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functioning is essential for sustainable management. For functions comprising two trophic levels, 82 

trait matching between interacting partners should also drive functioning. However, the predictive 

ability of trait diversity and matching is unclear for most functions, particularly for crop pollination, 84 

where interacting partners did not necessarily co-evolve. 

2. Worldwide, we collected data on traits of flower visitors and crops, visitation rates to crop 86 

flowers per insect species, and fruit set in 469 fields of 33 crop systems. Through hierarchical 

mixed-effects models we tested whether flower-visitor trait diversity and/or trait matching between 88 

flower visitors and crops improve the prediction of crop fruit set (functioning) beyond flower-

visitor species diversity and abundance. 90 

3. Flower-visitor trait diversity was positively related to fruit set, but surprisingly did not explain 

more variation than flower-visitor species diversity. 92 

4. The best prediction of fruit set was obtained by matching traits of flower visitors (body size and 

mouthpart length) and crops (nectar accessibility of flowers) in addition to flower-visitor 94 

abundance, species richness, and species evenness. Fruit set increased with species richness, and 

more so in assemblages with high evenness, indicating that additional species of flower visitors 96 

contribute more to crop pollination when species abundances are similar. 

5. Synthesis and applications. Despite contrasting floral traits for crops worldwide, only the 98 

abundance of a few pollinator species is commonly managed for greater yield. Our results suggest 

that the identification and enhancement of pollinator species with traits matching those of the focal 100 

crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield 

beyond current practices. Furthermore, we show that field practitioners can predict and manage 102 

agroecosystems for pollination services based on knowledge of just a few traits that are known for a 

wide range of flower-visitor species. 104 

 

Introduction 106 
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Sustainable management of agroecosystems is a global challenge, with more than 35% of Earth’s 

land area covered by farmland (FAO 2013). It has been suggested that species diversity is critical 108 

for sustainability because it increases the level and stability of agroecosystem functioning, 

represented by measures of ecosystem services and agricultural production (Cardinale et al. 2012; 110 

Bommarco, Kleijn & Potts 2013). There is a growing consensus that such influences of species 

diversity on functioning are mediated by changes in trait diversity (Díaz & Cabido 2001; Cadotte, 112 

Carscadden & Mirotchnick 2011; Cardinale et al. 2012; Fründ et al. 2013). However, empirical 

evidence for the role of trait diversity on agroecosystem functioning is scarce (Martins, Gonzalez & 114 

Lechowicz 2015). 

 Trait diversity reflects the among-species variation in morphological, physiological, and 116 

behavioural traits relevant to a specific function. Hence, newly developed indices of trait diversity 

are expected to better predict functioning than traditional indices of species diversity (Díaz & 118 

Cabido 2001; Cadotte, Carscadden & Mirotchnick 2011; Schleuning, Fründ & García 2015). To 

become a parsimonious and practical tool for predicting functioning, i.e. high goodness of fit and 120 

low complexity, trait diversity should be based on fewer traits than species. This occurs when some 

species share similar traits, known as partial functional redundancy (Cadotte, Carscadden & 122 

Mirotchnick 2011). Alternatively, if increased functioning is caused by numerous traits with low 

redundancy among species, trait and species diversity will perform similarly in explaining 124 

functioning. In such cases, species diversity will be a good proxy of trait diversity. To date, the few 

studies on the relationship between trait and species diversity have revealed mixed results (reviewed 126 

by Cadotte, Carscadden & Mirotchnick 2011; Schleuning, Fründ & García 2015). Furthermore, 

most of the evidence on the role of trait diversity is based on studies using primary production in 128 

plant communities as the targeted function (Díaz & Cabido 2001; Díaz et al. 2007), whereas this 

relationship remains unresolved for most functions driven by plant–animal interactions (Cadotte, 130 

Carscadden & Mirotchnick 2011; Gagic et al. 2015; Schleuning, Fründ & García 2015). 
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 The relative abundance of a certain trait state in the community, hereafter trait identity, may 132 

predict functioning independently of trait or species diversity. Trait identity should be an important 

predictor when there is a trait state that performs best for a given function (Díaz et al. 2007; 134 

Mokany, Ash & Roxburgh 2008) and when functioning increases with the abundance of species 

carrying that trait state (mass ratio hypothesis) (Grime 1998). If so, abundant species should have 136 

greater influence on trait identity and consequently on functioning than their less common 

counterparts (Grime 1998; Díaz et al. 2007; Mokany, Ash & Roxburgh 2008). 138 

 For functions comprising two trophic levels, trait identity effects may depend on the 

matching of trait states between interacting partners, hereafter trait matching (Schleuning, Fründ & 140 

García 2015). For example, the effect of the abundance of herbivores on primary production 

depends on the match between grazing habit and plant life forms (Asner et al. 2004). Trait matching 142 

between individual species of plants and animals resulting from co-evolution has been examined in 

the scientific literature (e.g. Stang, Klinkhamer & van der Meijden 2006; Vázquez et al. 2009; 144 

Junker et al. 2013), but its effects on functioning at the community level have not (but see Fontaine 

et al. 2006), especially for crop pollination, where in many regions crops are exotic but pollinators 146 

are native, without a co-evolutionary history. 

