Search from over 60,000 research works

Advanced Search

Inflame my heart (by p38-MAPK).

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Clerk, A. orcid id iconORCID: https://orcid.org/0000-0002-5658-0708 and Sugden, P. (2006) Inflame my heart (by p38-MAPK). Circulation Research, 99 (5). pp. 455-458. ISSN 0009-7330 doi: 10.1161/01.RES.0000241053.89089.c3

Abstract/Summary

Although many studies have explored the stimuli which promote hypertrophic growth or death in cardiac myocytes and the signaling pathways which they activate, the mechanisms by which these pathways promote the pathophysiological responses are still obscure. The mitogen-activated protein kinase (MAPK) cascades (in which MAPKs are phosphorylated and activated by upstream MAPK kinases [MKKs] which are, in turn, phosphorylated and activated by MKK kinases [MKKKs]) were identified in the early- to mid-1990s as potentially key regulatory pathways in cardiac myocyte pathophysiology.1,2 The principal MAPKs investigated in cardiac myocytes are the extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38-MAPKs. ERK1/2 are potently activated by hypertrophic stimuli, whereas JNKs and p38-MAPKs are potently activated by cellular stresses (eg, oxidative stress). However, there is cross-talk such that JNKs and p38-MAPKs are activated by hypertrophic stimuli and ERK1/2 are activated by cellular stresses, and the contribution of each pathway to the overall cardiac myocyte response is not entirely clear. MAPKs phosphorylate a number of known transcription factors to alter their transactivating activities thus, presumably, influencing gene expression to elicit the cellular response.3 Nevertheless, the immediate consequences (ie, the transcription factors which are phosphorylated) and downstream consequences (ie, genes with altered expression) of MAPK signaling in the heart or specifically in cardiac myocytes are still largely unknown. To start to address this issue for the p38-MAPK pathway in the (rat) heart (Figure), Tenhunen et al4 directly injected adenoviruses encoding wild-type (WT) p38-MAPKα together …

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/51248
Item Type Article
Refereed No
Divisions Life Sciences > School of Biological Sciences > Biomedical Sciences
Publisher American Heart Association
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar