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Abstract  

Understanding how wildlife respond to roads and traffic is essential for effective 

conservation. Yet, not many studies have evaluated how roads influence wildlife in protected 

areas, particularly within the large iconic African National Parks where tourism is mainly 

based on sightings from motorized vehicles with the consequent development and intense use 

of roads. To reduce this knowledge gap we studied the behavioral response and local spatial 

distribution of impala Aepyceros melampus along the heterogeneous (with variation in road 

surface type and traffic intensity) road-network of Kruger National Park (KNP, South Africa). 

We surveyed different types of roads (paved and unpaved) recording the occurrence of flight 

responses among sighted impala and describing their local spatial distribution (in relation to 

the roads). We observed relatively few flight responses (19.5% of 118 observations), 

suggesting impalas could be partly habituated to vehicles in KNP. In addition, impala local 

distribution is apparently unaffected by unpaved roads, yet animals seem to avoid the close 

proximity of paved roads. Overall, our results suggest a negative, albeit small, effect of traffic 

intensity and of presence of pavement on roads on the behavior of impala at KNP. Future 

studies would be necessary to understand how roads influence other species, but our results 

show that even within a protected area that has been well-visited for a long time, wildlife can 

still be affected by roads and traffic. This result has ecological (e.g., changes in spatial 

distribution of fauna) and management implications (e.g., challenges of facilitating wildlife 

sightings while minimizing disturbance) for protected areas where touristic activities are 

largely based on driving. 

 

Keywords: African ungulates, anti-predator behavior, barrier effect, impala Aepyceros 

melampus, road impact, road avoidance, traffic avoidance, vehicle avoidance. 
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Introduction 

The worldwide development of road-networks and associated motorized traffic can 

greatly impact natural populations (Laurance et al., 2014), a fact that has attracted the 

attention of conservation biologists leading to the rise of a discipline called road ecology 

(Trombulak & Frissell, 2000). The presence of roads can alter natural habitats and threat 

biodiversity through noise, light and chemical pollution, habitat destruction, disruption of 

communities and facilitation of biological invasions (Forman & Alexander, 1998; D’Amico et 

al., 2013). The most widely-acknowledged road impacts for wildlife are vehicle-collision 

mortality and barrier effects (Conover et al., 1995; Gagnon et al., 2007) which are both 

consequence of an individual’s choice to cross or avoid a road (Jaeger et al., 2005; Grilo et 

al., 2012). Specifically, barrier effects include the behavioral responses towards the road 

structure itself (road avoidance), the associated emissions (traffic avoidance) and/or the 

immediate disturbances (vehicle avoidance; D’Amico et al., in press; Jaeger et al., 2005). 

These behavioral responses can change animal movement patterns (Cole, Pope & Anthony, 

1997), fragmenting large and connected populations into small isolated ones (Vos & Chardon, 

1998), and eventually compromising their persistence (Carr & Fahrig, 2001). Despite these 

potential effects, relative tolerance to motorized traffic has been observed in roads with 

frequent traffic, especially within protected areas (Wilmers et al., 2003). This sort of 

habituation can be beneficial in the case of touristic areas by improving visibility of wildlife 

for visitors. However, habituation can present risks for both human and animals by increasing 

human-wildlife interactions which can lead to greater risk of wildlife attacks (Hubbard & 

Nielsen, 2009), road-associated mortality of protected species (Knapp, 2004), and increasing 

poaching risks near roads (Papaioannou & Kati, 2007).  

Although there is a growing body of literature on barrier effect and road tolerance 

(Fahrig & Rytwinski, 2009), there are still significant gaps in our understanding of how 
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heterogeneous road-networks (i.e., those with variation in road substrates and associated 

traffic intensity) can affect wildlife. Heterogeneous road-networks are frequently found within 

rural and natural landscapes where wildlife is often more abundant and road impacts can be 

more severe (D’Amico et al., in press; Forman & Alexander, 1998). Few studies of road 

ecology have been conducted along road-networks in protected areas, even though in many 

protected areas human activities are centered on wildlife sightings from motorized vehicles, 

with the associated development of road-networks and traffic. Understanding road effects in 

these areas is critical for effective wildlife conservation, human safety and tourism-related 

economy (Hubbard & Nielsen, 2009; Malo, Acebes & Traba, 2011). 

