Search from over 60,000 research works

Advanced Search

Acute benefits of the microbial-derived isoflavone metabolite equol on arterial stiffness in men prospectively recruited according to equol producer phenotype: a double-blind randomized controlled trial

[thumbnail of Open Access]
Preview
Available under license: Creative Commons Attribution
[thumbnail of Hazim-2016-Acute benefits of the microbial-der.pdf]
Restricted to Repository staff only
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hazim, S., Curtis, P. J., Schar, M. Y., Ostertag, L. M., Kay, C. D., Minihane, A.-M. and Cassidy, A. (2016) Acute benefits of the microbial-derived isoflavone metabolite equol on arterial stiffness in men prospectively recruited according to equol producer phenotype: a double-blind randomized controlled trial. American Journal of Clinical Nutrition, 103 (3). pp. 694-702. ISSN 0002-9165 doi: 10.3945/ajcn.115.125690

Abstract/Summary

There is much speculation with regard to the potential cardioprotective benefits of equol, a microbial-derived metabolite of the isoflavone daidzein, which is produced in the large intestine after soy intake in 30% of Western populations. Although cross-sectional and retrospective data support favorable associations between the equol producer (EP) phenotype and cardiometabolic health, few studies have prospectively recruited EPs to confirm this association. The aim was to determine whether the acute vascular benefits of isoflavones differ according to EP phenotype and subsequently investigate the effect of providing commercially produced S-(–)equol to non-EPs. We prospectively recruited male EPs and non-EPs (n = 14/ group) at moderate cardiovascular risk into a double-blind, placebocontrolled crossover study to examine the acute effects of soy isoflavones (80-mg aglycone equivalents) on arterial stiffness [carotid-femoral pulse-wave velocity (cfPWV)], blood pressure, endothelial function (measured by using the EndoPAT 2000; Itamar Medical), and nitric oxide at baseline (0 h) and 6 and 24 h after intake. In a separate assessment, non-EPs consumed 40 mg S-(–)equol with identical vascular measurements performed 2 h after intake. After soy intake, cfPWV significantly improved in EPs at 24 h (cfPWV change from 0 h: isoflavone, 20.2 6 0.2 m/s; placebo, 0.6 6 0.2 m/s; P , 0.01), which was significantly associated with plasma equol concentrations (R = 20.36, P = 0.01). No vascular effects were observed in EPs at 6 h or in non-EPs at any time point. Similarly, no benefit of commercially produced S-(–)equol was observed in non-EPs despite mean plasma equol concentrations reaching 3.2 mmol/L. Acute soy intake improved cfPWV in EPs, equating to an 11–12% reduced risk of cardiovascular disease if sustained. However, a single dose of commercially produced equol had no cardiovascular benefits in non-EPs. These data suggest that the EP phenotype is critical in unlocking the vascular benefits of equol in men, and long-term trials should focus on confirming the implications of EP phenotype on cardiovascular health. This trial was registered at clinicaltrials.gov as NCT01530893. Am J Clin Nutr doi: 10.3945/ajcn.115.125690.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/54467
Item Type Article
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Human Nutrition Research Group
Publisher American Society for Nutrition
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar