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Abstract We review recent progress in understanding the role of sea ice, land surface, stratosphere, and
aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities
of current Earth system models (ESMs). These constituents have received relatively little attention because
their contribution to the slow climatic manifold is controversial in comparison to that of the large heat
capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate
models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range
are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely
observed constituents of the climate system has been primarily inspected through numerical simulations
performed under idealized experimental settings. The impact, however, on practical decadal predictions,
conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing
initial-value predictability through an improved model initialization appears to be a viable option for land
surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines
might lead to an improved representation of both global and regional short-term climatic changes. In
addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an
accurate representation of processes associated with specific components of the climate system. These
act as “signal carriers,” transferring across the climatic phase space the information associated with the
initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems.
Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending
the predictability beyond the seasonal scale.

1. Introduction

Delivering trustworthy climate predictions beyond the seasonal-to-interannual time scale limit is one of the
grand challenges currently faced by the climate science community [Meehl et al., 2014a]. While the praxis
of seasonal forecast (nowadays routinely operated by several climate centers) is entering into amature phase,
decadal prediction is a relatively novel field of investigation, often referred to as being in its infancy
[Goddard et al., 2012; Cane, 2010]. Despite its young age, decadal prediction is rooted in a rather longer
history of efforts devoted to understand the sources of low-frequency decadal variability found in both
observational and model records.

In his seminal analysis of the observed ocean-atmosphere interactions over the midlatitude Atlantic, Bjerknes
[1964] identified the ocean as a primary driver of decadal and multidecadal climate variability. Bjerknes’
results were later corroborated by extended observations [Gulev et al., 2013] and several model-based
studies, highlighting the predominant role of ocean dynamics in setting the detected decadal-scale
variability, mainly associated with fluctuations in the strength of the Atlantic thermohaline circulation
[Delworth et al., 1993; Delworth and Greatbatch, 2000; Griffies and Tziperman, 1995] and of the wind-driven
gyre circulation (as postulated for the extratropical North Pacific; see Latif and Barnett [1994] and Latif
[2006]). The identification in model results of physical mechanisms able to sustain low-frequency variability
modes acting at the decadal time scale suggested that similar dynamics might operate in the real world,
potentially leading to a consistent degree of predictability in the climate system.
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The intrinsic predictive capabilities of coupled atmosphere-ocean general circulation models (AOGCMs) have
been explored in a number of model-based studies, addressing the predictability of climate state variables
using a number of different approaches [Griffies and Bryan, 1997; Boer, 2000, 2004; Boer and Lambert, 2008;
Pohlmann et al., 2004; Collins et al., 2006]. These investigations paved the way to the first attempts at real
decadal climate prediction, based on the use of AOGCMs initialized with realistic estimates of the oceanic and
atmospheric state, and integrated forward for a few decades thus providing a near-term forecast of the
climate evolution [Smith et al., 2007; Keenlyside et al., 2008; Pohlmann et al., 2009; Mochizuki et al., 2010].

Our observational knowledge of the ocean state is ever improving and was recently enhanced by the launch of
the global Array for Real-Time Geostrophic Oceanography (ARGO) autonomous floats system. There is also
increase in confidence in the overall performance of AOGCMs. This perspective has led the climate science
community to foster several coordinated efforts aiming at a systematic exploitation of the predictive skill
featured by current climate models over interannual to decadal time scales. The multimodel decadal prediction
experiments performed as part of the forerunner European Union (EU)-funded ENSEMBLES (ENSEMBLE-based
Predictions of Climate Changes and their Impacts) project [van Oldenborgh et al., 2012; Garcia-Serrano and
Doblas-Reyes, 2012], in particular, were conducive to the design of a specific set of near-term predictions, later
included as core experiments in the CMIP5 (Fifth Coupled Model Intercomparison Project) [Meehl et al., 2009b].

The quality of the forecasts delivered by the current generation of decadal prediction systems is illustrated in
Figure 1 [Doblas-Reyes et al., 2013], showing patterns of root-mean-square skill score from a multimodel
ensemble of CMIP5 near-term predictions (Figures 1a and 1b), and the relative merits and deficiencies with
respect to a twin set of noninitialized projections (Figures 1c and 1d). The emerging picture reveals that
climate forecast systems have skills in retrospectively predicting temperatures for the past 50 years over vast
portions of the Earth’s surface. This appears to be primarily determined by changes in the prescribed radiative
forcing (in turn associated with changes in the atmospheric composition), but there is also evidence of
enhanced skill due to the realistic initialization of the forecast system [Kirtman et al., 2013].

While the impact of ocean state initialization on decadal climate predictability is beginning to be extensively
investigated [Meehl et al., 2013; Hazeleger et al., 2013; Bellucci et al., 2014], the additional skill associated
with the representation and/or initialization of other components of the climate system, such as the
cryosphere, the land surface, the stratosphere, and the aerosols, has received little attention. The underlying
reasons for this can be traced back to (i) a lack of an adequate set of observations enabling the initialization of

Figure 1. (a, b) Root-mean-square skill score (multiplied by 100) of the ensemble mean of a multimodel set of CMIP5
decadal hindcasts averaged over the forecast years 2–5 (Figure 1a) and 6–9 (Figure 1b). Black dots correspond to the
points where the skill score is statistically significant with 95% confidence using a one-sided F test taking into account the
autocorrelation of the observation minus prediction time series. (c, d) Ratio of root-mean-square errors between the
decadal hindcasts and a twin multimodel set of noninitialized historical simulations averaged over the lead years 2–5
(Figure 1c) and 6–9 (Figure 1d). Contours are used for areas where the ratio of at least 75% of the individual forecast
systems has a value above or below 1 in agreement with the multimodel ensemble mean result. Dots are used for the
points where the ratio is statistically significantly above or below 1 with 90% confidence using a two-sided F test that
takes into account the autocorrelation of the observation minus prediction time series. Poorly observationally sampled
areas are masked in gray. From Doblas-Reyes et al. [2013]. Reprinted by permission from Macmillan Publishers Ltd.
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these components; (ii) the relatively poor understanding of the processes involved within these components
that makes it difficult to represent them in models; and (iii) the perception that there is much less potential,
compared to the ocean, for the existence of mechanisms involving these components that could contribute to
decadal time scale variability and predictability.

There is an ongoing transition from standard AOGCMs to a new generation of enhanced complexity Earth
systemmodels (ESMs) that include better resolved scale interactions (e.g., eddy-permitting ocean components
and high-top stratosphere-resolving atmospheres), new model components (e.g., marine biogeochemistry,
terrestrial vegetation, and atmospheric chemistry), and improved representation of physical processes
(e.g., oceanmixing, sea ice physics, and aerosols-clouds interaction). This is resulting in the explicit inclusion of a
new set of feedbacks and a considerable extension of the spectrum ofmodel-resolved processes. These, in turn,
introduce additional time scales and “memory reservoirs” in the coupled system that ultimately impacts the
overall predictability of the climate system over different temporal scales. The progressive enhancement of
climate models’ complexity and the related emergence of new processes and interactions within and across
individual subsystems disclose new opportunities for advancing the predictive capabilities of climate prediction
systems beyond the limit currently set by the ocean predictability.

As climate forecast systems lag behind the most recent model developments, the benefits for predictive skill
stemming from using higher complexity dynamical models has been poorly explored. Yet there has recently
been substantial progress in understanding several extraoceanic mechanisms that may potentially strengthen
the predictive capabilities of the next generation of climate forecast systems over the multiyear/decadal range.
It is therefore timely to review the current knowledge of these climate processes and mechanisms. Clearly,
trustworthy decadal climate predictions are only feasible if supported by a reliable (and, in the perspective of
moving to an operational phase, ideally real-time) observational infrastructure, enabling a realistic model
initialization and validation.

The aim of this paper is to provide an overview of the state-of-the-art knowledge of the processes that
may potentially enhance the decadal-scale predictability of the climate state, focusing in particular on
the role of the sea ice, land surface (including soil moisture and vegetation), stratosphere, and aerosols.
Also, an overview of the relevant observing systems and the perspectives for making useful decadal
predictions by including and initializing these components in the current generation of Earth system models
are provided.

The paper structure reflects this concept. Individual sections describe the role of sea ice (section 2), land
surface (section 3), stratosphere (section 4), and aerosols (section 5) on decadal-scale predictability. Individual
sections are further partitioned into subsections overviewing the corresponding mechanisms relevant for
decadal predictability, available observational data sets viable for model initialization, and the perspectives
for improving the current decadal forecast systems. Finally, conclusive remarks are provided in section 6.

2. Sea Ice

The rather thin layer of sea ice plays an important role in the climate system. It controls the transfers of heat,
momentum, and matter between ocean and atmosphere. It effectively reflects the incoming solar radiation
but acts as an almost perfect black body for the outgoing long-wave radiation. Sea ice contributes to a
colder local climate and stabilizes the atmospheric stratification. Persistence of sea ice could therefore
contribute to improved climate prediction skill. The transport of sea ice is determined by wind forcing,
ocean currents, and sea surface gradient, and it affects climate downstream.Melting and freezing, controlled by
the surface energy budget, are associated with freshwater and salt fluxes into the ocean, respectively, and
can strongly affect the ocean stratification and circulation. This and the export of sea ice and freshwater out of
the Arctic can affect the global ocean circulation and contribute to predictability on decadal to multidecadal
time scales.

Given the importance of sea ice for both oceanic and atmospheric processes, the accurate initialization
and representation of sea ice in climate prediction models will potentially result in largely improved
predictions. A fundamental limitation for assessing sea ice prediction skill is the lack of observations to
perform adequately initialized hindcasts to robustly quantify predictability. The hindcasts performed for
CMIP5 start with 1960 as the initial year. However, satellite retrievals of sea ice concentration have been
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available from the late 1970s, and sea ice
thickness data are widely considered to be
inadequate for most CMIP5 hindcast period.
New satellite products of sea ice thickness
will improve the situation in the future.

In the following, we will highlight sea
ice-related processes that may be a source
of interannual to decadal predictability,
followed by a discussion of the availability
of sea ice observations and the perspectives
for future decadal predictions.

2.1. Mechanisms
2.1.1. Predictability in the Arctic
The Arctic has been rapidly warming in the

last decades at a rate of about twice the global mean warming. Likely sources for the Arctic temperature
amplification are the ice albedo feedback [Serreze et al., 2009], enhanced meridional energy transports
[Graversen et al., 2008], changes in cloud and water vapor [Graversen and Wang, 2009], and enhanced ocean
heat transports particularly into the Barents Sea [Smedsrud et al., 2013; Koenigk and Brodeau, 2014].
Concurrently, Arctic sea ice area observations indicate strong negative trends in the last decades [Comiso
et al., 2008] (Figure 2). The mechanisms behind the trend in sea ice do not only give rise to predictability of
the ice itself but potentially also predictability for other variables like air temperature, precipitation and
atmospheric circulation, and also Arctic flora and fauna as well as socioeconomic factors [Meier et al., 2014].
Despite the complex nature of the coupled ice-ocean-atmosphere Arctic climate system, it remains debated
whether the Arctic climate change exhibits a linear behavior.

Winton [2008] showed that the large-scale Arctic temperature change in the Coupled Model Intercomparison
Project Phase 3 (CMIP3) models remains linear well after the complete loss of September sea ice. However,
locally, the atmospheric response to sea ice loss might be nonlinear as argued by Petoukhov and Semenov
[2010]. Furthermore, the Arctic climate is subject to large interannual to decadal variations, which cannot be
captured by simplistic statistical models. Therefore, fully coupled dynamical models are essential to represent
these complex interactions and to improve predictions of the Arctic climate system.

Predictability studies indicate that sea ice anomalies can persist for up to a few years [Holland et al., 2011;
Koenigk and Mikolajewicz, 2009; Tietsche et al., 2013], enabling the prediction of both ice and partly also local
atmosphere conditions [Koenigk et al., 2009]. Blanchard-Wrigglesworth et al. [2011] and Chevallier and
Salas-Melia [2012] analyzed the persistence of the Arctic sea ice area in observations and models and found a
decorrelation time of 2–5 months but a reemergence of summer ice area anomalies in the next year. They
suggested that reduced ice area leads to reduced albedo and consequently later freeze up and thinner ice,
and thus, the summer ice area signal is stored in the ice thickness. Although these processes are not directly
contributing to decadal predictions, they could affect long-term oceanic processes or be part of coupled
decadal atmosphere-ocean-sea ice modes in the Arctic, as discussed below.

The transport of sea ice can also contribute to predictability. This is particularly the case in the East Greenland
Current: sea ice anomalies that propagate south from Fram Strait in the East Greenland Current, melt, and
enter the Labrador Sea after about 2 years as freshwater anomalies. Positive freshwater anomalies reduce the
deep water convection in the Labrador Sea, and this might affect the meridional overturning circulation in
the North Atlantic. The ocean surface in the Labrador Sea stays also cooler because of less ocean mixing,
which prevents warmer water from the deeper ocean reaching the surface. Consequently, more sea ice is
formed, air temperature is reduced, and also the large-scale atmospheric circulation might be affected
[Alexander et al., 2004; Kvamstö et al., 2004; Magnusdottir et al., 2004]. This entire process is well documented
in both observations [Dickson et al., 1988; Belkin et al., 1998] and a number of modeling studies [Häkkinen,
1999; Haak et al., 2003; Koenigk et al., 2006]. Prominent examples are the so-called “Great Salinity Anomalies”
in the Labrador Sea. Figure 3 shows a clear connection between salinity and ocean temperature in
observations. In observations the salinity anomalies can be further traced around the entire subpolar gyre
and back into the Nordic Seas, over a period of about 10 years [Belkin et al., 1998].

Arctic (September)

Antarctic (February)

0

2

4

6

8

1980 1990 2000 2010

M
ill

io
n 

km
2

Sea ice extent at minimum months

Figure 2. Arctic and Antarctic Sea Ice Extent, 1979–2014. Courtesy of
National Snow and Ice Data Center (NSIDC), Fetterer et al. [2014].
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Observations and reconstructions of the
Arctic sea ice indicate large decadal
variations of Arctic ice extent [Vinje,
2001; Johannessen et al., 2004; Venegas
and Mysak, 2000]. A number of studies
suggest Arctic climate modes with time
scales of 10–15 years, which fit well to
the observed ice variations [Mysak and
Venegas, 1998; Proshutinsky and Johnson,
1997; Polyakov and Johnson, 2000;
Arfeuille et al., 2000].

However, the explanations for the
oscillation period of 10–15 years differ.
Mysak and Venegas [1998] suggested a
negative feedback between Arctic sea
ice cover and the Arctic Oscillation (AO)
whereby the sea ice area in the Greenland
Sea is decisive for switching the sign of
the (AO). Similar to this, Proshutinsky and
Johnson [1997] found cyclonic and
anticyclonic atmospheric circulation
regimes in the Arctic switching sign every
5–7 years. They argue that negative sea
surface temperature (SST) anomalies
over the northeastern North Atlantic
lead to cyclonic circulation in the Arctic,
and this in turn increases ice and
freshwater exports out of the Arctic,
leading to negative SST anomalies in the
northern North Atlantic. Goosse et al.
[2002] and Goosse and Holland [2005]

pointed out the importance of meridional ocean and atmosphere heat exchanges between Arctic and
North Atlantic for decadal variability in the Arctic. Variations in the Arctic on multidecadal time scales are
likely dominated by variations in the oceanic heat transport into the Arctic, modifying Arctic ice volume, sea
level gradient, and the export of freshwater into the deep water convection areas, which then modulates
the meridional overturning circulation [Jungclaus et al., 2005; Polyakov et al., 2004].

Results from a potential predictability study indicate that decadal averages of Arctic sea ice thickness and
area are well predictable along the ice edges in the North Atlantic ice sector [Koenigk et al., 2012] (Figure 4).
Connected to the ice variations, air temperature and precipitation show a high potential predictability,
particularly in the Labrador and Barents/Kara Seas regions. The predictability was linked to variations in the
meridional overturning circulation. First results from decadal hindcasts following the CMIP5 protocol show
only limited decadal prediction skill in the Arctic [Bellucci et al., 2014]. However, sea ice initialization in these
predictions was based on simple approaches and not consistent with the ocean initialization. Evidence is
accumulating that Arctic sea ice and midlatitude atmospheric variability are associated (Overland and Wang
[2010] and Budikova [2009] for a comprehensive review). Whether the recent chain of extreme winters and
summers in midlatitudes [Overland, 2014] is a direct consequence of the rapid, Arctic sea ice decline remains
controversial and highly debated [Francis and Vavrus, 2012; Screen, 2014; Thomas, 2014; Barnes, 2013; Barnes
et al., 2014]. It has been argued that, in response to Arctic sea ice retreat, the lower atmosphere layers at
high latitudes increase in thickness because of anomalous heating of the lower troposphere. This relaxes the
poleward temperature gradient between midlatitudes and high latitudes [Francis et al., 2009; Budikova, 2009],
and this would in turn increase the amplitude of Rossby waves and slow down their progression, favoring
theoccurrence of blocking patterns [Francis and Vavrus, 2012] and extreme weather conditions. It is, however,
not clear whether blocking frequency has actually risen over recent years [Barnes et al., 2014]. In addition,

Figure 3. (a) Temperature (circles) and salinity (diamonds) at the 200 m
depth at Ocean Weather Station “C” (52°45′N, 35°30′W). Open (solid)
symbols show monthly (annual) means. Bars show standard deviations
about annual means. (b) Availability of monthly means. From Belkin et al.
[1998]. Reprinted with permission from Elsevier.
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the negative North Atlantic Oscillation (NAO) signature, implied by this proposed mechanism is not clearly
found in all model experiments [e.g., Blüthgen et al., 2012; Wallace et al., 2014]. Finally, factors other than
sea ice may play an important role in shaping midlatitude weather (e.g., snow: Cohen et al. [2012]; see
section 4.1), complicating the analysis. Thus, whether sea ice is a source of predictability for lower latitude
climate on decadal time scales remains an open question.
2.1.2. Predictability in the Antarctic
One of the dominating climate modes in the Southern Ocean region is the Southern Annular Mode
(SAM), which is often defined as the difference of normalized sea level pressure anomalies between 40°S
and 65°S [Gong and Wang, 1999]. The sign and amplitude of the SAM are a measure of the strength of
the westerlies north of the Antarctic. These westerlies strongly affect Antarctic sea ice [Hall and Visbeck,
2002]. The Southern Oscillation also significantly influences Antarctic sea ice [Simmonds and Jacka, 1995]. In
contrast to the Arctic, trends in Antarctic sea ice extent are positive (Figure 2) but with large interregional
differences. There are several different explanations for the Antarctic sea ice trends, including local
trends in surface winds [Holland and Kwok, 2012], positive trends in the precipitation regimes [Zhang, 2007],
subsurface oceanwarming that leads to increasedmelting of the Antarctic ice shelf, and a cooling and freshening
of the ocean surface [Bintanja et al., 2013], and they may simply be a manifestation of low-frequency sea ice
decadal variability [Polvani and Smith, 2013]. A review of past, recent, and possible future climate conditions is
presented by Mayewski et al. [2009].

Most of the interest in polar prediction concentrates on the Arctic andmuch less on the Antarctic. Nonetheless,
a few recent studies discuss Antarctic predictability too. Under perfect-model assumptions—i.e., a model is
taken to represent reality and used to predict its own climate—Southern Ocean sea ice extent exhibits

Figure 4. Potential prognostic predictability (PPP) of first decade means of (a) sea level pressure, (b) 2 m air temperature
(T2m), (c) precipitation (P), and (d) sea ice thickness from perfect ensemble experiments with the global coupled model
EC-Earth. All colored values are significant at 95% level. From Koenigk et al. [2012]. PPP is defined as one minus the ratio
between the variance among ensemble members at a given time and the variance of a control simulation over time.
The smaller the spread among ensemble members compared to the variability of the control simulation, the higher the
prognostic potential predictability.
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predictability beyond a year in the
Community Climate System Model 3
[Holland et al., 2013] (Figure 5). In
perfect-model experiments with a model
of intermediate complexity, Zunz [2014]
found that the model was not able to
replicate the short-term (lead time of
several years) sea ice extent anomalies
but well reproduced the longer-term
(10–30 year), lower frequency variability
and trends in Southern Ocean sea ice
extent. Koenigk et al. [2012] showed in a
perfect model experiment with EC-Earth
that significant decadal predictability
of sea ice thickness exists in the Weddell
Sea. Their study also shows a high decadal
predictability of 2 m temperatures north
of the Weddell Sea. However, the
processes leading to this predictability
remain unclear. Latif et al. [2006]
argued that the multidecadal variability
of SST in the Southern Ocean is

anticorrelated with SST in the North Atlantic. However, the connection with the North Atlantic is weak in
Koenigk et al. [2012].

The inability of current general circulationmodels (GCMs) to simulate the observed increase in Antarctic sea ice
extent, even in ocean-initialized experiments [Zunz et al., 2009], indicates there is a large room for improvement
in the simulation of the physical processes and/or in the ocean-sea ice initialization in this hemisphere. To
the authors’ knowledge, the role of sea ice initialization on the predictability of Southern Ocean climate has not
been investigated yet, and research efforts similar to those for the Arctic should be undertaken to bring the
research on Antarctic sea ice predictability up-to-date with its northern hemispheric counterpart.

2.2. Observations

In the general context of decadal predictability, observations are extremely valuable in two respects. First,
they are used for data assimilation and initialization purposes. That is, a full hybrid state of the studied system
can be derived by combining model and observed estimations of the same, unknown, real state. This hybrid
state is then used as an initial condition for a prediction: more advanced data assimilation methods are
expected to enhance prediction skill. Second, observations serve as a product for model evaluation. Through
qualitative and/or quantitative assessment, the model systematic biases can be identified, so that improving
the model physics where this is particularly needed can hopefully enhance predictability. Besides,
observations are needed for verification of retrospective decadal forecasts and are the ultimate means of
evaluating the skill of the decadal forecast systems. In the polar regions where observations are by nature
scarce, continued efforts to monitor the ocean, atmosphere, and sea ice conditions therefore hold great
promise for increasing the reliability of decadal predictions.
2.2.1. Data Assimilation and Initialization
Various sea ice data assimilation approaches follow different statistical techniques: nudging [Tietsche et al.,
2013], optimal interpolation [Zhang et al., 2003; Dulière and Fichefet, 2007], and ensemble Kalman filtering
[Lisaeter et al., 2007; Mathiot et al., 2012; Massonnet et al., 2013]. Assimilated variables include sea ice
concentration, sometimes ice thickness and drift. A critical point in sea ice data assimilation is the treatment of
the ocean, e.g., the update in modeled salinity and temperature profiles after sea ice observations are
assimilated. Without a proper ocean update, there is a risk that some of the predictability gained by ice
initialization will be lost after a few time steps of the forecast due to undesirable spurious adjustments
induced by inconsistencies between the sea ice and the ocean states (see also discussion on physical consistency
in section 2.3).

Figure 5. The PPP of surface temperature (black) averaged over the
high-latitude southern ocean (south of 60°S) and total Southern
Hemisphere sea ice extent (red) for the 2 years of integration. The
horizontal dashed line indicates the 95% significance level. From
Holland et al. [2013].
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2.2.2. Model Evaluation
In climate models, the simulated sea ice pack is traditionally compared against observations of sea ice
concentration/extent/area, sea ice thickness distribution/volume, sea ice drift, and export. These metrics
provide quantitative and qualitative insight on the role played by physics and parameters in current sea
ice models [Massonnet et al., 2011; Miller et al., 2006]. Further small-scale observations, such as local
atmosphere-ice and ice-ocean heat, mass and momentum fluxes, and deformation rates, could better
constrain the development of sea ice models, resulting in a more faithful physical basis for decadal predictions.
Regarding the validation of decadal forecast systems for sea ice, one is mainly concerned with the ability of
models to forecast ice concentration, its geographical distribution in space and time being, for example,
relevant for navigability in the Arctic.

2.3. Perspectives

Decadal sea ice prediction and predictability is a very active topic. Despite significant advances made in the
past years, several challenges remain open to research. We list hereunder several of them.
2.3.1. Actual Decadal Forecasts With Initialized Ice
A number of process-based mechanisms for decadal sea ice predictability are arguably established. Some of
these processes are simulated by current climate models, and reanalyses now provide a realistic estimate for
sea ice cover that is suitable for model initialization but has not been used in actual prediction experiments.
In other words, the potential for sea ice initialization is known through potential prognostic predictability
(PPP) experiments, but this potential has not been explored yet in practical decadal predictions initialized
from real sea ice observations.
2.3.2. Physical Consistency
Particular care should be paid to ensure consistency among sea ice, atmosphere, and ocean initial conditions.
The inherent predictability in sea ice derived in perfect-model experiments will inevitably be degraded when
switching to actual forecasts, e.g., due to the initial shock among ice, ocean, and atmosphere if those are not
initialized in a consistent way. If the system is not in a balanced state at the time of initialization, the benefits from
initialization may be lost in a few time steps.
2.3.3. Predictability in a Changing Climate
With nonstationary systems such as Arctic sea ice, seasonal predictions based on past, statistical relationships
may be of limited use [Holland and Stroeve, 2011]. Resorting to dynamical model forecasting is a practical
and promising alternative. However, because of increased year-to-year summer sea ice variability in a warmer
climate [Goosse et al., 2009], the use of a large number of ensemble members will be necessary in order
to predict large anomalies. Typically, recommendations for the minimum number of ensemble members
necessary to distinguish signal from noise in sea ice predictions would be useful information.
2.3.4. Importance of Sea Ice Physics on Predictability
Sea ice predictability studies use sea ice models with various complexities, from simple sea ice models with
no heat capacity [e.g., Tietsche et al., 2013] to comprehensive sea ice representation with several sea ice
thickness categories [Blanchard-Wrigglesworth et al., 2011; Chevallier et al., 2013]. The dependence of
forecast skill on sea ice model complexity is to our knowledge not clearly established but could guide
model development.
2.3.5. Improved Understanding of Physical Processes
A number of important processes in the Arctic are not fully understood yet. One example is the atmospheric
response to sea ice reductions and variations. Also, the processes governing the decadal-scale variations in
the Arctic are still only poorly understood. Better knowledge of the processes behind the leading physical modes
of the Arctic climate system is mandatory to further improve both climate models and climate predictions.

3. Land Surface

There is evidence that oceanic low-frequency variations propagate into the atmosphere and further onto
land areas affecting precipitation, river flow, surface temperature variations, and hurricane activity over
land [Enfield et al., 2001; Knight et al., 2006; Zhang and Delworth, 2006; Sutton and Hodson, 2005; Smith
et al., 2010]. Despite this, the skill of decadal predictions over land is generally low [Smith et al., 2007] or
drops drastically when linear temperature trends (which are fairly well predictable when greenhouse
gas concentrations can be considered to remain increasing) are removed [van Oldenborgh et al., 2012;
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Corti et al., 2012; Bellucci et al., 2014]. Yet the oceans and external forcing might not be the only source of
predictability over land at time scales longer than 1 or 2 weeks. Various studies suggest the existence of
physical processes capable of providing detectable forecast skill in continental areas. For example, the
relevance of realistic soil moisture initialization for skillful prediction of precipitation and temperature
variations up to 2 months ahead has been shown by Koster et al. [2011], Van den Hurk et al. [2012], and
Conil et al. [2007], with snow mass further enhancing boreal summer predictability [Douville, 2010].

Many components of the land surface display temporal variability that varies across a range of time scales, from
seconds for the surface skin temperature, to seasonal or multiannual time scales for vegetation, snow and
(deep) soil moisture, and temperature. The components that have longer memory may be a meaningful source
of information for predictability at decadal time scales. Mechanisms similar to those found for seasonal time
scale may be relevant for the decadal scale: it is likely that climate persistence induced by soil moisturememory
and coupling between land vegetation and atmosphere is amplified and extended through feedback
mechanisms. Furthermore, variables with fluctuations at long time scales are able to absorb systematic
forecasting errors occurring at shorter time scales, and this may give rise to forecast degrading drift [Betts
et al., 1998]. An accurate initialization constrained by observations is then required. In this section we will
review those land surface variables that have been explored for their potential to contribute to enhance
the predictive skill of decadal forecasting systems: soil moisture and vegetation cover.

3. 1. Mechanisms
3.1.1. Soil Moisture
3.1.1.1. Basic Mechanisms
The water stored between the ground surface and the water table is known as soil moisture [Bonan, 2008]
and represents a key variable of the land energy and water balance. Soil moisture is a large water reservoir
for land surface and embodies the continental boundary condition for the atmosphere, controlling the
partition of surface heat fluxes and modulating thermal properties at the land-air interface [Dirmeyer et al.,
2006]. In addition, soil moisture provides the atmosphere with water by soil evaporation and plant transpiration,
returning almost 60% of precipitation falling over land [Oki and Kanae, 2006, see their Figure 1].

The land water balance can be expressed as

dS
dt

¼ P � E � R� B (1)

where P is precipitation, E is evapotranspiration, R is the surface runoff, and B is the base flow (subsurface
runoff ). The rate of change in water storage is represented by dS/dt, which includes soil moisture, snow and
ice mass, surface, and groundwater.

Similarly, we can define the land energy balance as:

dH
dt

¼ Rn � λE � Hs � G (2)

where dH/dt is the rate of change of energy in a given soil layer, Rn is the net radiation, composed of incoming
and outgoing longwave and shortwave radiation, λE is the latent heat flux, Hs is the sensible heat flux, and G is
the heat flux stored in the soil by conduction.

Land-atmosphere coupling, which is the mutual interaction between land surface and atmosphere, plays an
important role in the predictability of the climate system by transferring andmodulating soil state anomalies to
the atmosphere. As demonstrated more than 30 years ago by the experiments of Shukla and Mintz [1982] and
strongly restated in the 2001 American Meteorological Society Council [American Meteorological Society
Statement, 2001], knowledge of land surface initial condition is imperative for subseasonal [Guo et al., 2011]
and seasonal [Materia et al., 2014] predictions.

A large fraction of the predictability imparted by land surface can be ascribed to soil moisture: water in the soil
may allow the persistence of an anomalous state by up to several months [Seneviratne et al., 2006]. This land
surface memory contributes to increase predictability at the seasonal time scale [Ferranti and Viterbo, 2006] and
longer, as hypothesized by a few recent studies [e.g., Langford et al., 2014], and provides soil moisture with an
additional element, besides coupling, that increases the potential predictability of the climate system [Guo et al.,
2012]. Predictability arising from anomalous soil moisture differs across regions and generally tends to be higher
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where memory and land-atmosphere
coupling combine, such as in the
Mediterranean and the Danube region
[Seneviratne et al., 2006].
3.1.1.2. Soil Moisture-Atmosphere
Coupling
Combination of equations (1) and (2)
shows that energy and water balance on
land are linked by the evapotranspiration
term, whose interaction with soil
moisture is a key process in the
land-atmosphere interface [Seneviratne
et al., 2010]. Two distinct hydroclimatic
regimes characterize evaporation: an
energy-limited regime, identified by

high wetness fraction, in which surface evaporation is not constrained by limited soil water availability, and a
water-limited regime, in dry regions where soil moisture provides a strong constraint to evapotranspiration
[Budyko, 1974; Eagleson, 1978]. Below a threshold called wilting point, the amount of water in the soil is too
low to become accessible to plants, and evapotranspiration stops completely. This conceptual framework,
illustrated in Figure 6 [Seneviratne et al., 2010, their Figure 5], gives a representative portrait of the coupling
between land and atmosphere.

In a multimodel study, Koster et al. [2004] identified hot spots of particularly strong land-atmosphere coupling,
located in transitional zones between dry and wet climates. Recently, Santanello et al. [2013] analyzed soil
moisture-atmosphere coupling during case studies of extremely dry and wet climate conditions and found
large mutual interactions between the land surface and the atmosphere. Observation-derived coupling
diagnostics [Miralles et al., 2012] support the finding of Koster et al. [2004] of a strong coupling in transitional
climate regimes.

While land surface-temperature coupling has only recently received considerable attention [Fischer et al.,
2007; Miralles et al., 2012], the soil moisture-precipitation coupling has been investigated since the 1990s,
with many studies emphasizing the capability of soil moisture to alter the boundary layer properties, creating
favorable conditions for precipitation [Betts and Ball, 1995; Eltahir, 1998; Schär et al., 1999].

The process driving this interaction includes three main connected players: soil moisture, evaporation, and
precipitation. The way rainfall affects soil moisture is trivial: unless the ground is saturated or the infiltration rate
is exceeded, rainfall increases soil moisture. On the other hand, the fraction of net radiation converted to latent
heat (thus evapotranspiration) generally increases with wetter soils, destabilizing the boundary layer and
favoring conditions for precipitation.

Under specific conditions, land-atmosphere coupling was found to affect predictability at the multiannual
time scale. In the U.S. Great Plains, changes in long-term predictability are primarily driven by modification of
the soil moisture-atmosphere coupling [Schubert et al., 2008]. This interaction must be considered when
evaluating the predictability of recurring droughts in this area and potentially in other regions of substantial
land-atmosphere interaction. With a modeling study, Schubert et al. [2004] have shown that disabling the
interaction between land and air does not allow the reproduction of the 1930s Dust Bowl, highlighting the
importance of such a mechanism for the self-sustenance of the multiyear drought. These studies point out
that the big drought was triggered mostly by atmospheric variability, inducing low soil moisture that possibly
initiated positive feedbacks with the land surface maintaining the dry condition [Hoerling et al., 2009]. The
mutual interaction among land surface constituents may generate mechanisms of drought maintenance. In
the Sahel, for instance, prolonged droughts may generate anomalous dust loadings, both mineral-based and
generated by biomass burning, that may impact the atmospheric radiation budget [Nicholson, 2013] by
warming the midtroposphere and cooling the surface [Reale et al., 2011] for longer than a year.
3.1.1.3. Soil Moisture Memory
Since Fennessy and Shukla [1999] pioneering work, which suggested that a realistic initial state of soil wetness
would enhance seasonal forecast skill, initialization of land surface state has become an imperative requirement

Figure 6. Definition of soil moisture regimes and corresponding evapo-
transpiration regimes. EF denotes the evaporative fraction (ratio of
latent heat to net radiation), EFmax its maximum value. Reprinted from
Seneviratne et al. [2010] with permission from Elsevier.
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in climate prediction systems based on fully coupled models [Paolino et al., 2012]. In fact, medium- and
long-term forecasts cannot rely on the initialization of the atmosphere alone, because the time scales over
which tropospheric anomalies dissipate are too short [Koster and Suarez, 2001]. Dirmeyer [2003] estimates
the contribution to forecast skill from the atmospheric state in a coupled land-atmosphere model with
prescribed (time varying) SSTs decays in less than a month. Instead, soil moisture anomalies may persist for
several months, and this “memory” of initial states has promising implications for climate prediction.

Langford et al. [2014] examine the mechanisms of decadal variability in precipitation over southwestern
North America, in the CMIP5 models and observations. The simultaneous regression pattern of precipitation
anomalies over the south-west U.S. onto surface temperatures at the multiannual (5 year) time scale
highlights, in both historical CMIP5 simulations and observations, a relatively weak relation with tropical
and extratropical North Pacific SSTs (explaining only 20% of the total variance), while most of the variability
appears to be explained by local anomalies, associated with land-atmosphere feedbacks (Figure 7). This
result points to a potentially relevant role of land surface state in long-term (decadal-scale) forecasts of
drought-like conditions in the south-west US.

Moreover, soil moisture memory may provide predictability at multiyear time scales through the information
stored in the slowly varying components of the soil system, such as the groundwater. Although state-of-the-art
climate models with a coupling to a dynamic groundwater reservoir exist [Fan and Miguez-Macho, 2010],
exploration of the contribution of this component to decadal time scale predictability with such models
has not yet been carried out. Bierkens and Van den Hurk [2007] used a conceptual model of the coupled
land-atmosphere system and demonstrated that in semiarid conditions groundwater convergence may
introduce multiyear variability in precipitation, implying potential predictability over the same time scale.
3.1.2. Vegetation
The distribution of natural vegetation, its phenology, and development state are largely controlled by climate
[Koeppen, 1884], but in turn vegetation systematically affects regional climate [Pielke et al., 2011; Arora, 2002].
Weiss et al. [2012] illustrated the beneficial impact of a realistic observation-based vegetation state on the
potential predictability and skill of a climate model. Remotely sensed leaf area index (LAI) and albedo products
were used to examine the role of vegetation in the coupled land-atmosphere system. Perfect-model
experiments were performed to determine the impact of realistic temporal variability of vegetation on
potential predictability of evaporation and temperature, as well as model skill in coupled model simulations.
While a realistic representation of vegetation positively influences the simulation of evaporation and its
potential predictability, a positive impact on surface air temperature is of smaller magnitude, regionally
confined and more pronounced in climatically extreme years.

