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Abstract

The Bloom filter is a space efficient randomized data structure for repre-

senting a set and supporting membership queries. Bloom filters intrinsically

allow false positives. However, the space savings they offer outweigh the dis-

advantage if the false positive rates are kept sufficiently low. Inspired by the

recent application of the Bloom filter in a novel multicast forwarding fabric,

this paper proposes a variant of the Bloom filter, the optihash. The optihash

introduces an optimization for the false positive rate at the stage of Bloom

filter formation using the same amount of space at the cost of slightly more

processing than the classic Bloom filter. Often Bloom filters are used in sit-

uations where a fixed amount of space is a primary constraint. We present

the optihash as a good alternative to Bloom filters since the amount of space

is the same and the improvements in false positives can justify the additional

processing. Specifically, we show via simulations and numerical analysis that

using the optihash the false positives occurrences can be reduced and con-

trolled at a cost of small additional processing. The simulations are carried

out for in-packet forwarding. In this framework, the Bloom filter is used as a

compact link/route identifier and it is placed in the packet header to encode
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the route. At each node, the Bloom filter is queried for membership in order

to make forwarding decisions. A false positive in the forwarding decision is

translated into packets forwarded along an unintended outgoing link. By us-

ing the optihash, false positives can be reduced. The optimization processing

is carried out in an entity termed the Topology Manger which is part of the

control plane of the multicast forwarding fabric. This processing is only car-

ried out on a per-session basis, not for every packet. The aim of this paper

is to present the optihash and evaluate its false positive performances via

simulations in order to measure the influence of different parameters on the

false positive rate. The false positive rate for the optihash is then compared

with the false positive probability of the classic Bloom filter.

Keywords: Bloom filter, random data structure, packet forwarding,

information centric networks, multicast

1. Introduction

Bloom filters are very good data structures to represent concisely a set in

order to support membership queries [1]. They are randomized data struc-

tures since they require the employment of hash functions for their construc-

tion (we will describe them in details in Sec. 2). Consequently, they have

some probability of giving false positives when queried; that is, an element

may appear to belong to the set when in fact it is not. Because of their

succinct size, they have become very popular for network application. As

Broder and Mitzenmacher have pointed out in [2], ”there are many places in

the network where one might like to keep or send a list, but the complete list

would require too much space”. In fact, Bloom filters offer a representation
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which significantly reduces space at a cost of false positives. For many appli-

cations false positives can be tolerated or can be made low enough so that the

space saving offered by the Bloom filter compensates for the probability of

errors. Since Bloom filters have became very popular, having a broad range

of applications, many variants of the Bloom filter have been proposed to op-

timize the data structure with regard to the false positive issue. A thorough

survey on Bloom filter variants can be found in [3].

One of the most recent application of Bloom filter in networking is for in-

packet forwarding [4], [5]. Contemporary packet forwarding techniques gen-

erally fall into two categories: either destination based forwarding utilizing

switch or routing tables as in Ethernet or IP; or label swapping techniques as

used by MPLS or ATM. However, with recent interests in alternative network

architectures, such as content centric networking [6] or information centric

networking [7], it is of interest to consider alternative forwarding strategies

that might be more suitable for these new architectures or bring more general

improvements. One such strategy is to use a Bloom filter [1] as a fixed header

identifier that encodes a complete network path in an space efficient manner.

While this could be used to replace a strategy such as MPLS labeling [8], it

could also be used to implement a forwarding layer replacing IP in a clean-

slate network architecture. False positives are a problem that is inherent to

Bloom filters. In the case of network path encoding, a false positive means

that traffic may pass over links that were not intended to be part of the path.

Thus, false positives may cause bandwidth wastage or may generate a loop

[9]. Although this may be a very rare event, it can cause major problems

in the network. Hence, there is an interest in minimizing the false positive
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occurrences or being able to control them for this application while keeping

the length as small as possible, since the Bloom filter will occupy part of

the packet header. One of the basic design variants of the Bloom filter is

its length, a longer filter has generally lower false positives. Consequently,

in a given application the length can be adjusted to suit a particular false

positive rate. However, for this application the length of the Bloom filter is

a critical parameter that can not easily increased.

In this paper, we present the optihash, a new variant of the Bloom filter.

When compared to the Bloom filter, we show that it offers an optimization

mechanism which reduces the false positives occurrences or alternatively re-

duces the data structure length for a given false positive rate. If false posi-

tive occurrences cannot be eliminated, the mechanism offers the possibility

to choose which element would result in a false positive as would best suit a

particular network application. The performance of the optihash is tested for

the new forwarding mechanism which has been proposed within the frame-

work of the project PSIRP (Publish/Subscribe Internet Routing Paradigm)1.

This was a substantial effort, which aimed to re-design the whole Internet

architecture above the physical layer. For this type of application, it may

be useful to generally control the false positive occurrences, not necessarily

to simply minimize them. The optihash offers this flexibility. However, the

implementation of the optihash for in-packet forwarding is out of the scope

of this paper.

The rest of the paper is organized as follows. In Sec. 2 we revisit Bloom

1http://www.psirp.org/ accessed in July 2013.

4



filters and we present their application for in-packet forwarding introduced

under the aegis of the PSIRP project. In Sec. 3 we describe the optihash, the

proposed new variant of the Bloom filter. Sec. 4 introduces the optihash for

in-packet forwarding. In Sec. 5 the performances of the optihash are eval-

uated for in-packet forwarding in a regular network for different parameters

and the false positive rates are experimentally estimated. Sec. 6 concludes

the paper.

