the branches of 



phylogenetic tree to produce a scaled tree that better represent the evolution of the 

morphological trait of interest (the scaled branches are plotted in figure to along with the 

untransformed branches in time). We repeated each of our analyses multiple times to 

ensure convergence was achieved.  

 

We reconstructed the ancestral states for each node in our tree while accounting for the 

rate variation revealed by the variable rates model of trait evolution (shown in Figure 1). 

Accounting for rate variation along the branches of the trees allows us to detect trends in 

size that would be opaque to other methods. We us BayesTraits following the protocol 

outlined in Organ et al [34] to impute the ancestral sizes as this approach has been show 

to outperform other methods for reconstruction ancestral states for continuously varying 

data [35]. This two stage Bayesian reconstruction methods first identifies the best fitting 

phylogenetic evolutionary model to the species data, then uses this model to infer 

unknown ancestral states at specified internal nodes in the tree – we ran the MCMC 

chains to the same specifications as above and plot the means of the posterior 

distributions in Figure 1.  

 

We used Phylogenetic Least Squares (PGLS) [36-38] implemented in the R-package 

‘Caper’ (http://cran.r-project.org/web/packages/caper/vignettes/caper.pdf) to compute 

maximum likelihood (ML) parameter estimates for regressions and to test for significant 

differences between apes and other species while accounting for the shared ancestry 

implied by our phylogeny. In each regression the phylogenetic signal is estimated as the 

value of λ of the residuals, varying between 0 (where the data have no phylogenetic 



structure) and 1 (where the best fit to the data is provided by a “Brownian Motion” model 

of trait evolution) [38], with variation at the tips proportional to the duration of common 

evolution [36-37]. The estimated ML value of λ is simultaneously estimated together 

with the other parameters in the model, thus controlling for phylogenetic signal in the 

data. Predicted values for an individual species based on the relationship between 

cerebellum and neocortex size can be tested using phylogenetic prediction, as outlined in 

Organ et al [34] 
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Table 1: Branchwise increases in relative rates of cerebellum evolution within the ape 
clade (see text for explanation) 
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