Various studies have elaborated on the importance of vegetation-atmosphere feedbacks at decadal time scales.
An iconic study by Zeng et al. [1999] illustrated the contribution of vegetation dynamics to reinforce the late
1980s drought in the Sahel, where different feedbacks are evident at different time scales. Correlation and
potential predictability studies exploring the relation between vegetation dynamics and climatic indicators,
such as rainfall anomalies, have been carried out for various climatic zones and regions, including the Tibetan
plateau [Wang et al., 2010], the Amazon [Wang et al., 2011a], and the Asian monsoon [Li et al., 2009]. To our

Figure 7. Simultaneous regression of area-averaged monsoon (in the black rectangle) region standardized precipitation
anomaly onto surface temperature anomalies over land and sea (°C per standard deviation of monsoon precipitation),
for 5 year runningmeans of July-August-September (JAS). The color contours indicate the average of 20 CMIP5 simulations.
The stippling indicates that more than two thirds of the models agree on the sign of the regression. From Langford et al.
[2014], © American Meteorological Society. Used with permission.
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knowledge, the first study investigating the impact of vegetation on decadal predictions using a
prognostic model setup is byWeiss et al. [2014]. In their approach the initial state of the vegetation is based
on long off-line spin-up runs with a dynamic vegetation model driven by observed climate. Coupling the
vegetation and atmospheric modules allows a two-way interaction between the vegetation state and the
climate system beyond the initialization phase. Vegetation is characterized solely by a variable value of LAI for
high and low vegetation, replacing the default configuration using a static prescribed LAI value in the land
surface model. Decadal hindcasts were carried out following the CMIP5 decadal forecasting protocol, using a
fully coupled atmosphere-land-ocean-sea-ice model and including the vegetation coupling.

The results ofWeiss et al. [2014] indicate a reduction of the surface air temperature bias in many regions and
slightly more reliable forecasts. The ranked probability skill score (RPSS) is found to increase in a few regions,
especially in the first year after initialization (Figure 8). However, only a very few areas demonstrated to have
higher skill than climatology. Moreover, the additional degrees of freedom introduced by the interactive
vegetation generate supplementary noise to the model that does not necessarily translate into improved skill.

The regions with the greatest bias improvement were found in the tropical Sahel and India and at high
latitudes in boreal Russia and North America. These results are in agreement with former studies by Douville
[2010], Koster et al. [2011], and Seneviratne et al. [2010]. As for soil moisture at the seasonal time scale, the
main gain for decadal predictions from vegetation appears to be in regions exposed to shifts in the
Intertropical Convergenze Zone (ITCZ) and monsoon cycles, consistently with the transitional dry-to-wet
climate zones that expose a strong land-atmosphere coupling.

The study ofWeiss et al. [2014] was carried out with a suboptimal system setup. To avoid potentially unstable
feedbacks between the vegetation and atmosphere, the list of exchanged variables was limited, thereby
accepting certain inconsistencies between models. One consequence of this approach is that drifts in LAI
were generated in the coupled system. They likely bear their origin in an inconsistent (and high) soil moisture
availability in the vegetation model due to a systematic precipitation bias in the climate model. A lesson
to be learned from this is that vegetation and climate consistency in different hydroclimatic regimes needs to

Figure 8. Difference in Ranked Probability Skill Score (RPSS), comparing decadal hindcasts performedwith the EC-Earthmodel, with andwithout dynamic vegetation for
June, July, August (JJA), and November, December, January (NDJ) for lead times of 1 year, 2–5 years, and 6–9 years. RPSS is calculated with respect to ERA40 climatology.
From Weiss et al. [2014], © American Meteorological Society. Used with permission.
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be ensured by exchanging information on the vegetation transpiration stress between the modules. This
ensures that vegetation dynamics in the coupled model exhibits a realistic variability that is also generated
when forced with observations. Based on the observed correlation between LAI and moisture supply in
most regions of the world, a revision of the soil moisture information exchange has the potential to greatly
improve the representation of memory in the vegetation state and its associated predictability.

Also, in order to explore the added value of a realistic initialization for vegetation, start dates other than
November (as prescribed by the CMIP5 protocol) should be considered in the experimental design. Probably
the initial vegetation state in early Northern Hemisphere spring contains a lot more useful information, for
both the seasonal and the decadal time scales.

3.2. Observations
3.2.1. Soil Moisture
As already mentioned, the scarcity of soil moisture observations is the most significant limitation to the
understanding of land surface-atmosphere interaction. Available in situ measurements have been gathered
using a standardization protocol for a comprehensive harmonized global database into the International
Soil Moisture Network database [Dorigo et al., 2011]. Its limitations reside in the lack of station data over
several areas, including the Arctic, Africa, and South America. In fact, the high costs and the large efforts
required to put instruments in place only allow a sparse coverage, with the exception of some regional
networks [Robock et al., 2000]. Besides, soil moisture field campaigns suggest that upscaling via simple spatial
averaging of data acquired from randomly distributed sites results in large errors, unless high sampling
densities are maintained [Crow et al., 2012].

On the other hand, indirect estimates of soil moisture, such as remote sensing measurements [de Jeu et al.,
2008], still have several limitations (e.g., the lack of information on deep soil water) and gaps in key regions due
to the shading exerted by vegetation [Wagner et al., 2007]. The most complete and, to date, reliable data set of
this kind was developed as part of the European Space Agency program Climate Change Initiative and was
initiated in 2010 for a period of 6 years [Liu et al., 2011]. It blends active and passive microwave satellite
estimates, producing a global database of soil moisture from 1979 to 2010. However, spatial gaps are still
substantial in densely forested areas and in snow-covered regions during winter, and temporal gaps are
present as well.

Land surfacemodels forcedwithmeteorological observations supply global estimates at a fairly high resolution
(e.g., Global Soil Wetness Project 2 (GSWP-2) at 1°) [Dirmeyer et al., 2006], but regional tuning [Guo and Dirmeyer,
2006]. However, discrepancies among models [Materia et al., 2010] and a high dependency on the quality of
forcing data [Guo et al., 2006] represent large sources of uncertainty. Recent reanalyses of the land surface
have improved upon the output of the atmospheric forced land surface models through the inclusion of
observed precipitation data into the data assimilation system [Balsamo et al., 2012], but even these data
rely still heavily on the (limited) skill of land surface models. Improving details in the parameterization of
these models does not seem to guarantee enhanced predictability results [Dirmeyer et al., 2013]. Other
model-derived soil moisture products can be retrieved from atmospheric global models constrained with
monthly SST observations [Koster et al., 2006]. Seneviratne et al. [2010] describe several validation data sets
of soil moisture, analyzing pros and cons of each methodology.
3.2.2. Vegetation
Many global vegetation data sets currently exist. A full review of these is beyond the scope of this paper, but
they can generally be discerned in products representing vegetation type distributions (see Xie et al. [2008]
for a review), or aiming at monitoring the state of the aboveground biomass or leaf area index [Zhu et al.,
2013]. A pioneering product was the normalized difference vegetation index (NDVI) [Tucker, 1979], for which
routine databases are available since 1982. Moderate Resolution Imaging Spectroradiometer products based
on Fraction of Absorbed Radiation are available since 2002 [Myneni et al., 2002], including postprocessing
routines generating LAI estimates and other vegetation indicators.

Application of LAI databases is currently being explored for seasonal predictions [Boussetta et al., 2013]. For
this a climatologically stable and well-interpretable data set is required. Major issues with NDVI and LAI
databases are sensitivity to sensor degradation and platform replacement, cloud screening and atmospheric
absorption, and translation of the remotely sensed radiances into a geophysical product that can be
interpreted by the assimilating model.
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3.3. Perspectives

Only very few sensitivity experiments were carried out to assess the role of soil moisture on decadal
predictability. However, the works mentioned in section 3.1.1 have triggered discussion about its possible
impacts on multiannual time scales. It is argued that climate persistence induced by soil moisture memory
and land-atmosphere coupling is amplified and extended through feedback mechanisms. These findings
state the importance of a realistic representation of the land surface component, besides its initialization, to
improve our chance of obtaining effective decadal predictions on land regions where SST forcing is limited.

In addition, recent investigations have highlighted the importance of land management forcing for resulting
effects on the climate system, mainly through changes in soil albedo [Luyssaert et al., 2014]. Cook et al. [2009]
find that SST changes are not sufficient to explain the Dust Bowl: human-induced land degradation has
played a crucial role in the formation and amplification of the drought, as a result of land surface feedbacks.
Dirmeyer et al. [2013] detected a change in the predictability of precipitation and temperature anomalies in
response to major land use conversions in the U.S. Great Plains area. Predictable trends in deforestation may
provide a source of predictability over the areas affected [e.g., Sampaio et al., 2007]. Obviously, these studies
must take into consideration the model-specific features that may affect the results, but they represent an
important step in defining the role of anthropogenic land modifications on decadal predictability.

The importance of vegetation for decadal predictions has not been thoroughly investigated, and one of
the main reasons is the short record of available observational products (as discussed in section 3.2.2). The
documented impact of vegetation on regional climate and the low skill of current operational decadal
predictions over land warrant the need for further investigation. The few studies that have addressed the
potential and actual decadal predictability do show limited increase in predictability and skill for the first few
(2–5) years for most land regions. Largest increase in decadal prediction skill appears to be gained in regions
with large interannual variations in surface conditions related to strongly varying precipitation forcing,
and regions situated in the transitional dry-to-wet climate zones, characterized by strong land-atmosphere
coupling. First studies have indicated that capturing the potential predictability associated with vegetation
requires that the coupling among the atmosphere, vegetation, and land surface is consistent with a closed
water and energy cycle. Utilizing the predictability from vegetation should thus be accompanied with a proper
treatment of the soil moisture impact on vegetation dynamics. Furthermore, additional gain of skill during
the first forecast year can be expected when start dates are used that coincide with the part of the seasonal
cycle where vegetation has a strong effect on the successive hydroclimatic conditions. This requires
experiments that deviate from the CMIP5 protocol, where the November start date is recommended.
Additionally, adequately large ensembles are required to extract the relatively small (deterministic) signal
from the considerable noise that exists both in the real world and the modeling systems. These limitations will
be likely overcome in the new experimental setup for near-term predictions, currently being designed for
Coupled Model Intercomparison Project Phase 6 (CMIP6).

4. Stratosphere

At decadal time scales, both changes in external forcing (greenhouse gases (GHGs), stratospheric aerosols,
and solar forcing) and internal factors affect climate variations. The stratospheric flow presents interdecadal
variability that can be dynamically driven [Butchart et al., 2000] but also a response to low-frequency
variations of external forcing. Indeed, at multidecadal time scales, the stratosphere responds to the radiative
forcing of anthropogenic compounds, of natural solar cycle variations and of the aerosol loading following large
volcanic eruptions [Shindell et al., 2001; Meehl et al., 2009a]. Furthermore, low-frequency stratospheric
variations can influence tropospheric circulation [Scaife et al., 2005]. In the last decade it has been suggested
that knowing the state of the stratosphere can result in enhanced predictability at seasonal time scales in the
extratropics [Baldwin et al., 2003]; indeed, recent research works have demonstrated that seasonal forecast
systems initialized during stratospheric sudden warmings lead to significantly larger forecast skill in the
extratropics [Kuroda, 2008;Marshall and Scaife, 2010; Sigmond et al., 2013]. The dynamical link between the
stratosphere and the troposphere is found at midlatitudes in winter in the Northern Hemisphere and in
spring/summer in the Southern Hemisphere. Therefore, these are the seasons where there is a potential
role for the stratosphere in surface climate predictability. To this regard, the stratosphere may also play an
integral role in decadal variability of climate [Schimanke et al., 2011; Reichler et al., 2012]. However, the link
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between the stratosphere and the troposphere is not only of dynamical origin: stratospheric background
aerosols other than volcanic eruptions and variations in stratospheric water vapor have been recently
recognized to be important drivers of decadal variations of surface warming [Joshi et al., 2006; Solomon
et al., 2010; Solomon et al., 2011]. The stratosphere-troposphere-ocean coupled system has to be
considered as a whole for its role in both internally generated and externally forced climate variability.
Its proper representation will likely enhance decadal prediction skill, as it has contributed to enhance
seasonal prediction skill [Scaife et al., 2014a].