2. Bloom filters for the multicast forwarding fabric

Since the main construction suggested in this paper is inspired by the

concept of the Bloom filter, this section reviews the Bloom filter concept and

the multicast forwarding scheme based on the Bloom filter. Further details

on Bloom filters can be found in the literature, for example in [2].

Bloom filters [1] are space-efficient probabilistic data structures for repre-

senting sets and supporting set-membership queries. They were introduced

by Bloom [1] in 1970 to represent words in a dictionary. For some time,

they have been mainly used in database applications [10], [11]. In the late

90s, Bloom filters started attracting the interest of the networking-research

community, especially because of their simplicity and wide applicability in

aggregating data sets providing low information processing and networking

costs. Surveys on network applications of Bloom filters [2], [3] show em-

ployments of Bloom filters for overlay networks, data centric routing, traffic

monitoring, caching, security, etc.

Recently, Bloom filters had an important role in the design of the for-

warding fabric [4] of the information centric network introduced under the

5



aegis of the PSIRP/PURSUIT projects2 [12]. In this scheme, Bloom filters

encode links and routes between nodes in a source routing fashion. In this

section, the Bloom filter is introduced and its use as the forwarding fabric in

PSIRP is described.

2.1. Standard Bloom filters

Consider a subset A = {a1, a2, ..., an} of n elements of a fixed set (called

a universe) U of N elements. If it is desired to represent A, a näıve approach

would be to represent each element as a fixed length binary identifier, a

vector v, of length m and simply concatenate the representation into a binary

identifier of length |A|m. Determining if an element a ∈ A is in the identifier

can be achieved by a linear search through the concatenated elements to see

if they match. An example of this näıve approach in packet forwarding is IP

strict source routing, where the IP addresses of the gateways are concatenated

in an option header. For a large set this is relatively inefficient but distinct

and complete. A Bloom filter is an alternative representation of the set A

which encodes the elements into a single fixed-length identifier that is of

length m and is thus more space efficient and, as shown below, allows faster

testing of membership of an element in the set.

The Bloom filter representation encodes each element as a fixed length

binary identifier with at most k bits set to one and the rest set to zero (where

k is a parameter that is optimized for a particular application scenario).

The bits set to one are chosen using k fixed independent uniform3 hash

2http://www.psirp.org/ and http://www.fp7-pursuit.eu/PursuitWeb/ accessed in July

2013.
3Uniform means that the hashes are uniformly selected by the function within the set
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functions, all with the same range (1, . . . ,m). Let the set of hash functions

be H = {h1, h2, . . . , hk}. To represent each separate element a of the set A

in the Bloom filter, the bits of v at the positions h1(a), h2(a),. . . , hk(a) are

set to one (thus, a particular bit of a Bloom filter can be set to one by several

elements of the set). Those bits of v which are not set to one by any of the

elements a ∈ A remain equal to zero.

In order to perform a query to check if an element a belongs to the

set A encoded by the Bloom filter v, all the k bits at the positions h1(a),

h2(a),. . . , hk(a) in v are examined. Obviously, if at least one of the bits is zero

then certainly the element a does not belong to A. Now let us consider the

situation when all the bits at the positions h1(a), h2(a),. . . , hk(a) are equal

to one. In this case, it is not unreasonable to conclude that the element a

belongs to A. However, it is possible that a does not belong to A despite all

the relevant bits in the Bloom filter being one giving rise to a false positive

occurrence. Summing up, we can say that when testing for membership of

an element, a Bloom filter is free from false negatives, but may produce false

positives. The probability of false positives is defined in the next section.

Mitzenmacher presents an analysis of the Bloom filter [13] and shows there

are three fundamental performance metrics for Bloom Filters that can be

traded off: computation time (corresponding to the number of hash functions

k), size (corresponding to the array size m), and the probability of error

(corresponding to the false positive rate f).

{1, . . . ,m}
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2.2. False positive rate

The false positive rate is defined, in the context of a set A and the cor-

responding Bloom filter, as the number of elements of U giving rise to false

positives divided by the number of elements of U not belonging to A.

Simple arguments give an approximate form of the probability of a false

positive for an m-bit Bloom filter with k hash functions which encodes an

n-element set as follows:

fp(m,n, k) =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−

kn
m

)k
. (1)

This function has a minimum for kmin and its value is fp,min:

kmin =
m

n
ln 2 fp,min =

(
1

2

)kmin

. (2)

The derivation of the expression (1) of the false positive probability appeared

first in Mullin [14]. Recently, it has been shown that (1) represents a strict

lower bound on the real false positive probability for any k ≥ 2 [15], [16] and

the error can be large, especially for relatively small Bloom filters. A new

expression has been proposed by Bose [15] and later by Christensen [16], but

it is not in closed form and it is stable only for small Bloom filters.

The false positive probability in (1) is an a priori estimation of the false

positive rate. Once the Bloom filter is formed, an a posteriori estimation of

the false positive rate can be obtained as the proportion of ones set in the

Bloom filter [16]:

fpa = ρk, (3)

where ρ = s
m

is the so-called filling factor of the Bloom filter, with s being

the number of bits set to one.
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The experimental estimation of the false positive rate is defined as

fpr =
p

q
, (4)

where q is the number of queries and p is the number of false positives

observed in these queries.