This study aims to improve our understanding of the behavioral responses of ungulates 

to a heterogeneous road-network in an African protected area. Previous works of road effects 

in Africa have mainly focused on rainforest habitats (e.g. Laurance et al., 2006) with few 

studies in more open areas (but see Newmark et al. 1996; Ndibalema et al. 2007) despite the 

fact that many emblematic African parks are largely open-habitats. To address this gap, we 

conducted a study in Kruger National Park (KNP hereinafter), which is one of the main 

touristic attractions of South Africa. In particular, we studied the prevalence of flight 

responses and the local spatial distribution of impalas Aepyceros melampus in relation to 

different types of roads with different traffic intensities, accounting also for other potentially 

important factors (i.e., herd size in Stankowich, 2008; Périquet et al., 2010; Malo et al., 

2011). We particularly focused on impala because it is an abundant species (estimated current 

KNP population is 132,300 - 176,400 individuals; KNP Scientific Services, 2015). Although 

not a conservation target (listed as “least concern” by the IUCN;IUCN SSC Antelope 

Specialist Group, 2008), it plays an important ecological role in the African savannah 

(Pienaar, 1969; Hayward & Kerley, 2008). Overall, our study aims to improve our 

understanding of how wildlife responds to roads and traffic. This knowledge can contribute to 
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more effective conservation strategies, as well as improved management of touristic activities 

within protected areas, particularly those in which motorized tourism is prevalent. 

 

Methods 

Study area 

Kruger National Park (22º15’S - 25º32’S; 30º50’E - 32º02’E) is one of the largest 

reserves in Africa (nearly 20,000 km²) and part of the Great Limpopo Transfrontier Park. It 

has a subtropical climate with hot-humid summers (October-April) and warm-dry winters 

(May-September) and encompasses diverse, mostly open habitat ecozones (Gertenbach 1983). 

The first vehicle entered KNP in 1927 and currently there are approximately 2,300 km of 

roads (850 of which are paved), which are used by over 1.5 million motorized visitors per 

year (http://www.sanparks.org/parks/kruger/all.php). Our study was conducted in the central 

part of KNP, between the Letaba and Skukuza camps (Fig. 1). 

 

Data collection and variables definition 

Impala behavior was studied during April-May 2014 along 12 transects (average 

length of 18 km) located on six paved and six unpaved roads (Fig. 1). Observations were 

gathered from a high-clearance 4x4 vehicle driving at <30 km/h between 08:00 and 17:00 h. 

While sampling a transect, two observers searched for impala individuals or herds located 

<300 m from each side of the road (our range of detection). A third observer noted the 

number of vehicles circulating in the opposite direction. The number of counted vehicles over 

the duration of the sampling was used to estimate the number of vehicles per minute as a 

measurement of traffic intensity on the surveyed road. When herds were sighted, we selected 

a focal individual (the individual located closest to the road when the herd was first sighted), 

and estimated herd size (minimum group size because some individuals in large herds could 
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have been out of sight). For each sighting we recorded the position of our vehicle using a GPS 

(Garmin GSPMAP 62, KS, USA).  

We evaluated impala behavior on each sighting using two response variables: 1) flight 

response and 2) tolerance distance. We recorded the occurrence of a flight response (binary 

variable) when the focal individual moved rapidly away from the road as a reaction to our 

approaching vehicle (i.e., vehicle avoidance). We did not consider an individual had fled if it 

did not move or moved parallel or towards the road. Tolerance distances were defined as the 

perpendicular distance to the road (directness estimate sensu Bulova, 1994) of focal 

individuals engaged in stationary behavior (not involving prolonged directional movements, 

not fleeing or travelling). Distances were estimated using a Leica Rangemaster 1200 CRF-M 

rangefinder by approaching the focal individual as close as possible while staying on the road. 

Observed tolerance distances may exceed the minimum at which individuals could tolerate 

vehicles, because we could not continue to approach individuals until they flee. Animals that 

“tolerated” vehicles could have still perceived the vehicle and possibly experienced stress. If 

the focal animal had a stationary behavior when we approached, we directly estimated its 

tolerance distance. If it was travelling when first sighted or fled during our approach, we 

waited until its behavior became stationary to estimate the tolerance distance. If the 

individual moved out of sight, no tolerance distance was recorded. Additionally, for focal 

animals that were stationary upon first sight but subsequently travelled or fled during our 

approach, we also estimated the initial distance (perpendicular distance to the road from the 

location at which the individual was first sighted) using reference points. For focal animals 

that did not move, the initial and tolerance distances were the same.  

Because detectability of impala and behavioral responses may differ between habitat 

types, we identified the ecozone for each sighting based on a simplified version of the KNP 

landscapes (originally described by Gertenbach 1983) which includes five different categories 
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(Table S1). Ecozones were assigned to georeferenced sighting locations using the ecozone 

GIS layer available from Sanparks (2014) with ArcGIS 9.4.  