4.1. Mechanisms

The dynamical coupling between the stratosphere and the troposphere occurs through variations in the
strength of the polar vortex. Anomalies in the stratospheric flow can propagate downward and affect
the weather and climate in the troposphere, lasting up to 2 months [Baldwin and Dunkerton, 2001;
Thompson et al., 2002]. Different mechanisms have been proposed to explain the involved pathways of the
stratosphere-troposphere connection [Gerber et al., 2012]; however, a better understanding of the coupling
between the stratosphere and the different components of the climate system is still needed. The proposed
mechanisms include, among others, a remote response of the troposphere to stratospheric potential vorticity
anomalies [Hartley et al., 1998; Black, 2002], a local tropospheric response maintained by feedbacks with
transient eddies [Song and Robinson, 2004], vertical reflection of planetary waves [Perlwitz and Harnik, 2003] and
refraction of synoptic waves [Simpson et al., 2009], and linear interference between the climatological waves
in the stratosphere and the wave response to a tropospheric forcing [Fletcher and Kushner, 2011]. Impact of
stratospheric changes on baroclinic instability [Rivière, 2011] and wave breaking into the troposphere
[Kunz et al., 2009] has also been invoked.

At the surface, extreme events of the stratospheric circulationmodulate the NAO polarity with a positive/negative
phase of the NAO preceded by strong/weak vortex anomalies. This dynamical connection between the
stratosphere and the troposphere is the basis for potential enhanced predictability of the stratosphere-
troposphere coupled system. On monthly to seasonal time scales, the slow radiative relaxation rates in the
lower stratosphere provide additional predictive skill to tropospheric patterns of circulation from the longer
stratospheric memory [Baldwin et al., 2003; Sigmond et al., 2013]. At interannual time scales, predictability can
originate not only from surface ocean conditions in the Atlantic that can impact the frequency of atmospheric
blocking [Maidens et al., 2013] but also from stratospheric processes with long time scale. For example, the
quasi-biennial oscillation (QBO) has a period of about 2–3 years and is predictable for 1–2 cycles, and having
a persistent teleconnection to the winter surface climate, it appears to offer midlatitude surface climate
predictability [Marshall and Scaife, 2009; Thompson et al., 2002], even though recently Scaife et al. [2014b] have
shown a limited predictability of the extratropical winter teleconnection associated to the QBO. A few
studies also pointed out the possibility of a remote influence of the QBO on the subtropical circulation
[Giorgetta et al., 1999] and tropical cyclones [Ho et al., 2009]. Moreover, teleconnections via the stratosphere
between El Niño–Southern Oscillation (ENSO), a predictable tropical mode of variability, and European climate
in late winter can be considered a potential source of predictability at this time scale [Ineson and Scaife, 2009;
Cagnazzo and Manzini, 2009]; if it holds at interannual time scales, it is also possible that it holds at longer
time scales: at decadal time scales climate variations over the Pacific Ocean and area surroundings are strongly
related to the Pacific Decadal Oscillation that has a certain degree of predictability [Mochizuki et al., 2010;
Lienert and Doblas-Reyes, 2013; Ding et al., 2013; Meehl and Teng, 2014; Meehl et al., 2014b]. At interannual
time scales, it is also recognized the existing link between the variability in the Siberian snow cover and the AO
[Cohen et al., 2007], and this knowledge has been used to improve seasonal time scale winter forecasts;
however, this coupling may be also modulating the winter warming trend, with implications for decadal-scale
temperature projections [Schimanke et al., 2011].

At the decadal time scales, it has been recently shown, using a stratosphere-resolving atmosphere-ocean
general circulation model, that the frequency of stratospheric sudden warmings (SSW) varies on decadal and
multidecadal time scales. This is reflected in long lasting anomalies of the stratospheric polar vortex that are
in turn connected to variations in the Atlantic Ocean [Schimanke et al., 2011]. This analysis suggests that
enhanced wave flux entering the lower stratosphere (associated to positive heat flux anomalies from the
North Atlantic into the atmosphere, to enhanced snow cover over Eurasia and more blocking activity) leads
to a larger number of SSWs; stratospheric anomalies can in turn impact surface weather in the following
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weeks and may potentially enhance
multidecadal variations of the coupled
ocean-atmosphere system in the
Atlantic. Indeed, recent studies [Manzini
et al., 2012; Reichler et al., 2012] have
shown that sequence of circulation
anomalies propagating down from the
stratosphere in a climate model, in turn,
affect decadal variations of the North
Atlantic Ocean (Figure 9).

On the other hand, the tropospheric
and stratospheric anomalies appear to
be partly driven by North Atlantic SST
changes; a result that appears to
depend on accurate representation of
stratosphere-troposphere interaction in
atmospheric general circulation models
[Omrani et al., 2014]. In particular,
Omrani et al. [2014] investigated the
period 1951–1960 during which North
Atlantic SSTs were anomalously warm
(Figure 10a), associated with the
observed Atlanticmultidecadal variability.
During this period the NAO tended to
be in its negative phase during the late
winter (Figure 10b) and were connected
to weak polar stratospheric vortex in
the early winter. The tropospheric
(Figures 10c and 10d) and stratospheric
changes could be largely simulated,
but only in a stratospheric resolving
model configuration. Thus, resolving
stratosphere-troposphere interaction
appears key to simulating the large-scale
atmospheric response to North Atlantic
SST changes.

At the decadal time scale, the 11 year solar cycle is a driver of stratospheric variability. Although total solar
irradiance perturbations at the Earth surface are small, variations in the UV part of the spectrum are larger
(though with a great uncertainty in their magnitude) and cause a substantial and well-documented
perturbation in ozone [Soukharev and Hood, 2006; Randel and Wu, 2007] and temperature [Gray et al., 2010;
Frame and Gray, 2010] of the upper stratosphere and lower mesosphere with an amplification of the
signal in the lower stratosphere [Haigh, 1996]. It has been shown that such variations affect background
stratospheric winds, therefore impacting wave propagation in the winter stratosphere [Kodera and Kuroda,
2002]. Evidence of a solar signal at surface from observations and model simulations is also documented in
upper oceanic temperature and heat storage [White et al., 1997], in the tropical Pacific sea level pressure and
sea surface temperatures, where the effect of solar forcing resembles La Niña events [van Loon and Meehl,
2008], then followed by a warm El Niño event with a lag of a few years [Meehl and Arblaster, 2009]. Impact of
solar variations on climate has also been identified on tropical convection [van Loon and Labitzke, 2000;
Balachandran et al., 1999] with an increase in off-equatorial precipitation [Meehl et al., 2009a], a weakening
of the Hadley cell [Kodera and Shibata, 2006] and a modulation of the Indian Monsoon system [Kodera,
2004]. Statistical analyses [Lockwood et al., 2010] and climate modeling studies have linked low solar
activity to low temperatures over Northern Europe and North Atlantic [Ineson et al., 2011] (Figure 11), with a
more robust lagged response [Gray et al., 2013] possibly due to ocean-atmosphere interactions [Scaife et al.,

Figure 9. Geophysical Fluid Dynamics Laboratory Climate Model version
2.1 derived composites of periods during which the polar vortex was
either persistently strong (75 events) or persistently weak (70 events,
multiplied by�1). (a) Composite time series of the vortex index, measuring
the likelihood that a vortex event happens during a given year. The
index represents a composite and therefore varies smoothly between +1
and �1. (b) Corresponding monthly time-depth development of ocean
temperature anomalies (K) over the study region (15°W–60°W, 45°N–65°
N); hatching shows insignificant (95%) results. (c) Corresponding
monthly anomalies in Atlantic meridional overturning circulation
(AMOC) strength (Sv). From Reichler et al. [2012]. Reprinted by permission
from Macmillan Publishers Ltd.

Reviews of Geophysics 10.1002/2014RG000473

BELLUCCI ET AL. ©2015. American Geophysical Union. All Rights Reserved. 180



2013], through a “top-down” mechanism: variations in stratospheric ozone due to solar variability in the
ultraviolet (UV) spectrum range result in dynamical responses in the stratosphere and troposphere [Haigh,
1996; Balachandran et al., 1999; Shindell et al., 1999]. In the Pacific, it has been shown that the impact of
solar variability on climate occurs through a “bottom-up” mechanism acting together with the top-down
pathway: air-sea radiative coupling at the surface in the tropics, modulated by cloud distribution,
could initiate a set of processes linking the solar forcing to its tropospheric response through coupled
atmosphere-ocean dynamical feedbacks [Meehl et al., 2003, 2008, 2009a]. Moreover, some observational
[Labitzke, 1987] and modeling [Schmidt et al., 2010] studies suggest a possible modulation of the
stratospheric solar cycle signal by the QBO. A correct simulation of the connection between solar variations
and regional climate variability could provide predictability at the decadal scale. However, it has proved
difficult for climate models to consistently reproduce solar cycle signal in the stratosphere and the
troposphere [Schmidt et al., 2010; Tsutsui et al., 2009], even though some of them have been successful
[Matthes et al., 2006; Shindell et al., 2001].

Unpredictable explosive volcanic eruptions can inject large amounts of sulfur into the lower stratosphere
where they form aerosol particles, which are transported by large-scale circulations and stay up to about
2 years. The radiative forcing from these events can be substantial [Robock, 2000], with a cooling of the
troposphere due to scattering of solar radiation and a warming of the lower stratosphere due to enhanced
absorbing of infrared radiation [Angell, 1997]. The radiative impact of volcanic aerosols can impact ozone and
induce a stronger polar vortex [Kodera, 1994; Perlwitz and Graf, 1995; Kodera and Kuroda, 2000a, 2000b;
Shindell et al., 2001], potentially shifting the tropospheric jet stream and producing a response that generally

Figure 10. (a) SST and (b) 1000 hPa geopotential height anomalies for the period 1951–1960 relative to 1961–1990 for
January-February-March (JFM) from observations [Rayner et al., 2003] and reanalysis [Kalnay et al., 1996], respectively. The
1000 hPa geopotential height response to the anomalous SST changes in Figure 10a simulated by the European Centre
Hamburg Model version 5 in (c) high-top and (d) low-top configurations. Only differences significant at the 90% level are
plotted in Figures 10b–10d. Adapted fromOmrani et al. [2014]. With kind permission from Springer Science andBusinessMedia.
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includes an anomalously positive phase of the AO, more pronounced in the boreal winter but only partially
simulated in models [Stenchikov et al., 2006].

At multidecadal time scales, external forcing (anthropogenic and natural) and unforced internal variability
both contribute to explain climate variations. The boundary condition forcings from anthropogenic ozone
depletion and greenhouse gas increases can therefore be important sources of predictability. A clear
example is found in the Southern Hemisphere. Long-term changes associated to the ozone depletion over
Antarctica have dominated climate change in austral spring and summer over the past few decades
[Thompson and Solomon, 2002; Thompson et al., 2011]. The cooling of the lower stratosphere of radiative
and dynamical origin (up to about 10 K) has led to a strengthening of the polar vortex, with a delayed
transition from winter westerlies to summer easterlies and an impact on the shift of the tropospheric jet

Figure 11. Sea level pressure difference for (a) model and (b) ERA-40/ERA-Interim reanalysis. Near-surface temperature
difference for (c) model and (d) reanalysis. The differences are for December to February mean fields. The dashed (solid)
black contours show the sea level pressure difference relative to the interannual standard deviation at 25% (50%).
The solid white contours indicate significance at the 95% confidence level for the model (Figures 11a and 11c) and 90%
for reanalyses (Figures 11b and 11d). All panels are centered around the North Pole. From Ineson et al. [2010]. Reprinted
by permission from Macmillan Publishers Ltd.
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stream [Son et al., 2010]. Stratospheric changes have projected onto the positive polarity of the Southern
Annular Mode (SAM) [Thompson and Solomon, 2002] with possible impact on oceanic circulation [Cai,
2006], hydrological cycle [Kang et al., 2012], sea ice (though controversial) [Turner et al., 2009; Sigmond and
Fyfe, 2010; Sigmond and Fyfe, 2014], and air-sea carbon fluxes [Lenton et al., 2009]. Recently, it has been
shown the importance of including a proper representation of stratospheric dynamics in order to obtain
more reliable long-term climate simulations and projections in the Southern Hemisphere circulation
patterns and air-sea fluxes [Cagnazzo et al., 2013]. If in the past, the increase in GHG and the stratospheric
ozone depletion have both contributed to the observed changes in the Antarctic region, in the future
because of the ozone recovery, it is expected that GHG change and the stratospheric ozone change will no
longer combine to produce a positive SAM trend at the surface. It is therefore essential to properly represent
chemistry-radiative and dynamical stratospheric changes and their feedbacks in future climate projections.