2.3. Bloom filters for a novel forwarding scheme

Within the framework of the PSIRP project4 (see for example [12]), a

new forwarding scheme was introduced. The project aimed to re-invent the

way of doing networking, re-defining the whole Internet architecture as far

as the physical layer. The architecture is built around the concept of infor-

mation and dissemination rather than point-to-point communication drives

the networking. The primitives publish and subscribe rather than send and

receive are considered as the primitives of the communication. Therefore,

in this architecture stable end-to-end addresses are not needed. Information

is the center of the architecture so that information needs to be labeled.

End-to-end addresses are replaced by probabilistically unique identifiers of

information. The way to reach nodes in the network is an information item

as well which, of course, needs an identifier. These identifiers are called for-

warding identifiers and they are used to forward packets in the network5. In

4http://www.psirp.org/ accessed in July 2013.
5In the architecture nodes, links and routes have different identifiers. The fact that IP

addresses act as a routing locators (where a node is attached to a network) and identity

label (who is the node) at the same time, seems to be the root of many Internet’s limitations

[17]. Unlike IP networks, in the architecture proposed by PSIRP the identity label and

the routing locators are distinct.
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particular, Bloom filters are used as an encoding to identify routes and links

between nodes and they are the base of the forwarding layer of the PSIRP

and later PURSUIT6 architecture (see for example [7]).

Unlike all the network applications of Bloom filters where Bloom filters

are stored at the network nodes [2], [4], this approach suggests including a

Bloom filter into the packet header, which gives rise to a source-routing-like

scheme. However, the choice of the Bloom filter for the packet forwarding

scheme proposed in PSIRP offers an approach that combines flexibly elements

of source routing (as default case) and stateful routing [4].

In order to be able to construct a forwarding identifier which encodes

the route, instead of labeling the nodes for forwarding purposes, each point-

to-point link is identified with a probabilistically unique identifier, called a

Link-Id. In the nomenclature of the Bloom filter introduced earlier, each

Link-Id is itself a Bloom filter. To each point-to-point link two Link-Ids,

one for each direction, are assigned so that we have a directed graph. In

the PSIRP/PURSUIT architecture the calculation of the forwarding Id is

performed by a centralized entity called topology manager. As multicast de-

livery is possible we may term this route a delivery tree as a general term

encompassing unicast and multicast. The topology manager is responsible

for updating the sending nodes with a new forwarding Id if the topology

changes. The PURSUIT project has demonstrated that this is a scalable

solution for networks where the topology changes infrequently such as wired

networks and proposes other solutions for handling mobility. For the remain-

6http://www.fp7-pursuit.eu/PursuitWeb/ accessed in July 2013.

10



der of the paper we will assume that this architecture is used and that we

are operating in a reasonably static network with changes handled by the

topology manager.

The Link-Ids are combined to form a Bloom filter encoding the route

as a forwarding Id, FId, that is constructed by OR-ing all the Link-Ids

L0,L1,L2, . . . of all the link along the route:

FId = L0 ∨ L1 ∨ L2 ∨ · · · . (5)

The forwarding table at each node is very small and it contains, in the de-

fault case of source routing approach, only the Link-Id of the links connected

to that node as shown in Fig. 1.

Figure 1: Example of a forwarding table in the PSIRP architecture.

As to querying the Bloom filter, once the packet reaches a node, the FId

is and -ed with the Link-Ids of all the outgoing links of the node7. If the

7except the one from which the packet has just arrived, since forwarding the packet

backwards does not make sense.
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result of the and operation is equal to the Link-Id, as follows,

FId ∧ Li ≡ Li, (6)

then the packet is forwarded along that link. These operations can be easily

parallelized since there are no memory or shared resource requirements and

can be very easily implemented in hardware [4] and also in an optical node8.

Of course, the match is possible along more than one outgoing link per

node. In this way, multicast turns out to be the natural communication

paradigm, while unicast becomes just a special case of multicast.

Due to Bloom filters’ probabilistic nature, a query may result in a false

positive, which translates, in our forwarding scheme, into extra traffic in the

network. In other words, a false positive occurrence means that a packet will

be forwarded along a link which is not part of the intended route.

False positives may not be significantly harmful for the network. First,

the extra traffic in the network will be proportional to the number of packets

using a particular Bloom filter. Given two routes with the same number

of false positive occurrences, the route which is used for less intense traffic

will be less harmful for the network in terms of bandwidth wastage. Second,

packets delivered along wrong links could be opportunistically cached for

future requests of nearby receivers. Third, primitives like publish/subscribe

tolerate false positives, since non-requested content items have a limited life

in the network and do not create forwarding states. Moreover, end-nodes

8In fact, it is possible to implement logical ands with optical components, allowing fast

switching operations in full optical network without the need of the electrical node for

making forwarding decisions [18].
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are expected to effectively process only those pieces of information for which

they have explicitly expressed their interest. Finally, packets forwarded due

to false positives are highly unlikely to travel far in the wrong direction,

due to the large label space and the exponentially decreasing probability of

chained false positive forwarding decisions [19].

However, a control over the false positive occurrences is desirable, espe-

cially in case of dense multicast trees. Finding mechanisms to reduce false

positives can eventually allow the use of a smaller packet header while keeping

the false positive probability constant.

It is known that Bloom filters are not information-theoretically optimal

[20], [2], [21], which means that a data structure exists which gives the same

false positive rate but using less space. However, the Bloom filter is intrin-

sically simple. Since the simplicity of the Bloom filter approach is key for

implementation, in this paper we aim to propose a method to improve the

Bloom filter’s performance regarding false positives, while trying to maintain

its other desirable properties.

