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SUPPLEMENTARY INFORMATION 
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The Supplementary information contains: 

 Example reaction GC and IR spectra. 

 Molar concentrations of CO at different pressures used for modeling.  

 Model details, assumptions, and reaction rates. 
  

Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering.
This journal is © The Royal Society of Chemistry 2016



 2

 

 

Figure S1. Example GC spectrum. Microreactor experiment at 150 °C, 8.3 bar, 2 min residence 

time, and 1.5% Pd. 
 

 

Table S1. GC spectrum peaks in Figure S1. 

Peak # Comp Start End Height Area % max % total 

  (min) (min)     

1 Naphthalene 4.365 4.34 4.46×105 3.82×106 100.0 56.19 

2 Starting Material 4.592 4.572 2.99×104 4.09×105 10.72 6.02 

3 Mono 7.597 7.574 2.29×105 1.91×106 50.15 28.18 

4 Di 7.984 7.959 7.30×104 6.52×105 17.09 9.60 

 



 3

 
 
Figure S2. Example IR spectra. Top to bottom: 50 vol% morpholine and 50 vol% toluene, 0.06 
M starting material, 0.06 M Mono product, 0.05 M Di product, 0.06 M DBU. 
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Figure S3. Example IR spectra with 50 vol% morpholine and 50 vol% toluene solvent 
subtracted: 0.06 M starting material (red), 0.06 M Mono product (green), 0.05 M Di product 
(purple), 0.06 M DBU (orange). 
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Table S2. Molar concentration of a gas at different pressures. 

Pressure (psi) Pressure (bar) Concentration CO (M)

14.5 1.0 0.04 

40 2.8 0.12 

80 5.5 0.25 

120 8.3 0.37 

180 12.4 0.55 

 

 

Figure S4. Carbon monoxide Henry’s Law constant as a function of temperature. Polynomial 
was fit to data generated with Aspen Plus. 
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Pseudo First-Order Approximation 
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Steady-State Approximation 
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Arrhenius Analysis  

 

Figure S5. Arrhenius plot for the lower temperature regime of the tubular reactor temperature 
ramp experiments: Exp. 1 () at 8.3 bar CO and 2 % Pd, Exp. 2 (▲) at 13.8 bar CO and 2 % Pd, 
and Exp. 3 () at 8.3 bar CO and 1 % Pd.  
 

  



 8

Model Details 

Beginning with the full reaction scheme, several simplifications can be made based upon the 
pseudo-steady state assumption (PSSA). Firstly, as is discussed in the text, the reversible 
palladium poisoning by carbon monoxide can be lumped into an observed rate constant, kobs. 
Additionally, as the oxidative addition is significantly slower than the carbon monoxide 
association, PSSA can be assumed to eliminate this intermediate step from the rate laws. For 
simplicity in writing the rate expressions, all intermediates have been numbered 1 through 5. 

 

This produces the reaction rates: 
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Now, lumping the reaction rates at each bifurcation and using the selectivity terms modifies the 
equations to become: 
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Further applying PSSA to intermediates 1, 3, and 4 produces the following equalities: 
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The remaining equations then become: 
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Additionally, the Pd balance is given by: 
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This set of equations was modeled in Matlab using the following differential code and fitted 
parameters: 
 
k = ([1.3334, 1.1147, 1.0712, 2.4226, 3.8659, 2.0095]); 
k = [k(1)*1E17,116.4,k(2)*1E6,55.6,k(3)*1E2,k(4)*1E-13,k(5)*1E1,k(6)*1E-4]; 
% [(k0,[1]), (EA,[1]), (k0,[4]), (EA,[4]), (EA,[2]-EA,[3]), (k0,[3]/k0,[2]), (EA,[5]-EA,[6]), 
(k0,[6]/k0,[5])] 
 
function der = ODEFun(~,C,T,pCO,Pd0,k) 
% C = [ArX, I2, M, D, Pd] 
 
HCO = -1.49E-10*T^3+3.59E-8*T^2-2.95E-6*T+5.02E-4; 
k1 = k(1)*exp(-k(2)*1E3/(8.314*(273+T))); 
k4 = k(3)*exp(-k(4)*1E3/(8.314*(273+T))); 
 
kobs = k1*(C(5)*Pd0/(HCO*pCO)); 
S1 = 1/(1+k(6)*exp(k(5)*1E3/(8.314*(273+T)))); 
S2 = 1/(1+k(8)*exp(k(7)*1E3/(8.314*(273+T)))*HCO*pCO); 
 
der(1,1) = -kobs*C(1); %d[ArX]/dt 
der(2,1) = S1*kobs*C(1)-k4*C(2); %d[I2]/dt 
der(3,1) = k4*C(2)+(1-S1)*kobs*C(1)*S2; %d[M]/dt 
der(4,1) = (1-S1)*kobs*C(1)*(1-S2); %d[D]/dt 
der(5,1) = k4*C(2)-S1*kobs*C(1); %d[Pd]/dt 