In the Northern Hemisphere (NH), it is expected that the polar vortex will continue to respond to radiative
cooling and to changes in tropospheric wave activity, as a result of greenhouse gas forcing [McLandress and
Shepherd, 2009; Calvo and Garcia, 2009]. Projected changes of the polar vortex winds are consistent with a
strengthening of the Brewer-Dobson circulation due to climate change (see Butchart [2014] for a review;
[Butchart and Scaife, 2001; Butchart et al., 2006]). These low-frequency stratospheric changes can influence
trends in tropospheric temperatures and precipitations [Scaife et al., 2005]. Recent numerical experiments
have also demonstrated that stratospheric changes can be different in models with a better representation of
stratospheric dynamical processes and that details of regional climate change in NH winter may depend on
the representation of the stratosphere in climate models [Scaife et al., 2012; Karpechko and Manzini, 2012].

4.2. Observations

At the global scale, stratospheric radiosonde observations exist since the late 1950s [Pawson and Fiorino,
1998]. Satellite observations of the lower stratosphere have global coverage from the late 1970s [Bailey et al.,
1993], and from the early 1990s, data assimilation has been used to produce comprehensive stratospheric
analyses [Swinbank and O’Neill, 1994]. Stratospheric reanalyses can be used to initialize the stratosphere
in models extending up in the middle atmosphere. Those include National Centers for Environmental
Prediction/National Center for Atmospheric Research reanalysis [Kalnay et al., 1996] available from 1948 to
present, Modern-Era Retrospective Analysis for Research and Applications [Rienecker et al., 2011] covering
the period from 1979 to the present, the European Centre for Medium-Range Weather Forecasts ERA-40
[Uppala et al., 2005] available from September 1957 to August 2002 and ERA-Interim [Simmons et al., 2007]
from 1979 to the present. If initialization of the polar stratosphere during SSWs events has been demonstrated
to enhance forecast skills at seasonal time scales [Sigmond et al., 2013], it may have limited skills at the
decadal time scale because of the limited polar vortex strength predictability. Initialization in the tropics
could instead be beneficial for representing the correct phase and amplitude of the QBO, at least for a few
years following the initialization [Marshall and Scaife, 2009; Scaife et al., 2014b].

4.3. Perspectives

Assessing to what extent the representation of the stratospheric processes illustrated in section 4.1 is key
to improved decadal predictions does necessarily require a better understanding of the mechanisms
governing the stratospheric impact on climate at different time scales. The representation of the stratosphere
itself and therefore of the stratosphere-troposphere-ocean-sea ice coupling could lead to improved
prediction skill at the decadal time scale, because of the dynamical mechanism linking the stratosphere to
troposphere and possibly to oceanic circulation in the extratropics. It can enhance dynamical feedbacks,
but also amplify the impact of external forcing. Therefore, a requirement for better skill at the decadal time
scale is to have a model that realistically simulates the stratospheric response to tropospheric variations
and the tropospheric response to polar vortex changes, in general, occurring inmodels with a well-represented
stratosphere [Hardiman et al., 2012]. This can be achieved by raising the model lid, increasing model
stratospheric resolution, and improving representation of stratospheric dynamics and thermodynamics. All
these ingredients have been recently recognized as essential for extended-range forecast skill at the
seasonal time scale [Roff et al., 2011; Sigmond et al., 2013; Scaife et al., 2014a]. These works have pointed
out the importance of a proper stratospheric initialization in order to perform skillful seasonal predictions.
At interannual time scales the initialization of the tropical stratosphere can be relevant for the QBO;
Scaife et al. [2014b] have demonstrated predictability of the QBO up to a few years into the future suggesting
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possible higher skills with improved initialization and modeling of the QBO (Figure 12). However, at longer
time scales, improving the stratospheric initial conditions may have a negligible impact on forecast skills, as
SSWs are highly nonlinear events and it is not possible to predict polar vortex anomalies beyond a week or two.
Moreover, a skillful prediction of the QBO itself does not guarantee predictability of the extratropical winter
teleconnection [Scaife et al., 2014b].

On longer time scales, accurate representation of stratosphere-troposphere interaction may be critical in
capturing atmospheric teleconnections to variations in tropical and extratropical SST [Ineson and Scaife, 2009;
Omrani et al., 2014], Eurasian snow cover [Hardiman et al., 2008], and Arctic sea ice [Jaiser et al., 2013], all of
which exhibit predictability on seasonal-to-decadal time scales.

A better dynamical stratosphere includes an improved model vertical resolution in the upper troposphere
and lower stratosphere, a model top higher than 1 hPa (this definition has been used in Charlton-Perez et al.
[2013] and is based on previous literature showing that models with a top below the stratopause fail to
properly simulate SSWs), the representation of momentum conserving orographic and nonorographic
subgrid-scale gravity wave drag, necessary for reproducing realistic winds and temperatures [Shaw and
Shepherd, 2007; Shaw et al., 2009]. The vertical resolution and parameterization of gravity waves also play a
role in the representation of the QBO in models [Giorgetta et al., 2006], a phenomenon not resolved by almost
all of the CMIP5 models. However, uncertainties still derive from parameterized processes in current models,
such as the gravity wave parameterizations that are indeed highly idealized and poorly constrained to
observations [Geller et al., 2013].

Stratospheric chemistry and microphysics processes are also missing in most models. The impact of
stratospheric ozone loss and recovery on past and projected climate change in the Southern Hemisphere
derived from model simulations could be sensitive to the use of a fully interactive stratospheric ozone

Figure 12. Correlation scores for monthly and zonally averaged values of equatorial wind at 30 hPa as a function of lead
time, indicating predictability of the QBO in the (top) UKMO and (bottom) MiKlip decadal forecast systems, using
decadal forecasts over 1960–2006, verified against observational analyses (blue). Dashed lines show linear least squares
fits. Skill predictions is high at very long lead times (larger than 0.8 at lead times up to 6months; above 0.7 at 12months;
significant out to 4 years ahead in the MiKlip forecasts) and is larger than other modes of variability such as ENSO. From
Scaife et al. [2014b].
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chemistry scheme [Gerber et al., 2012]. The transport of water vapor into the stratosphere plays a key role in
modulating climate change at surface therefore acting as a source of unforced decadal variability, or as a
feedback coupled to climate change [Solomon et al., 2010]; its representation in current climate models has
large biases, and it is dependent on the representation of microphysical processes in the tropical tropopause
layer [Fueglistaler et al., 2009; Randel and Jensen, 2013], on the representation of the tropopause temperature
[Gettelman et al., 2010] as well as on the representation of the large-scale circulation. Moreover, climate
models are not able to fully simulate the observed positive AO signature following a large volcanic
eruption, therefore limiting their predictive skills.

Concerning the solar cycle effect on climate, some radiation schemes in current climate models have been
off-line validated against line-by-line models to estimate how sensitive the radiation codes are to changes in
solar irradiance and ozone and howwell the 11 year solar signature is reproduced [Forster et al., 2011]. Results
indicate that some current state-of-the-art models cannot properly simulate solar-induced variations in
stratospheric temperature. Moreover, the indirect dynamical effects in the tropical lower stratosphere and
extratropical stratosphere and the extension of the signal into the troposphere are more challenging to
reproduce [SPARC-CCMVal, 2010].

5. Aerosols

Aerosols, the small liquid or solid particles suspended in the atmosphere, have three properties that make
them of particular interest within the context of decadal projections: their potentially large radiative impact on
global and regional scales, the strongly heterogeneous nature of this impact, and the potential for aerosol
concentrations to change rapidly over decadal time scales as a result of policy or socioeconomic drivers.
Accounting for aerosols processes, and the future emissions scenarios that they will respond to, could therefore
represent an important component of future decadal predictability. Here we discuss this potential alongside
some of the current challenges, not least the difficulty in representing the complex mechanisms involved,
which range from the cloud droplet scale to synoptic transport. Given the peculiar nature of aerosols, essentially
acting on boundary (rather than initial-)-value predictability, no specific section is devoted to available
observational data sets, usable to realistically constrain model initialization. The role of observations of
aerosol properties in the context of models development and evaluation is briefly discussed in section 5.2.

5.1. Mechanisms

Aerosols contribute to the Earth’s radiative budget by scattering and absorbing solar and thermal radiation,
and providing cloud condensation and ice nuclei, thus playing an important role in the formation of clouds.
Changes in aerosol concentrations thus exert a radiative forcing, which over the industrial era is negative
at the top of the atmosphere and surface on a global scale, but can be of either sign regionally [Boucher
et al., 2013]. Figure 13 shows distributions of radiative forcing from aerosol-radiation and aerosol-cloud
interactions, simulated by the Hadley Centre climate model Hadley Centre Global Environmental Model
version 2 (HadGEM2) between the years 1860 and 1980, and 1980 and 2000. Radiative forcing patterns are
partly driven by changes in aerosol concentrations and hence tend to be located close to and downwind
from anthropogenic emissions sources. Locally, the magnitude and sign of aerosol radiative forcing are
determined by three factors. First is the varying degree of competition between scattering and absorption
processes, because aerosol-radiation interactions by absorbing carbonaceous and mineral aerosols exert
a positive radiative forcing at the top of the atmosphere, which is stronger when aerosols are located above
bright surfaces such as deserts and clouds [Boucher et al., 2013]. Second is the concentration of aerosols
in pristine regions, because aerosol-cloud interactions are nonlinear with stronger radiative effects in
cleaner environments. So continental emissions can have their stronger impacts in maritime regions with
low-level cloud such as in the North Atlantic and Pacific Ocean, away from their emission sources. Third is
the sign of the trend in aerosol concentrations. Regions where anthropogenic aerosol concentrations have
decreased (for example, North America and Europe between 1980 and 2000) are associated with a positive
radiative forcing that is the symptom of the suppression of an earlier negative radiative forcing. Conversely,
regions where anthropogenic aerosol concentrations have increased are associated with a strengthening
negative radiative forcing.

Aerosol radiative forcing triggers a redistribution of radiative fluxes within the atmosphere. Recent frameworks
[Hansen et al., 2005; Boucher et al., 2013] distinguish the fast adjustments that operate on atmospheric time
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scales, from the longer-term climate feedbacks that operate through changes in sea surface temperatures.
Fast adjustments are local in nature and stem from the compensation of changes in the surface and
atmospheric radiative budgets by changes in latent heat flux, in first approximation. The subsequent
changes in moisture and temperature profiles affect cloud formation and the timing, intensity, and location
of precipitation. This is particularly important for absorbing aerosols, which cause warming aloft and,
depending on the cloud regime and the relative position of aerosols and clouds, lead to increased or
decreased rainfall [Bond et al., 2013]. Modeling studies have suggested that on a global scale, the rainfall
suppression from increases in sulfate aerosols is dominated by the longer-term global surface temperature
increase rather than by the fast adjustments [Andrews et al., 2010; Ming et al., 2010]. Fast adjustments to
aerosol-cloud interactions also perturb precipitation: the formation of smaller cloud droplet may delay
precipitation and, in regimes where precipitation regulates the cloud life cycle, increase cloud cover and
thickness, although strong buffering mechanisms may exist to dampen the cloud response to aerosol
changes [Stevens and Feingold, 2009].

Climate feedbacks stem from large-scale changes in surface temperature and operate on oceanic time scales.
Scattering aerosols, which exert a negative radiative forcing and lead to a cooling of the climate system, are
associated with precipitation changes of typically 2–3% per degree of temperature change, in common
with most other radiative drivers [Andrews et al., 2010]. Increases in scattering aerosols would therefore cause
a long-term suppression of rainfall and for this reason marked decadal variations in global precipitation have
been linked to decadal changes in aerosol amount [Wu et al., 2013]. The strongly regional or hemispheric
nature of anthropogenic aerosols also leads to feedbacks on atmospheric circulation and the associated
rainfall patterns. Such dynamical links between aerosol changes and rainfall are found on a range of spatial
and temporal scales. To illustrate the differences in scale, on the local regional end of the spectrum, Lau et al.
[2006] illustrate links between Himalayan dust and the timing of the Indian Monsoon onset. On a broader
scale, Chung and Seinfeld [2005] suggest that interactions between North Hemisphere black carbon aerosols
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Figure 13. Shortwave top of atmosphere radiative forcing, in W m�2 , exerted by (a and c) direct aerosol-radiation and
(b and d) aerosol-cloud albedo interactions between 1860 and 1980 (Figures 13a and 13b) and 1980 and 2000
(Figures 13c and 13d), as diagnosed from the Hadley Centre climate model HadGEM2.
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and radiation shifts the ITCZ
northward, while Teng et al. [2012]
propose that enhanced black carbon
absorption of solar radiation over Asia
has the potential to trigger increases
in surface temperature in North
America through large-scale circulation
changes. On a global scale, the strong
hemispheric gradient in aerosol
radiative forcing are linked to the
position of the Asian monsoon system
[Bollasina et al., 2011] and Sahel
precipitation [Ackerley et al., 2011;
Haywood et al., 2013]. Finally, the
same hemispheric gradient explains
why transient climate sensitivity is larger
for anthropogenic aerosol changes
than long-lived greenhouse gas
changes, because the land-dominated
North Hemisphere, where aerosols
are located, responds faster than
the ocean-dominated Southern
Hemisphere [Shindell, 2014].