3. The optihash

The idea of the optihash is inspired by the recent application of Bloom

filters in the novel multicast forwarding fabric of PSIRP (see Sec. 2.3) and

it is built with the aim of providing a mechanism to control false positives

while maintaining the properties of the Bloom filter. False positives for the

forwarding application can generate additional traffic which is undesirable,

hence there is a strong motivation to reduce, or control, the false positive

occurrences in the network. For the forwarding application of the optihash,
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as with the Bloom filter, we have a set of edges {e1, e2, . . .} which describes

a path, or tree as described in Section 2. We require this set to be encoded

in the optihash such that by using the optihash in the packet header, a

forwarder can use the optihash to determine if a packet should be forwarded

over an outgoing link e. For more detail on how the optihash is applied in

the network forwarding application see Section 4, in this section we maintain

a general approach as the optihash can have wider applications.

In order to be able to control false positives, one of the novel aspect of

the optihash scheme is the introduction of a family of functions fαβ which

allows an optimization process at the stage of its formation which involves a

little more processing than the simple Bloom filter.

The optihash scheme can be employed for other applications since the

mechanism is general enough not to be limited to the specific application. In

this section we introduce the concept of the optihash independently on the

particular application.

The optihash data structure we propose is a bit array w which consists of

three parts: a bit array v and two integer parameters α and β. We can notice

that in the implementation we propose (see the next section for details) two

parameters are needed but the number of parameters can be different. Later

we will show, in Section 4 and 5, how these values are used to construct

a forwarding identifier which will be used in the packet header as described

earlier for the Bloom filter in Section 2. We assume that w has a fixed length

mw, split into mv bits for storing v and two shorter fragments consisting of

mα andmβ bits
9, respectively, for storing the values of two integer parameters

9Generally we may have a different number of fragments dependently on the particular
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α and β:

mw = mv +mα +mβ. (7)

The values of α and β are, respectively, in the interval (1, ..2mα) and (1, ..2mβ).

In order to encode elements in the optihash, we initially propose to employ

only one hash function h which produces an integer in the interval (1, ..mv);

thus, this part of our construction is identical to using a Bloom filter with

k = 1 and m = mv. The choice of using only one hash function is derived

by the fact that the gradient of the false positive probability for the Bloom

filter (1) for k = 1 is almost constant, while for k > 1 the gradient rapidly

increases with the number of inserted elements, as shown in Fig. 2. Later we

will show that the optimization with the functions fαβ does not change very

much the gradient, but lowers the overall level. Thus, using k = 1 means that

we are aiming to give significant improvement for a high number of inserted

elements, which is the region that needs most attention.

To encode a set {e1, e2, . . .} of elements in a optihash, the bits in v at the

positions h(e1), h(e2), . . . are set to one:

v[h(ei)] = 1. (8)

In order to query for an element, that is, to check if an element e is

in the set encoded by the optihash, the hash h(e) is calculated and then if

the position h(e) contains one in the optihash v then we conclude that the

element e, encoded in ve, belongs to the set encoded by v. Sometimes it

might happen that the element e was not encoded originally in the optihash;

implementation.
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Figure 2: The false positive probability for the Bloom filter with m = 512, as a function of

the number of inserted elements for different value of k. The curve for k = 1 has a almost

a constant gradient.

then a false positive occurs. Otherwise, if the position h(e) is filled with a 0,

it is certain that the element e does not belong to the set.

The logical operations and and comparison can be used for testing if the

element encoded by the Boolean array ve belongs to the set:

v ∧ ve =

 = ve if e ∈ E

̸= ve if e ̸∈ E
(9)

where ve is a bit array of length mv in which only the bit at the position

h(e) is set to one.

If E is a set of elements encoded in the optihash, the hash function h

maps the elements in E to a generally smaller set R. The inverse h−1 maps

the set of hashes R to a set of elements which is bigger than E. Namely,

h−1(R) is the full set of elements that have hashes in R whereas E is only a

subset, E ⊆ h−1(R). If Q is the set of elements which are queried, the set

of elements F which give false positives can be defined as the intersection

between the set of elements h−1(R) which have hashes in R and the set of
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Figure 3: Given the set of hashes in R = h(E) of the set of elements E in the optihash,

the set of elements in h−1(R) which have hashes in R is generally a superset of E, namely

E ⊆ h−1(R). Given Q, the set of elements to be queried, the set of the elements which

produce false positives F is the intersection between Q and h−1(R) excluding the elements

of h−1(R) which are already in the optihash.

elements Q which are queried minus the set of elements E used to build the

set of hashes R:

F =
(
h−1(R ) ∩Q

)
\ E. (10)

The sets are shown in Fig. 3. We define the set D as the set of elements to

be queried which may generate false positives D = Q \ E.

So far, our exposition is similar to the Bloom filter construction with

k = 1. However, our concept of the optihash includes an optimization specific

to the particular set E of elements to be encoded and to the set D of elements

to be queried.

Given the set E of elements to encode in the optihash and the set D of

elements to be queried, the number of false positive occurrences is the set

h−1(R) of elements which have hashes in R which are also in D (see Fig. 3).

The optihash we propose involves calculating initially the set F of elements

17



which give false positive. If F is empty, there are no false positives in this

instance, then the optihash is constructed with the hashes in R and with

α = 0, β = 0. If F is not empty, there are false positives in this instance,

then we propose to use a family of functions

fαβ[λ](µ) (11)

where µ is the hash of elements in E and D, λ is a hash that can be chosen

according to the application and α and β are two parameters. We can notice

that in the implementation we propose (see the next section for details)

two parameters are needed but the number of parameters can be different.