 

Data analysis  

We evaluated the effects of road type and traffic on both recorded responses (flight 

response and tolerance distance) fitting generalized linear mixed models (GLMMs). Flight 

responses (present or absent) were modeled with GLMMs fitted with a binomial family (logit 

link). Tolerance distances were transformed (log10[x+1]) and modeled with LMM (Gaussian 

family, identity link). Models were fitted with the functions glmer and lmer from the lme4 

package (version 1.1-7) in R 3.1.1 (R Core Team 2014). Models included as predictors either 

road surface (categorical factor with two levels: paved or unpaved) or traffic intensity 

(estimated as the observed number of incoming vehicles per min.), with herd size as a 

covariate (standardized by subtracting the mean and dividing by the standard deviation). 

Because road surface and traffic intensity are correlated, we could not fit a model including 

both variables as predictors to assess their potentially differential roles. To control for 

potential differences in detectability of impala and response patterns across roads, days, and 

vegetation zones, fitted models included the transect identifier (nested within date) and the 

ecozone as random effects. We evaluated model residuals to determine if model assumptions 

were met. Autocorrelation plots (function acf), and variograms (function variog of the library 

geoR in R,Ribeiro & Diggle, 2001) were used to detect evidence of temporal or spatial 

autocorrelation in model residuals. We calculated 95% confidence intervals of predicted 

values using bootstrap percentiles based on 5,000 replicates (using the function confint in R). 

P-values were estimated with likelihood ratio tests. Model fit was described using R
2

c 

representing the variation explained by both fixed and random factors; and R
2

m represents the 

variation explained by the fixed factors only (Nakagawa and Schielzeth 2013). These R
2
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values were estimated using the function r.squaredGLMM from the package MuMIn (Barton 

2013) in R. 

 Finally, we evaluated how the observed local spatial distribution (distance to the road) 

from each road surface differed from the expected in a hypothetical no-road situation. As we 

could not drive off-road to observe impala spatial distribution away from roads, we compared 

the observed distribution of initial distances in paved and unpaved roads vs. the expected 

distribution under a null model. The null model assumes impala are randomly distributed in 

relationship to roads (i.e., roads do not affect local spatial distribution) and are detected with a 

probability that decreases with distance, following a negative exponential distribution curve, 

which is a commonly used detectability function (Thomas et al., 2002). The rate parameter of 

the exponential curve was defined as the reciprocal of the observed global mean initial 

distance (rate=0.023), thus assuming a common function for all roads. We then used the 

function rexp in R to define expected initial distances for 10,000 random samples of 54 and 

61 observations (reflecting the available data from paved and unpaved roads, respectively). 

Using these random samples we estimated the probability that observed distance distributions 

could have occurred if the null model (a hypothetical no-road situation) was true. 

 

Results 

We observed impala on 54 occasions driving a total of 141 km along paved roads (an 

average of 3.8 impala observations/10 km), and on 64 occasions along 81 km of unpaved 

roads (7.7 observations/10 km. Full dataset available as Table S1). Impalas were found in 

herds with a mean size of 8.6 individuals (SD=14.49) although observations of solitary 

individuals were common (42.6% in paved roads and 51.6% in unpaved roads). Based on our 

estimate of traffic intensity, paved roads had more traffic (mean=0.60 vehicles/min, 



 9 

SD=0.349), with on average six times more vehicles per minute, than unpaved roads 

(mean=0.10, SD=0.077).  

We detected relatively few flight responses (23 out of 118 observations) with more 

responses in unpaved roads (15 out of 64) compared to paved roads (8 out of 54). However, 

we found no evidence of a significant effect of road surface on the probability of flight 

response (n=117; F=1.04, P=0.32; controlling for herd size: regression coefficient β=-0.65, 

SE=0.446, P=0.064. R
2

m≈R
2

c =0.12). Similarly, we found no effect of traffic intensity on the 

probability of flight response (n=117; β=-1.12, SE=0.820, P=0.150; herd size β=-0.66, 

SE=0.448, P=0.064. R
2

m≈ R
2

c=0.15). Instead, individuals that fled were significantly closer to 

the road (mean 30.5 m, range 0-154) than those that did not respond (mean 35.0 m, range 0-

215. Initial distance β=-1.12, SE=0.455, P=0.012; herd size β=-0.68, SE=0.437, P=0.047, 

R
2

m=0.18 and R
2
c=0.19; n=114). Among the individuals that showed flight response, 12 fled 

out of sight and the remaining 11 moved an average of 12 m (range: 3-23 m).  