The North Atlantic Ocean and South
Asia are two prominent regions where

aerosol radiative effects and forcing may impact regional and global climate via circulation changes. The
strongly heterogeneous nature of North Atlantic SST (NASST) variations relative to the neighboring South
Atlantic or Pacific Ocean has been linked to large decadal climate changes worldwide: African Sahel drought
in observations [Folland et al., 1986; Hoerling et al., 2006] and physical models [Zhang and Delworth, 2006;
Knight et al., 2006]; rainfall in the Amazon region [Knight et al., 2006; Good et al., 2008]; Atlantic hurricanes
[Goldenberg et al., 2001; Trenberth and Shea, 2006; Zhang and Delworth, 2006]; North American mean rainfall
changes [Enfield et al., 2001] and rainfall extremes [Curtis, 2008]; European summer climate [McCabe et al.,
2004; Sutton and Hodson, 2005; Sutton and Dong, 2012]; Indian monsoon rainfall [Goswami et al., 2006; Zhang
and Delworth, 2006; Lu et al., 2006]; Arctic and Antarctic temperatures [Chylek et al., 2010]; Hadley circulation
[Baines and Folland, 2007]; and ENSO [Dong et al., 2006] and ENSO-Asian monsoon relationships [Chen et al.,
2010]. Crucially, those studies can be interpreted in an aerosol radiative forcing context. Radiative effects of
aerosol-cloud interactions project strongly onto NASSTs [Williams et al., 2001; Rotstayn and Lohmann, 2002]
because the clean maritime environment makes boundary layer cloud particularly sensitive to changes in
aerosol amount. This can be seen in Figure 13b, where the North Atlantic is associatedwith strong aerosol-cloud
radiative forcing in spite of the continental origin of anthropogenic aerosol changes. Indeed, an analysis of
CMIP3models shows that aerosol-cloud interactions need to be represented in models in order to simulate the
observed trend in North and South Atlantic temperature contrast [Chang et al., 2011].

Past and future changes in aerosol emissions have, therefore, the potential to be one of the key decadal
drivers of regional climate change, acting through NASST changes. Booth et al. [2012] using Hadley Centre
Global Environmental Model version 2 Earth System configuration (HadGEM2-ES), a model with relatively
strong aerosol-cloud radiative forcing, suggest that past aerosols changes are capable of explaining much of
the temporal and spatial variability in NASSTs on multidecadal time scales, as illustrated in Figure 14.
Atlantic aerosols have similarly been linked to Sahel drought [Ackerley et al., 2011; Martin et al., 2014], the
Amazon dry season [Cox et al., 2008], Arctic temperature variability [Fyfe et al., 2013], a forced component to
the Atlantic Meridional Ocean Circulation [Cheng et al., 2013] and hurricanes and tropical storms [Villarini et al.,
2011; Dunstone et al., 2013]. Figure 15 [Dunstone et al., 2013] illustrates how a climate model, HadGEM2-ES,
is able to capture the observed interdecadal changes in North Atlantic storm frequency when driven by
aerosol emission changes. In both illustrations (Figures 14 and 15) the strong model-observed agreement

Figure 14. Comparison of basinwide (0–60 N) North Atlantic SSTs from
observations (Extended Reconstructed Sea Surface Temperature (ERSST),
black) and simulations of HadGEM2-ES (orange) for the historical (1860–2000)
period. The ensemble average from four simulations (each starting from
ocean states chosen to sample different phases in the internal ocean driver
Atlantic variability) is shown (solid orange line) with the spread (1 standard
deviation) indicated by the lighter orange region. On decadal time scales,
common covariation of all four ensemble members, which matches a
number of features of the observed variability, is evident—highlighting the
potential forced role in decadal changes (industrial and volcanic aerosols
in this case). Adapted from Booth et al. [2012]. Reprinted by permission
from Macmillan Publishers Ltd.
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highlights why there is current interest in capturing aerosol processes within near-term projection systems.
Furthermore, aerosol-driven SST responses are not limited to the Atlantic Ocean: for example, Xie et al.
[2013] used CMIP5 simulations by three global models to highlight robust responses to aerosol radiative
forcing in the Pacific Ocean.

The growing body of studies focusing on aerosol impacts on the South Asian Monsoon can also be seen
within the context of aerosol-driven hydrological mechanisms. Mineral dust [Lau and Kim, 2006; Gautam et al.,
2010] and mineral dust and black carbon [Lau and Kim, 2006] absorbing aerosols act via local processes in
Tibet and India, causing warming that leads to a dynamically driven increase in rainfall. In fully coupled
simulations, Meehl et al. [2008] suggest that it is the large-scale aerosol cooling over India that drives
reductions in precipitation. Other studies suggest that remote sulfate aerosol forcing drives dynamical
changes via changes in the Hadley circulation [Kim et al., 2007; Bollasina et al., 2011]. It is worth noting that
aerosol-climate interactions are a two-way coupled system, where precipitation and circulation changes
can equally feedback on local aerosol concentrations. There is currently no agreement on the net aerosol
impact, with some studies suggesting that an increase in aerosols weakens [Ramanathan et al., 2005; Meehl
et al., 2008; Liu, 2009; Bollasina et al., 2011; Shindell, 2012] or strengthens [Menon et al., 2002; Lau and Kim, 2006]
the Asian monsoon. However, this disagreement relates partly to differences in experimental design, where
atmosphere-ocean coupled experiments are compared to fixed SST experiments that do not capture
SST-driven dynamical changes. Differences in process complexity (comparing impact of single versus multiple
aerosol species) and differences in temporal (intraseasonal, seasonal, and interannual to decadal) and spatial
scales also play a role.

Although we have so far focused on anthropogenic aerosol changes as potential drivers of decadal climate
change, natural aerosols also play a role, including in the Atlantic andmonsoon regions discussed above. Natural
aerosols respond to either human (such as land use and wildfires) or climate drivers (moisture, temperature,
and wind speed).Wang et al. [2012] illustrate howmultidecadal changes in Sahel mineral dust correlate strongly
with Sahel rainfall which is itself linked to NASST changes. As Lau and Kim [2007] and Evan et al. [2009, 2011]
illustrate, these dust trends contribute to further cooling of Atlantic SSTs and as such are important feedback
mechanisms within the climate system, which are important to represent in decadal prediction systems. In
addition, emissions of sulfur dioxide by large volcanic eruptions can exert a strong negative radiative forcing that
last several years, as demonstrated by the eruption of Mount Pinatubo in 1991 [Dhomse et al., 2014]. Eruptions
that load the two hemispheres asymmetrically, such as the eruption of El Chichon in 1982, may have contributed
to Sahel droughts through changes in the Hadley circulation [Haywood et al., 2013].

5.2. Perspectives

We have highlighted above an increasing body of literature that links aerosols to historical climate changes
on decadal scales. There is a potential, therefore, for future emission changes to play an important role in
regional and global climate. Figure 15 illustrates how sulfate aerosol differences (driven by different CO2

mitigation pathways) imply two markedly different projected future changes in Atlantic tropical storms, in
the HadGEM2 model [Dunstone et al., 2013]. Under a scenario with aggressive mitigation of CO2 emissions

Figure 15. The change in (left) the North Atlantic Hurricane Database (HURDAT) tropical storm count and the equivalent
indices calculated from the model ((middle) historical and (right) future). The model changes are based on the average
of four ensemble members, with different initial ocean states. This emphasizes the common, forced changes in the model.
The future-projected changes in the tropical storm count are shown for two Representative Concentration Pathway (RCP)
scenarios: RCP2.6 and RCP4.5. Adapted from Dunstone et al. [2013]. Reprinted by permission fromMacmillan Publishers Ltd.
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(RCP2.6) this model projects a record increase in tropical storm frequency over the next decade. The higher
future sulfur emissions associated with a more modest CO2 mitigation pathway (RCP4.5), on the other hand,
point to a steady decline in tropical storms over the same period. However, the degree to which aerosols
will do so is linked to the magnitude of their radiative forcing, an aspect of climate models which is currently
uncertain. Lack of process understanding is a severe limitation to modeling aerosols on the global scale,
and the key elements for progress in modeling aerosol effects are better observations and improved
understanding. Those improvements are happening, and processes behind interactions between aerosols
and radiation and liquid clouds are getting better understood. Mechanisms of interactions between aerosols
and mixed-phase and ice clouds remain poorly known, however [Boucher et al., 2013]. In the meantime,
decadal projections need to be seen within the context of aerosol uncertainty. Aerosol processes complexity
has increased in many GCMs [Wang et al., 2011a, 2011b], although the level of complexity needed to
represent aerosol-cloud interactions with fidelity remains unclear. The diversity in aerosol distributions
simulated by the state-of-the-art models that participated in CMIP5 simulations is very large, in spite of
sharing the same aerosol emission data sets [Wilcox et al., 2013]. This diversity betrays the lack of knowledge
and observational constraints on aerosol processes and arises not only from differences in aerosol
representation [Storelvmo et al., 2009] but also from different simulations of atmospheric or cloud processes
[Haerter et al., 2009; Golaz et al., 2013]. CMIP5 models cover a broad range of process complexity. For example,
only two models represent nitrate aerosols. Nitrate aerosol formation competes with that of sulfate, so
decreases in sulfur dioxide emissions in Europe and North America have been partly offset by increased nitrate
aerosol arising from increased ammonia emissions. The omission of nitrate aerosols is therefore likely to lead
to an underestimate of aerosol radiative forcing in models [Bellouin et al., 2011]. Carbonaceous aerosols are
also treated differently across models, and the omission of complex ageing processes, in many models, is likely
to lead to suppressed cloud condensation nucleus and overestimated black carbon aerosol lifetimes [Spracklen
et al., 2011]. The challenge for decadal projection systems is that as process understanding develops so does
our understanding of the role of near-term aerosol changes on the climate system. Importantly, models with
stronger total aerosol forcing showmore marked climate impacts [Dunstone et al., 2013]. The Geophysical Fluid
Dynamics Laboratory coupled model 3.0 (GFDL-CM3), whose globally averaged aerosol radiative forcing is at
the higher end of the –0.7 to –1.5 W m�2 range given by Shindell et al. [2013], links sulfate aerosol increases to
large reductions in South Asian monsoon [Bollasina et al., 2011]. Similarly, anthropogenic aerosols in HadGEM2,
another model with a strong globally averaged radiative forcing, explain 66% of past multidecadal NASST
variability [Booth et al., 2012].

Given the potential for aerosol changes to drive substantial regional responses in models with stronger
aerosol radiative forcing, it will be important to identify metrics that can validate these processes, although
what these metrics will be remains an open question. Zhang et al. [2013], for example, highlight that the
deep ocean North Atlantic heat uptake, a property influenced by the aerosol forced changes, is underestimated
in HadGEM2. At the same time, Haywood et al. [2011] show that this same model is able to capture the
observed decline and recovery in surface shortwave over the nearby land stations, which is the key
mechanism via which aerosols drive variations in surface temperature. Open questions remain, therefore,
on how to reconcile these conflicting inferences, and this will be an area that the community will need to
make progress on before we can be more confident of the actual aerosols play in decadal changes. On the
other end of the spectrum, models with smaller radiative effects are likely to explain a smaller fraction and
hence capture weaker connections between future aerosol changes and climate response. It should be noted,
however, that even models whose aerosol radiative forcing is comparatively weak at the global scale may still
simulate strong local radiative forcing in key regions such as the North Atlantic [Szopa et al., 2013].