The output of the function f is an integer in the interval (1, ...,mv). For

each value of α and β, the function f generates 2mα2mβ new sets of hashes

for the elements in E and in D. In fact, the output of the function f is a

transformed hash. In total we will obtain 2mα2mβ new sets of hashes for E and

D. Then 2mα2mβ sets F are constructed evaluating the elements generating

false positives. Among all the new sets F , the sets with the minimum number

of elements is selected and the correspondent value of α and β is recorded.

The allocations α β that corresponds to a minimum number of false pos-

itives are considered and one pair is chosen. The pair is then used to re-

calculate the hashes of the elements to encode in E and of the elements to

compare in D using the function f . Note that these hashes calculated with

the selected values of α = a and β = b are specific to the particular sets E

and D. Since it is necessary to know the value of a and b for membership

queries, the optihash encoding finally the set E is formed with:

• v, the hash array built with the selected value of the pair α = a and

β = b,
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• a,

• b.

Since we are searching for the minimum, this scheme provides an opti-

mization process which leads to a reduction of the false positive rate. How-

ever, it also provides the opportunity to choose which elements should offer

false positives and also how many. The form of the family of functions fαβ is

crucial for the optimization since it has to provide a big variety of different

outputs. Actually, the properties of the functions fαβ do not differ much

from the properties of hash functions. Hash functions have the properties of

being deterministic, having the output which is uniformly distributed and of

mapping a larger set to a smaller one. Regarding fαβ, we require determin-

ism since we want to apply fαβ more than once, uniformity since we want

to map the inputs as evenly as possible over the output range to guarantee

diversity. However, unlike hash functions fαβ maps a set of integers to itself.

We investigate the performance of the optihash scheme for a specific ap-

plication: the packet forwarding in the PSIRP architecture described in the

previous section.

4. The optihash for packet forwarding

The application by which the optihash has been inspired and for which

the evaluation of the optihash performances is carried out is the packet for-

warding scheme described in Sec. 2.3.

To illustrate the use of the optihash in the in-packet forwarding scenario, a

network graph is considered, and initially a fixed hash value, h(li), is assigned
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to each link, li, in the network and the correspondent vli is constructed as in

(8).

A route is selected by the control entity of the network from a source

(publisher) node to one or more destination (subscriber) nodes. In the

PSIRP/PURSUIT architecture this operation is performed by a centralized

entity called topology manager. As multicast delivery is possible we may

term this route a delivery tree as a general term encompassing unicast and

multicast. The topology manager is responsible for maintaining the network

graph and for calculating the multicast tree when a publisher and subscriber

are matched. Moreover it is responsible for generating the forwarding Is

which is the optihash in this case. Consequently, the topology manager also

carries out the optimization to create the optihash as described in Section

3. We should note, that as there is no state information required for the

optihash calculation other than the knowledge of the network topology, it is

possible to replicate the topology manager function for scalability if required.

Once a deliver tree is selected it is encoded in v or -ing the vli of the

composing links obtained using the hashes h(li):

v = vl1 ∨ vl2 ∨ .. (12)

Then the number of false positive occurrences that arise along the specific

route and the false positive rate (4) are evaluated and -ing and comparing the

array v encoding the route and the arrays vlj of the off-route links lj also

constructed using the hashes h(lj). In the case the number of false positive

occurrences is not zero, the optimization described in the previous section is

performed within the topology manager function in order to construct the

forwarding Id (see (5)). The array v encoding the route is built for various
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values of the parameters α and β; in vα,β the bits at the positions fαβ(h(l))

are set to one for each link l in the delivery tree:

vα,β[f [α, β](h(l))] = 1. (13)

The form of the function f we selected is:

fαβ[λ](µ) = (µ+ µλα + λβ)modmv, (14)

where µ is the hash h(l) of the link to recalculate, λ is the hash of the link

where the packet was coming from, and α and β are the two parameters

used for the optimization. We can notice that the number of parameters is

specific to the particular form of the family of functions fαβ. In particular,

since we are using two operations (addition and multiplication) we need two

parameters in order to tap into the complex relationship between addition

and multiplication in modular arithmetic.

We have chosen to base the function on multiplication in the modulo

arithmetic because this operation, despite being a relatively simple to calcu-

late, is known to produce results which are versatile and unpredictable; in

particular, this is why modular arithmetic is used in the RSA cipher [22].

The exact form of each term in this function is intended to provide as much

variability as possible, given a very restricted range of parameters.

At this point, the number of false positive occurrences is evaluated for

all the values of the parameters α and β comparing vαβ with the off-route

link identifiers vlj ,αβ. Since more than one pair (α, β) producing the smallest

number of false positive occurrences is normally found, a further degree of

freedom is offered by the scheme. For example, the choice can be made in
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terms of network state: the pair selected will be the one which offers false

positives10 along the least congested links.

Once the optimization is performed, the optihash is composed from the

bit array v and the selected values of α = a and β = b. The optihash is

placed in the packet header to be used as the forwarding identifier; then the

packet is ready to be forwarded. Each node maintains a forwarding table

containing the hash arrays vli constructed with the hashes h(li) for each

incoming and outgoing link; also, the node should be able to calculate the

values of the function f .