We estimated tolerance distances on 114 occasions (52 observations from paved roads 

and 62 from unpaved roads, table S1). Tolerance distances were an estimated 14.7 m greater 

on paved roads compared to unpaved roads (F=9.20, P=0.008. Fig. 2), with larger herds 

generally closer to the road (regression coefficient β=-0.08, SE=0.039, P=0.037. Model 

R
2

m=0.10 and R
2
c=0.23). Fitting an interaction term between herd size and road surface did 

not improve model fit (interaction term F=0.03, P=0.854) suggesting the effect of herd size 

was similar in both paved and unpaved roads. Tolerance distances also increased with traffic 

intensity (β=0.42, SE=0.132, P=0.007) controlling for the influence of herd size (β=-0.09, 

SE=0.038, P=0.029. Model R
2

m=0.12, R
2
c =0.29. Fig. 3). Evaluation of model residuals 

indicated that model assumptions were met with no evidence of temporal or spatial 

autocorrelation. 
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Finally, we compared the observed impala local spatial distribution with a null model 

that assumed roads did not influence distribution locally. Observed initial distances in 

unpaved roads did not depart from the expected under the null model: observed frequencies 

were within the 95% confidence intervals of the distribution of expected frequencies (Fig. 2). 

However, observed distances in paved roads deviated from the expected with an unlikely low 

number of sightings within the first 10 meters (Fig. 2). If the null model were true the 

probability of having only six sightings at this distance would be <0.06, suggesting impala 

may be avoiding the areas closest to paved roads.   

 

Discussion 

Our study is the first assessment of ungulate behavioral responses towards roads and 

traffic at Kruger National Park, an emblematic touristic park in Africa, offering insights into 

the complexity of wildlife responses to heterogeneous road-networks within protected areas. 

In particular, we found evidence that impala change their local spatial distribution near paved 

and well-travelled roads. Nevertheless, our results also suggest habituation may exist given 

the limited flight responses observed (19.5%) and the relatively short average distance at 

which impalas fled from the vehicle (30.5 m) compared to distances registered for other 

ungulates (e.g., 132 m in Papouchis, Singer & Sloan, 2001). Habituation would not be 

unexpected in KNP given that cars have been regularly present for > 50 years, and impala and 

other ungulate species have been shown to exhibit habituation in other protected areas 

(Setsaas et al., 2007; Stankowich, 2008; Malo et al., 2011). However, it is important to note 

that individuals may experience stress even if flight responses are not observed; thus even 

apparently habituated animals may be affected by human disturbances (Herrero et al., 2005).   

Our results show that the local spatial distribution of impala is largely unaffected by 

unpaved roads although animals apparently avoid close proximity (first 10 m) to paved roads. 
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This distance is relatively short compared to edge effects reported for other ungulate species 

that range from 50 to 2800 meters (Alves & Bager, 2013), but could reflect a traffic-induced 

landscape of fear which should be further studied (Laundré, Hernández & Altendorf, 2001; 

Ciuti et al., 2012). As mentioned above, impala at KNP may exhibit partial habituation to 

vehicles, which could reduce the avoidance of linear infrastructures. Studies of impala in 

other areas have reported both no evidence of road/traffic avoidance (Newmark et al., 1996) 

and a tendency to avoid major roads (Mtui, 2014). Differences in response may be explained 

by different methodologies or because different habitat features, histories of exposure to roads 

and traffic patterns modulate impala responses differently.  

Avoidance of paved roads may be directly associated with the presence of pavement 

(i.e. road avoidance) or with higher traffic intensity. Based on our traffic estimates, paved 

roads at KNP have approximately six times more cars per minute than unpaved roads (see 

also Ferreira & Harmse 1999). Unfortunately, in our study we could not disentangle the effect 

of road surface from associated traffic as both are highly correlated, a pattern often reported in 

studies of road ecology (Jaeger et al., 2005; D’Amico et al., 2015). Avoidance associated to 

road surfaces has been found in small-sized species such as amphibians and rodents (Merriam 

et al., 1989; McGregor, Bender & Fahrig, 2008) but it has not been reported for ungulates. On 

the other hand, sensitivity to traffic has been suggested for impala based on observed changed 

in stress hormones (Lunde, 2013) and it has been detected in other ungulates (Creel et al., 

2002; Stankowich, 2008; St. Clair & Forrest, 2009). Future work would be necessary to 

differentiate the role of road surface vs. traffic on impala responses and to assess how these 

effects vary along time (Meisingset et al., 2013 detected that reed deer road avoidance is 

lower at night than during daylight).  