Observations of aerosol properties play an important role in model development and evaluation but can only
provide an imperfect snapshot of the large number of aerosol and cloud properties involved in aerosol-radiation
[Kahn, 2012] and aerosol-cloud interactions [Stevens and Feingold, 2009]. Simulated aerosol-radiation
interactions can be benchmarked against a range of observational estimates [Bellouin et al., 2008; Myhre
et al., 2013], although estimates of aerosol radiative forcing need to rely at least partly on global numerical
modeling, where unobserved preindustrial aerosol concentrations dominate uncertainties [Carslaw et al.,
2013]. There are also open questions about how to reconcile simulated aerosol absorption optical depth
with ground-based retrievals [Bond et al., 2013]. The degree to which cloud albedo and life cycle are influenced
by changes in aerosol number is similarly debated, because of inherent difficulties in distinguishing
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aerosol-cloud interactions from thermodynamically driven cloud properties, such as changes in liquid water
path [Loeb and Schuster, 2008]. Aircraft observations have provided strong evidence for aerosol-cloud
interactions, but scaling those temporally and spatially sparse relationships up to regional and global scales
remains challenging. Next-generation satellite retrieval algorithms are, however, promising, because they
should be able to retrieve cloud droplet number concentrations and cloud updraft velocities at the same time,
thus offering the prospect of distinguishing in observations aerosol influences on cloud properties from
meteorological variability [Rosenfeld et al., 2014].

The other aspect of potential predictability is tied to future emissions scenarios, because aerosols are short
lived and have the potential to respond rapidly to policy or socioeconomic changes. Near-term projections
are remarkably insensitive to existing scenario differences in greenhouse gas emissions, which are more
keenly felt as the century progresses [Hawkins and Sutton, 2009; Booth et al., 2013]. Decadal prediction
systems have traditionally made use of Special Report on Emissions Scenarios (SRES) or RCP scenarios for
near-term projections, and yet there are reasons why new scenarios need to be explored. First, aerosol
emission differences between current RCPs arise from different assumptions about carbon dioxide
mitigation, with a focus on the radiative forcing exerted in 2100. While the associated difference on sulfur
dioxide emissions can have an appreciable climate impact [Chalmers et al., 2012], future aerosol emissions
have the potential to respond to a wider range of drivers. The RCPs make common assumptions for all
scenarios that air quality measures are rapidly, aggressively, and universally adopted [van Vuuren et al.,
2011]. While sulfur dioxide emission reductions since the start of the 21st century have confirmed RCP
assumptions [Klimont et al., 2013], whether similar reduction rates will be sustained for another decade is
unknown and merits exploring in decadal scenarios. To give an example of the consequences of RCP
assumptions, the aerosol emission differences that drive the two projections of future Atlantic tropical storms
[Dunstone et al., 2013] (Figure 15) arise solely from differences in CO2 mitigation pathways, not air quality
measures. This can be illustrated by comparing the range of projected future SO2 emissions presented in
the current RCPs (Figure 16). Year 2000 baseline differences aside, the narrow distribution of future trends
compared to the spread in the wider RCP storylines and early SRES scenarios (Figure 16, left) arise from
the assumption of a common air quality approach, across the RCPs. In doing so they underestimate the
spread of decadal forcing that would arise if such measures are delayed. Alternative emission storylines,
such as the UNEP reference scenario [Shindell et al., 2012] make more conservative assumptions, based on
only those emission cuts already subject to international agreements, and obtain a quite different picture for
near-term aerosol concentrations. Differences in 2020 and 2030 mean estimates of projected warming, and
lower bounds, are evident between the UNEP scenario and the RCP scenarios (Figure 16, right). The point that
air quality mitigation assumptions can represent a first-order impact on these time scales, even for global
average changes, is emphasized by Kloster et al. [2010] who show that by 2030, globally averaged temperature
change can double (from 1° to over 2°) if amaximum feasible aerosol abatement scenario was followed. Decadal

Figure 16. (left) Emissions of SO2 for the future RCP scenarios (colors) with the 90% spread from the larger family of scenarios
(22 members, which the RCPs were drawn from) in gray. SRES SO2 emissions, the previous generation of socioeconomic
pathways, are indicated by the dotted lines. From van Vuuren [2011]. (right) Globally averaged surface temperature
change (K) in (left) 2016–2025 and (right) 2026–2035 relative to 1986–2005, according to multimodel United Nations
Environment Programme (UNEP) and CMIP5 simulations with various emission scenarios of long- and short-lived climate
forcers. Whiskers show the full model range. Crosses indicate the multimodel average. Adapted from Figure 11.24a of
Kirtman et al. [2013].
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projections based solely on existing RCP scenarios are therefore likely to be biased warm as RCPs overestimate
decreases in aerosol emission. Fortunately, those limitations of the RCP framework have been identified and
the sixth phase of the CMIP activity introduces the concept of Shared Socio-economic Pathways (SSPs) [O’Neill
et al., 2014]. Combined with RCPs, SSPs form a matrix which explores both possible future radiative forcing
trajectories and socioeconomic storylines [van Vuuren et al., 2014].

Second, given the potential of aerosols to drive regional climate change and their ability to respond rapidly
to socioeconomic or policy drivers, aerosols are on the policy agenda. Decadal emission scenarios that span
the range of possible aerosol changes over the next two decades need to be developed. For example,
the use of black carbon aerosols to mitigate short-term global warming was recently discussed at G8 and
Council of the Arctic meetings and is mooted as a potentially more tractable way to reduce near-term
warming than greenhouse gas mitigation. According to United Nations Environment Programme and World
Meteorological Organization [2011], decreases in black carbon emissions have the potential to mitigate
0.5° of warming up to 2050, with a large fraction of this realized within 10 to 30 years [Shindell et al., 2012].
Such amitigation approachwould significantly change the pattern and nature of emissions of aerosols and their
precursors, raising questions about local impacts, especially on monsoon systems, and coemitted scattering
aerosols [Bond et al., 2013]. Another example is the tension between economic expansion and air quality in East
Asia. Chinese sulfur dioxide emissions, originating mainly from coal combustion, increased by up to 7% per year
for the first part of the last decade [Lu et al., 2010]. While the introduction of chimney-scrubbing technologies
since 2006 has lessened the rate of increase, further decreases could be achieved rapidly in response to
worsening air quality in the main Chinese cities. Such decisions would again have important implications for
regional aerosol concentrations, with associated impacts on the climate, both locally and remotely. Decadal
projection systems are uniquely placed for exploring relationships between potential aerosol mitigation
pathways and their associated climate impacts. Such an approach, taken by different modeling groups,
would provide insight into the implication of any uncertainties inherent with our current modeling
understanding. Testing a range of near-term aerosol emission scenarios would lessen the likelihood of
systematically overestimating or underestimating future radiative forcing and in turn would inform
socioeconomic and policy decisions in an analogous way that current RCPs inform longer-term climate
mitigation decisions. To that end, CMIP6 includes simulations dedicated to short-lived climate forcers,
which include aerosols and their gaseous precursors, within its ongoing Aerosols Chemistry Model
Intercomparison Project. (AerChemMIP)

6. Conclusions

Recent research on decadal-scale predictability has mostly focused on the impact of ocean initialization [Meehl
et al., 2009b, 2013; Branstator et al., 2012]. This stems from the ocean’s large heat capacity that results in a
slowmanifold of the climate system and decadal predictability, arising from the initial state. Other constituents
of the climate system have received relatively less attention because their contribution to the slow manifold
is less obvious and the initialization as well as the representation of these components in state-of-the-art
climate models are still very challenging. This is further exacerbated by a lack of adequate observations.

Here we present an overview of the most recent progress in understanding the potential role of sea ice, land
surface, stratosphere, and aerosols in decadal-scale climate predictability. These (scarcely observed/poorly
modeled) components act over different time scales and contribute to the overall predictability of the
climate system following very different routes.

Strengthening the initial-value predictability through an improved initialization appears to be a viable option
for the land surface (through soil moisture or vegetation initialization), sea ice, and, marginally, the stratosphere
(possibly through the initialization of the QBO phase). On the other hand, realistically capturing future aerosol
emission and land use storylines acts on the boundary-value predictability, both aerosols and land cover
representing a key near-term forcing agent with the potential to drive both global and regional changes over
the decadal time frame.

In addition to the obvious benefits stemming from the refinement of the initial- and boundary-value
predictability, the overall predictive ability of ESMs is expected to depend on accurate representation/inclusion
of climate feedback processes associated with specific components (and related interactions with other
subsystems), regardless of their initialization and/or impact exerted as a forcing agent. Being associated with
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process representation, this additional source of predictive skill—next referred to as systemic buffering—is
active across various components of the Earth system and can potentially extend their intrinsic memory
beyond the seasonal time scale, as illustrated in the following examples.

As documented in section 2.1.1, decadal variations in North Atlantic Ocean circulation affect the transport of
sea ice through the Fram Strait, and this can subsequently modify deep water formation in the Labrador
basin, ultimately influencing the meridional overturning circulation strength and heat transport. A more
accurate model representation of this feedback loop, based on better quality observations and improved
understanding of the mechanisms underlying the complex ocean-sea ice interaction, will therefore extend
and amplify the intrinsic predictability associated with ocean initialization. Similarly, the inclusion of a
well-resolved stratosphere in a dynamical model may represent, via the coupling with the troposphere and,
possibly, the underlying ocean and sea ice, an additional source of predictability, dynamically bridging
subsystems typically weakly (or not at all) connected in the previous generations of coupled AOGCMs. As
reported in section 4.3, several studies suggest that the stratosphere can play an important role in
modulating the low-frequency ocean-induced variability, such as the SST-forced NAO/AO response. The
mechanism by which prolonged droughts over Sahel, through anomalous dust loadings, may affect the
atmospheric radiation budget for longer than 1 year (discussed in section 3.3) is another example of
systemic buffering, associated with land surface processes. An ocean-driven example (not discussed in this
review) is provided by the analysis of Stenchikov et al. [2009]. The authors of this work show that the
transient climate perturbation associated with the emission of volcanic sulfate aerosols during particularly
vigorous eruptions is potentially able to persist well beyond the typical 2–3 years lower stratosphere
residence time scale, thanks to the buffering effect of the oceans, responding to the volcanic-induced
radiative cooling over the multidecadal time range. In all of these examples, the involved components of
the climate system act as a “signal carrier,” transferring and propagating information associated with the
seeds of predictability embedded in the initial state and/or in the boundary forcings, through the full
climatic phase space.

Potential predictability experiments designed for specific climate components provide a powerful diagnostic
tool to sort out which variables, areas, seasons, and time scales are predictable and to focus further research.
Koenigk et al. [2012] for instance indicate that decadal averages of Arctic sea ice thickness and area are
well predicted along the ice edges in the North Atlantic sector. Whereas Weiss et al. [2012] suggest that the
main gain in decadal predictions appear to be in regions exposed to shifts in the ITCZ and monsoon cycles,
consistently with the transitional dry-to-wet climate zones that expose a strong land-atmosphere coupling.
The use of the potential predictability experimental framework might be usefully extended to other
processes, not yet explored through this approach. For instance, several studies indicate that the dynamical
coupling of the stratosphere with snow and sea ice cover in the Arctic features potential decadal predictability
(section 4.3). Similarly, the Asian monsoon system and Sahel rainfall appear to be sensitive to aerosol
concentrations and might have potential decadal predictability (section 5.1).

Obvious and crucial requirements of these new components are internal consistency and conservation of
mass and energy. Although this may sound trivial, it is not easily accomplished. These components are often
developed off-line and use different variables. Future developments should therefore also focus on the
coherent and consistent incorporation of these components into climate models. Pioneering decadal
simulations with a dynamic vegetation model revealed the importance of consistency in hydroclimatic
regimes between the vegetation and climate models [Weiss et al., 2014]. Coherence and consistency are
also required for the initialization. Decadal sea ice predictions have shown that a balanced initial state
between the different components is required to avoid an initial shock that ruins all the benefits that might
come from including these new components (section 2.3).

The inclusion of new components introduces additional degrees of freedom that result in additional skill
only if the fundamental processes, from large-scale dynamics to microphysics, are accurately simulated. In
addition to model development, it is equally important to recognize that a thorough exploitation of the
predictive ability of Earth system models is only possible if supported by adequate observational networks
and computational resources. Concerning observations, for many climate constituents progress is hampered
by the scarcity of data. For instance, sea ice and soil moisture cannot be adequately initialized due to the
lack of reliable data. Similarly, insufficient data are available to validate and calibrate stratospheric chemistry
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and the impact of aerosols on cloud formation. In addition, some areas that might exhibit potential predictability,
such as Antarctica and the surrounding ocean, experience harsh weather conditions year-round, resulting in
scarcity of data. The inherently low signal-to-noise ratio characterizing the predictable fraction of the full signal
requires the use of large-sized ensembles. This in turn calls for suitable computational resources, which are
currently still out of reach for most of the modeling groups. Future investments in computational and
observational infrastructures will be therefore strategic to improve the quality and trustworthiness of decadal
climate forecasts.
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