When the packet reaches a node, the fields containing the values of the

selected a and b are read. The forwarding nodes contain only the function

f and the Link-Id (hashes) of the outgoing links. No state is necessary in

the forwarding node. The link hashes of the outgoing links of the node and

the hash of the previous link are calculated with the function f using the

received values a and b; thus, the link hashes fab(h(lj)) are formed and the

correspondent bit array vlj ,ab for each outgoing link is built. The vlj ,ab array

is used with the packet header information to make the forwarding decision

for the incoming packet. Namely, the and and the comparison operations

(9) are performed for each outgoing link. For the links such that (9) is true,

the packet is forwarded.

The optihash scheme requires more processing at the stage of forming the

forwarding identifier, since an optimization takes place. The complexity is

related to the number of links |D| to compare, the number of links |E| along

10if the minimum of false positive is not zero.
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the path and the number N of pairs (α, β) used for the optimization.

In total the complexity of the algorithm can be written as:

O(N |E|+N |D|+ |D|+N) ≈ O(N(|E|+ |D|)) (15)

since |D| + N << N(|E| + |D|). Consequently, the complexity is directly

proportional to the number of pairsN , and the sum of the number of elements

stored in the optihash |E| and the number of element to be queried |D|.

Also, slightly more processing is needed at the nodes for each packet that

is forwarded since the function f has to be applied to the hashes (Link-Ids).

The function f can be implemented with lookup-up tables accessible in one

clock cycle. The amount of memory needed depends on the node degree:

OHmemory = d(d− 1) 215 bytes = (16)

= d(d− 1) 32 kilobytes

where d is the node degree. For example, for d = 4, OHmemory = 384 kB.

Alternatively, we can consider to implement the function f in hardware but

this is future work.

However, the size of the forwarding table remains unchanged and no state

has to be placed in the forwarding tables. We have now to evaluate the false

positive rate of the optihash and whether the reduction in false positive rate

is significant considering the additional processing time.

5. Evaluation of the optihash false positive performance

The evaluation of the false positive performance of the optihash is carried

out numerically through simulations. The benefits of using the optihash,
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Figure 4: The optihash data structure for in-packet forwarding mechanism.

rather than the simple Bloom filter are quantified against the performance

of the Bloom filter of size m = 256 bits; this is a practicable size used in

other literature [4]. Therefore, the size of the optihash is selected to be the

same with mw = 256 bits (see (7)) and the following sizes for v, α and β are

considered:

• mv = 241 bits.

• mα = 7 bits.

• mβ = 8 bits.

Thus, the size of the optihash is 256 bits and it is shown in Fig. 4.

Using simulations we perform our experimental evaluation to determine

the properties which may influence the false positive rate of the optihash.

To this aim, we consider an artificial graph consisting of a variable size

set of nodes with the same node degree as shown in Fig. 5.

For evaluation purposes, we model the optihash using the hashes h(l) of

the links rather than using the bit array v. This implies that each link is

identified by an hash h(l) and each route is identified by a list of hashes

which is the set R (see Sec. 3).

We consider routes of different length and we assign initially link hashes

to each link which is either in the route or adjacent to the route (off-route

links), as for example in Fig. 5. Note that the mechanism of using hashes
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Figure 5: Through the link badges h(l) the link identifiers v are built.

of links only gives statistically uniqueness of the link labels. However, we

choose to enforce the uniqueness of outgoing links from a single node. In

Fig. 5 there are examples of duplicated link labels due to the relaxation of

global uniqueness through the use of statistical uniqueness provided by the

hash function.

In order to be able to understand the dependencies of the false positive

rate and properly design the experiment, we consider in detail the set of

hashes, their sizes and we analyze how the false positive rate is calculated

after the optimization to see which are the parameter which may influence

its growth.

The set R used to build the route identifier v, contains the link hashes

of the links along the route. In contrast, the list h(D) of the hashes of the

off-route links to compare contains values that can appear more than once;

consequently we refer to such a list as a multiset [23]. We note that R is truly

a set, since even if along the route more than one link has the same hash, in

the list encoding the route, the hash is represented only once. In this way,

the cardinality |R| of the set R, is not necessarily equal to the number of

links along the route, i.e. |R| ≤ n.

The number of false positive occurrences is the number of those hashes

of the multiset h(D) that are also present in the set R. The hashes with
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this property constitute the multiset h(F ) of the hashes which generate false

positives. Its cardinality is the number of false positive occurrences. The false

positive rate is calculated according to (4) dividing the cardinality |h(F )| of

the multiset h(F ) by the cardinality |h(D)| of the multiset h(D):

fpr =
|h(F )|
|h(D)|

. (17)

To perform the optimization, new hashes f [α, β](R) and f [α, β](h(D)) are

calculated for all the values of the pair (α, β). The number of false positive

occurrences and f
[α,β]
pr (17) are evaluated for each value of the pair. Now

considering the set P of the pairs (α, β),

P = { (1, 1), (1, 2), (1, 3), ..., (2mα , 2mβ) } , (18)

the subset M ⊆ P for which f
[α,β]
pr is a minimum created. The elements of M

are the candidates for constructing the optihash. Clearly, the minimum value

of f
[α,β]
pr depends on |h(D)| and |R|. In fact, if |h(D)| is high there will be more

chances that one element of h(D) is also in R, generating false positives. This

implies that if there are more elements in h(D) it is less probable to obtain a

low value of the minimum of the false positive occurrences and also that it is

likely that M will have fewer elements. Also, if |R| is high, which means that

the route contains a high number of links with different hashes, there will be

more chances to have false positive occurrences and consequently it will be

less probable to obtain a low value of the minimum of the false positive rate.