Flight initiation distance (FID hereinafter, Stankowich, 2008) is the most commonly 

used indicator in disturbance studies, but it has been criticized (Dumont et al., 2012) because 
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estimates can be affected by recent disturbances (i.e. a previous vehicle) and/or by missed 

responses if the animal detects the observer early. These confounding factors become 

especially relevant for comparisons in which the probability of earlier disturbances varies 

among the compared categories (e.g., recent disturbances are more likely in roads with more 

traffic). Although it is difficult to control for these effects, we propose here the use of 

tolerance distance because it reflects the distance at which a focal individual remains 

stationary after being exposed to a vehicle. We presume tolerance distance varies less than 

FID after an immediate previous disturbance, and therefore is more suitable to compare 

scenarios with different levels of disturbance. This indicator also presents the advantage of 

capturing information on the local spatial distribution from individuals that do not flee, and 

thus is more convenient for studying species with low flight response rates for which 

estimating FID would require very high sampling efforts and potentially result in greater 

disturbance.  

 Overall, this study shows that paved roads and traffic can modify the behavior and 

local spatial distribution of impala at KNP. However, our approach presented some 

limitations. First, we gathered all data driving on public roads; thus, we could not control the 

presence of other vehicles or study impala responses driving off-road. Second, by not being 

able to gather data on foot or using other approaches we could not disentangle the influence of 

our own vehicle from that of road surface or overall traffic on impala responses. The use of 

alternative methodologies to determine local spatial distribution, for example indirect cues 

(i.e. pellets surveys, bio-logging; Negrões et al., 2011), or Unmanned Aircraft Systems 

(Mulero-Pázmány et al., 2014) could help reduce observer interference. Despite these 

limitations, and even though KNP has been a protected area with regular presence of vehicles 

for a long time, we observed an effect of traffic and paved roads on impala, which raises a 
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word of caution about possible ecological and management implications that may be relevant 

to other species or areas.  

 Managers of touristic protected areas have the difficult mission of keeping a 

sustainable balance between protecting biodiversity, satisfying visitors and optimizing the 

profitability of the park. In this study we found that although impala may be partly habituated, 

high traffic intensity and pavement could lead to barrier effects. For instance, we recorded 

twice as many impala observations per driven km in unpaved roads compared to paved roads, 

and impala were sighted further from paved roads, which are those most often used by tourists 

(Ferreira & Harmse, 1999). This potential difference in detectability and/or abundance could 

be relevant for tourism management, as visitors want to see many animals and prefer close-up 

experiences (Scholtz, Kruger & Saayman, 2013). At the same time, a certain degree of 

road/traffic avoidance may be beneficial if road-associated mortality is reduced. Many studies 

suggest ways to mitigate barrier effect, for example through temporary and permanent traffic 

closured, or by limiting the number of visitors (Forman, 2005; Jaarsma, Langevelde & 

Beunen, 2013). KNP authorities implemented several of these measures in the past (Ferreira 

& Harmse, 1999), and these actions may have contributed to the habituation suggested in this 

study. Because impala are a key prey for many predators (Hayward & Kerley, 2008), impala 

responses could influence predator distribution and behavior. In turn, predator changes may 

influence other ungulates, which could also be directly affected by roads and traffic. Future 

work would be necessary to explicitly evaluate impacts on the overall KNP community, but 

our study offers a first evaluation of how a model ungulate species is influenced by a widely 

used heterogeneous road-network in an African protected area. 
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Figures 

 

Figure 1. Study area, central Kruger National Park. Surveyed transects indicated by black 

lines (solid lines for paved roads, dashed lines for unpaved roads). 

 

Figure 2. Observed initial distances (grey bars left panels) and tolerance distances (grey bars 

right panels) of impala Aepyceros melampus in unpaved and paved roads at Kruger National 

Park. The back lines on the left panels indicate the expected median (solid line) and 95% 
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confidence intervals (dashed lines) frequencies under a null model that assumes impala are 

randomly distributed in relationship to the road and detectability decreases following a 

negative exponential curve. On the right panel the black symbols with error bars are the mean 

and 95% CI tolerance distances predicted by a linear mixed effects regression model that 

included herd size as a covariate and transect identifier, date and ecozone as random effects to 

control for potential differences in detectability across areas. 

 

Figure 3. Observed (boxes) and predicted (lines) tolerance distances of impala Aepyceros 

melampus in response to estimated traffic intensity in Kruger National Park. Boxes indicate 

the 25%, 50% and 75% quantiles of observed distances (whiskers are 10% and 90% 

quantiles). Gray bars represent paved roads, white bards unpaved roads. The solid line is the 

predicted relationship from a mixed effects regression model including herd size as a 

covariate and transect identifier, date and ecozone as random effects to control for potential 



 20 

differences in detectability across areas. Dashed lines represent the 95% confidence intervals 

of the predicted relationship.  

 


