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SUPPLEMENTARY INFORMATION
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Massachusetts Avenue, 66-542, Cambridge, MA 02139 (USA), Fax: (+1) 617-253-6956, E-mail:
kfjensen@mit.edu.
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The Supplementary information contains:

e Example reaction GC and IR spectra.
e Molar concentrations of CO at different pressures used for modeling.
e Model details, assumptions, and reaction rates.
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Figure S1. Example GC spectrum. Microreactor experiment at 150 °C, 8.3 bar, 2 min residence
time, and 1.5% Pd.

Table S1. GC spectrum peaks in Figure S1.

Peak # Comp Start End Height Area % max % total
(min) | (min)
1 Naphthalene 4365 | 434 | 4.46x10° | 3.82x10° 100.0 56.19
2 Starting Material | 4.592 | 4.572 | 2.99x10* | 4.09x10° 10.72 6.02
3 Mono 7.597 | 7.574 | 2.29x10° | 1.91x10° 50.15 28.18
4 Di 7.984 | 7.959 | 7.30x10* | 6.52x10° 17.09 9.60
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Figure S2. Example IR spectra. Top to bottom: 50 vol% morpholine and 50 vol% toluene, 0.06
M starting material, 0.06 M Mono product, 0.05 M Di product, 0.06 M DBU.
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Figure S3. Example IR spectra with 50 vol% morpholine and 50 vol% toluene solvent
subtracted: 0.06 M starting material (red), 0.06 M Mono product (green), 0.05 M Di product
(purple), 0.06 M DBU (orange).



Table S2. Molar concentration of a gas at different pressures.

Pressure (psi) | Pressure (bar) | Concentration CO (M)
14.5 1.0 0.04
40 2.8 0.12
80 5.5 0.25
120 8.3 0.37
180 12.4 0.55
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Figure S4. Carbon monoxide Henry’s Law constant as a function of temperature. Polynomial
was fit to data generated with Aspen Plus.



Pseudo First-Order Approximation

- d[fZX] = ky[Pd][ArX] (1)
d[ArX] [Pd],
@ - MTyrico; AT
d|ArX
S et @)
ku[Pd],

koo =
°bs ™ 1 + K[CO]

Steady-State Approximation
[Pd] = [Pd], — [Pdco]
k¢[Pd][CO] = k,[Pdco]

k. [Pd][CO
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Arrhenius Analysis
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Figure SS. Arrhenius plot for the lower temperature regime of the tubular reactor temperature
ramp experiments: Exp. 1 (M) at 8.3 bar CO and 2 % Pd, Exp. 2 (A) at 13.8 bar CO and 2 % Pd,
and Exp. 3 (@) at 8.3 bar CO and 1 % Pd.



Model Details

Beginning with the full reaction scheme, several simplifications can be made based upon the
pseudo-steady state assumption (PSSA). Firstly, as is discussed in the text, the reversible
palladium poisoning by carbon monoxide can be lumped into an observed rate constant, Kobs.
Additionally, as the oxidative addition is significantly slower than the carbon monoxide
association, PSSA can be assumed to eliminate this intermediate step from the rate laws. For
simplicity in writing the rate expressions, all intermediates have been numbered 1 through 5.
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This produces the reaction rates:
d[ArX]
dt

d[1,]

= —Kqps [ ArX]

= Ky [AX ]k, [1, ], [ 1,]

it =k, [1,]-k[1,]

]y ng-i ]

dt
W%[lzhks[l;]
B,

Now, lumping the reaction rates at each bifurcation and using the selectivity terms modifies the
equations to become:



Further applying PSSA to intermediates 1, 3, and 4 produces the following equalities:
K [AX ] ks [1,]

ks, (1=S))[1i]~ ks, 1]

ks, (1=8,)[1;] =k, [1.]

The remaining equations then become:

d[AXT_ ¢ [Anx]

dt obs
bl s A w[1]
d['\g?no] K, [1,]+ kS, (1=, )[ArX ]
4 [Di]

T kolos(1 S)(I—Sz)[AI’X]



Additionally, the Pd balance is given by:
d[Pd]  d[ArX] .\ d [Mono] .\ d [Di]

d [F;d] = Ky [ArX 4k, [ 1, ]+ Ky S, (1= S, )[ArX ] +kyy, (1=, ) (1=S, )[ArX ]
d[Pd
[dt ] - k4[|2]_k0bssl[Arx]

This set of equations was modeled in Matlab using the following differential code and fitted
parameters:

k= ([1.3334, 1.1147, 1.0712, 2.4226, 3.8659, 2.0095]);

k = [k(1)*1E17,116.4,k(2)*1E6,55.6,k(3)* 1 E2,k(4)*1E-13,k(5)* 1E1 k(6)* 1 E-4];

% [(KO,[1]), (EA,[1]), (kO,[4]), (EA,[4]), (EA,[2]-EA,[3]), (kO,[3]/k0,[2]), (EA,[S]-EA,[6]),
(k0,[61/k0,[5])]

function der = ODEFun(~,C,T,pCO,Pd0,k)
% C=[ArX, 12, M, D, Pd]

HCO = -1.49E-10*T"3+3.59E-8*T"2-2.95E-6*T+5.02E-4;
k1 = k(1)*exp(-k(2)* 1 E3/(8.314*(273+T)));
k4 = k(3)*exp(-k(4)* 1 E3/(8.314*(273+T)));

kobs = k1*(C(5)*Pd0/(HCO*pCO));
S1 = 1/(1+k(6)*exp(k(5)* | E3/(8.314*(273+T))));
S2 = 1/(1+k(8)*exp(k(7)* 1 E3/(8.314%(273+T)))*HCO*pCO);

der(1,1) = -kobs*C(1); %d[ArX]/dt

der(2,1) = S1*kobs*C(1)-k4*C(2); %d[12]/dt
der(3,1) = k4*C(2)+(1-S1)*kobs*C(1)*S2; %d[M]/dt
der(4,1) = (1-S1)*kobs*C(1)*(1-S2); %d[D]/dt
der(5,1) = k4*C(2)-S1*kobs*C(1); %d[Pd]/dt
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