For this particular application, the cardinality |R| is the number of on-

route links with different hashes while |h(D)| is related to the node degree

and to the unicast or multicast nature of the traffic. If a node has a higher

node degree, the number of elements in h(D) will be higher than for a lower
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degree node. In the same way, a unicast route through the same nodes will

contribute more elements in h(D) than a multicast route.

The false positive rate for the optihash is calculated as the ratio of the

minimum of all |h(F )| obtained with all the different values of the pair (α, β)

and of |h(D)|. Namely, the minimum of the false positive occurrences is used

to calculate the false positive rate of the optihash. Since the false positive

rate of the optihash is defined as the minimum obtained through enumeration

of a specific delivery tree, it will depends on the node degree, the path length,

the hash function, and the unicast/multicast delivery because the minimum

does. For these reasons, we evaluate the performances of the optihash in a

regular network with different node degrees and for unicast and multicast

routes.

We note that another way to carry out the optimization would be to

calculate minimum of the a posteriori estimation of false positive rate for a

particular value of (α, β) using ρ, the filling factor of v, as defined by (3)

with k = 1. In this case, the positive rate would not depend on |h(D)| but

only on how populated in the vector v, namely on the cardinality of the set

R. However, the use of the a posteriori estimation of false positive rate,

during the optimization phase, gives rise to a much higher value than can

actually be obtained for many particular instances for the specific delivery

tree. Regarding the Bloom filter, the false positive rate does not depend on

|h(D)|, as it does not encompass any optimization mechanism, unlike the

optihash.
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As an example of how the optihash works, with reference to the scenario

of Fig. 5, the sets R and h(D) are

R= {126, 9, 56, 49} (19)

h(D)= {49, 134, 129, 89, 151, 41, 49, 89, 2, 2, 126, 134}

and the multiset of false positives is

h(F ) = {49, 49, 126}; (20)

thus, the number of false positive occurrences is 3 and the false positive

rate is fpr =
|h(F )|
|h(D)| =

3
12

= 0.25.

When the false positive rate is not zero, the function f is used to obtain

alternative link hashes for the on- and off-route links and for each value of α

and β the set R, and the multisets h(D) and h(F ) are built. The distribution

of the cardinality of h(F ) for the example considered is shown on the his-

togram in Fig. 6. In this example, there are 27487 pairs (α, β which result in

0 false positives, namely the cardinality of the set M is 27487; we can notice

in this case, that |M | is quite high. For practical implementation, the pair

(α, β) in the set M can be chosen according to some heuristics intended to

optimize some parameters of the network, for example the network state. A

pair which gives the minimum of false positive rate (in this case the minimum

is 0) is, for example, (1, 2):

R12 = {126, 191, 74, 135, 14} (21)

h(D)12 = {210, 160, 7, 186, 83, 188,

210, 229, 25, 226, 65, 39}

h(F )12 = {}.
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Figure 6: Distribution of the false positive occurrences for all the values of α and β for

the example in Fig. 5. The majority of the pairs α and β gives link badges with no false

positives occurrences.

For the experimental evaluation the false positive rate for the optihash is

calculated using min(fpr), the minimum of the value defined in (17) over all

values of α and β. The results are averaging over different trials obtained with

new hashes in order to obtain stable values. Given that the false positive rate

is a number around n, the number of trials is chosen to be 100 1
n
. The results

for the different parameters which influence the optihash performances are

described below.

5.1. False positive rate for unicast routes of variable length through nodes

with a fixed degree

Now, we shall consider unicast routes of different number of links along

nodes with the same node degree equal to 5. First of all, we can demonstrate

the impact of the optimization on the scheme from Fig. 7 where the false

positive rate is shown for the scheme with and without the optimization. We
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Figure 7: The false positive rate of the optihash with and without optimization for unicast

routes of different length along nodes with node degree equal to 5. The analytical false

positive probability for the Bloom filter with m = 256 and k = 1 is plotted.

can notice that the optimization does not influence the gradient of the curve.

The analytical expression (1) of the false positive rate for the Bloom filter

with m = 256 and k = 1 is also shown, for comparison. The optimization

offers a steady improvement of the false positive rate for routes with more

than 30 links while for a lower number of links the false positive rate is nearly

zero (< 10−4) for the optihash model.

Next, the false positive rate of the optihash for different lengths of unicast

routes is plotted in Fig. 7. It is compared with the false positive probability

of the Bloom filter (1) with m = 256 and the optimal value of k = kmin as

defined in (2). Thus, for the Bloom filter part of the graph, for each n a new

kmin (2) is calculated and a new fp,min (2) is shown on the plot; the value

fp,min offers a lower bound of a realistically achievable false positive rate.

The value fp,min is not realistic for a practical implementation, since it is not
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Figure 8: The false positive rate for the Bloom filter and for the optihash for unicast routes

of different length along nodes with node degree equal to 5. The false positive probability

has been computed for the Bloom filter using k = 7 and kmin and experimentally evaluated

for k = 7.

feasible to use a different k for each route as it is has to be chosen as an a

priori network constant. For a fairer comparison, the false positive rate of

the Bloom filter is also plotted for a realistic fixed value of k = 7, which is the

average over all the kmin calculated. In addition, the experimental values of

the false positive rate for a Bloom filter with m = 256 and k = 7 are shown,

since the (1) represents a lower bound for the probability (see Sec. 2.2).

We can observe from Fig. 8, as the number of links increases, the car-

dinality of R increases, and the false positive rate increases. However, the

optihash consistently offers a lower false positive rate than the Bloom filter

with kmin and, more importantly, a slower growth as the length of the route

increases.

To evaluate the influence of the node degree, now we consider unicast
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Figure 9: The false positive rate for the Bloom filter and for the optihash for unicast

routes of different length along nodes with different node degree equal to 5 and 7. The

false positive probability has been computed for the Bloom filter using m = 256 and k = 7.

routes of different number of links through nodes with the same node degree

equal to 7. We plot the false positive rate of the optihash together with

the graph for the degree 5, considered above. Fig. 9 shows that as the node

degree increases, the false positive rate increases, since the cardinality of h(D)

increases. On average, this means that it is more difficult to find a pair (α, β)

which assigns hashes with a low number of collisions. The minimal number of

false positive occurrences increases. However, the increase is moderate, and

the gradient of the graph is smaller than for the Bloom filter as the number

of links in the path increases.

5.2. False positive rate for unicast routes of fixed length through nodes with

variable degree

To evaluate the influence of the node degree, we consider a fixed length

route of 50 links and we consider different node degrees. In this case we
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keep the number of links on-route constant, namely the cardinality of the set

E. In this case, since R = h(E), it does not necessarily follow that |R| is

constant11, however the fluctuation of |R| is small and uniformly distributed

so that we can assume that the variation in the false positive rate are due to

the node degree only. As the node degree increases, the cardinality of h(D)

increases and therefore the probability to obtain a smaller minimal number

of false positive occurrences decreases. A higher node degree offers a higher

average false positive rate. Fig. 10 shows that as the node degree increase,

the false positive rate increases. However, for a route of 50 links the false

positive rate reaches the value for the Bloom filter with k = 7 for very high

node degree.
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Figure 10: The false positive rate for the optihash in case of different node degrees for

routes of 50 links for unicast. The false positive probability for the Bloom filter with

m = 256, k = 7 and k = kmin is plotted.

11It is constant if the cardinality of R if considered as a multiset.
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5.3. False positive rate for multicast routes with a fixed number of destina-

tions through nodes of fixed degree

Now we consider multicast routes through nodes with constant node de-

gree (we consider node degree = 5) of different sizes with a fixed number of

destinations (5 destinations). We compare the false positive rate of multicast

with 5 destinations and unicast for routes composed of the same number of

links. These graphs are plotted in comparison with the false positive proba-

bility of the Bloom filter with m = 256, k = 7 and k = kmin; note that the

false positive rate of the Bloom filter depends only on the number of links

but does not depend on whether one considers the multicast or the unicast

model. From Fig. 11 it is clear that multicast routes allow the optihash to

achieve lower minima of the false positive rate than unicast routes, because

the multiset h(D) contains fewer elements than in the case of unicast routes,

for the same number of on-route links.

5.4. Fixed length multicast routes with different numbers of destinations through

nodes of fixed degree

In order to be able to appreciate the influence of multicast on the op-

timization, we consider multicast routes of 36 links connecting nodes with

degree equal to 5 with different number of destinations. Fig. 12 shows the

false positive rate for the optihash against the false positive probability of the

Bloom filter. Again, as described in Sec. 5.2, keeping the number of elements

on-route constant, it does not necessarily follow that the cardinality of the

set R is constant, however the fluctuation of |R| is small.

Having a fixed number of elements on-route, as the number of destinations

increases, |h(D)| decreases, and, therefore, the probability to obtain a smaller
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Figure 11: The false positive rate for the optihash in case of unicast and multicast routes

with 5 destinations. The node degree of the network is 5. The false positive probability

for the Bloom filter with m = 256, k = 7 and k = kmin is plotted.

minimal false positive rate decreases. A higher number of destinations offers

a lower average false positive rate for the optihash, in contrast with the

Bloom filter, where the false positive rate remains constant. Indeed, the

false positive probability for the Bloom filter does not depend on the number

of destinations and in case of m = 256 and n = 36, kmin ≈ 5 it is fp = 0.0331.

For a number of destinations higher than 13, the false positive rate of the

optihash is very low (≃ 10−4).

We have to point out that the false positive rate of the optihash depends

on the topology of the multicast tree. In this particular case we have consid-

ered a set of connected nodes and starting from the unicast case (see Fig. 5),

we have moved links from the set h(D) to the set R to generate multicast.

Generally, the false positive rate of the optihash depends on the cardinality
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Figure 12: The false positive rate for the optihash in case of different destinations multicast

routes of 36 links. The node degree of the network is 5. The false positive probability for

the Bloom filter fp = 0.0331 with m = 256, n = 36, k = kmin = 5 is plotted.

of the set R and the multiset h(D).

6. Conclusions

In this paper we have proposed a new variant of the Bloom filter, the

optihash which aims to control the false positive rate at a cost of slightly

more processing. It offers an optimization mechanism on the false positive

occurrences for the specific data set to be encoded in the optihash. The

optimization space for the choice of the element descriptors is large but the

scheme is flexible enough to change/reduce it. Moreover, it offers a robust

(with a statistic meaning) control over the false positive occurrences. We have

analyzed through simulations the performances of the optihash scheme for

the in-packet forwarding function in the PSIRP architecture. The numerical

model of the false positive probability of the optihash has been compared
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with the false positive probability of a Bloom filter of comparable size. We

have assumed an artificial graph composed of a set of nodes with equal node

degree. This has been assumed in order to be able to study the behavior of the

optihash depending on the network parameters. If our aim is to reduce false

positive occurrences, the optihash offers a considerably lower false positive

rate than the Bloom filter especially in the case of multicast. It also offers

more flexibility at a cost of slightly more processing.
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