 Our objective was to assess whether trait diversity and/or matching contributed to crop fruit 148 

set (functioning), above and beyond the predictive ability of flower-visitor species abundance and 

diversity. Fruit set, the proportion of a plant’s flowers that develop into mature fruits or seeds, 150 

reflects pollination success when other resources (e.g. nutrients) are not limiting (Wesselingh 2007). 

Fruit set is a key component of agricultural yield, and has been shown to increase with the 152 

abundance and richness of wild insects visiting crop flowers (Garibaldi et al. 2013). Such 

dependency may be explained by pollinator trait diversity and/or matching. For example, social and 154 

solitary bees visited flowers on radishes at different times of day, suggesting temporal 

complementarity among these pollinator groups (Albrecht et al. 2012). Insects with distinctive 156 
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mouthpart lengths, hoverflies vs. bumble bees, complemented each other in the pollination of 

flowers with easily accessible rewards vs. those with rewards hidden at the bottom of a tubular 158 

corolla, respectively (i.e. trait matching) (Fontaine et al. 2006; Campbell et al. 2012). Small sized 

bees transported less pollen to pumpkin flowers than bigger bees, but this pollen was distributed 160 

more uniformly on the stigma (Hoehn et al. 2008). Here, we collected data on traits of flower 

visitors and crops, visitation rates to crop flowers per insect species, and fruit set in 469 fields of 33 162 

crop systems all over the world. This synthesis provides a unique opportunity to test the strength of 

the relationship between trait and species diversity, and of the relative ability of trait vs. species 164 

indices for predicting functioning, across contrasting crop systems. Our results show that trait 

matching between flower visitors and crops, but not trait diversity, improves our ability beyond 166 

species abundance and diversity, to predict and understand the spatial variation in crop fruit set. 

 168 

Materials and methods 

Field sampling 170 

We collected data from crops on all continents (except Antarctica) matching the following selection 

criteria: (i) data sampled from at least four spatially separated fields; (ii) observations of insect 172 

species visiting crop flowers in the sampled fields; (iii) information on traits of flower visitors; (iv) 

an estimate of fruit or seed set as the percentage of flowers setting mature fruits or number of seeds 174 

per flower, respectively (hereafter fruit set) and (v) at least partial dependence on flower visitors for 

maximum fruit set. This led to a total of 33 crop systems distributed among 469 fields (see 176 

Appendix S1 in Supporting Information), with a crop system defined as a single crop species in a 

particular region in a single study. Eight of the 33 crop systems have not been included in a 178 

previous synthesis (Garibaldi et al. 2013), namely apple in the UK, black cardamom in India, 

cardamom in India, field bean in the UK, oilseed rape in Sweden, strawberry in Germany, 180 

strawberry in the UK, and strawberry in the USA (Appendix S2, Table S1). Furthermore, for all 
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crop systems, data on traits are presented here for the first time. The sampled fields were subjected 182 

to a diversity of agricultural practices, including large monocultures and small and diverse 

cultivations. A wide array of annual and perennial fruit, seed, nut, and stimulant crops was included. 184 

 In each field, we measured flower visitation per unit of time and flower for each insect 

species, from which we estimated species richness and evenness. Bee taxa observed in many crop 186 

systems (Table S2) included apex-furrowed (or sweat) bees (Halictidae), bumble bees (Apidae: 

Bombus spp.), carpenter bees (Apidae: Xylocopini), plasterer bees (Colletidae), sand bees 188 

(Andrenidae), small carpenter bees (Apidae: Ceratinini), stingless bees (Apidae: Meliponini), the 

eastern honey bee Apis cerana, the giant honey bee Apis dorsata, and the western honey bee Apis 190 

mellifera. In some crop systems, ants (Hymenoptera: Formicidae), syrphid flies (Diptera: 

Syrphidae), other flies, and various beetle species (Coleoptera) were common flower visitors. We 192 

also measured fruit set, which is usually correlated with crop yield across fields (e.g. see Figure S1 

in Garibaldi et al. 2013). Given that we measured fruit set in several plants open to insect 194 

pollination per field, our results properly represent field conditions and are not biased by resource 

translocation among different developing fruits within plants (Wesselingh 2007). 196 

 

Trait diversity 198 

If trait indices are to be employed by field practitioners for predicting and managing agroecosystem 

functioning, they should be based on relatively few and relevant traits, for which there is accessible 200 

information for a wide range of flower-visitor species. We measured eight traits of the flower 

visitors that were expected to influence pollinator efficiency and therefore fruit set (Fontaine et al. 202 

2006; Hoehn et al. 2008; Albrecht et al. 2012; Martins, Gonzalez & Lechowicz 2015). Sociality 

(yes vs. no) was defined as colony building, including all eusocial as well as semi-social species 204 

(Table S2). Oligolectic (yes vs. no) included flower visitors that collect pollen from one or a few 

closely related plant species, whereas polylectic species collect pollen from a variety of flowers 206 
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belonging to different plant families. Seasonal activity (complete vs. partial) (Junker et al. 2013) 

was classified according to whether the pollinator species visit the crop during the whole flowering 208 

period or only during early or late periods. Cleptoparasitic (yes vs. no) was defined as flower 

visitors that lay eggs in the nests of other insect species (e.g. cuckoo bees). Cleptoparasitic insects 210 

do not actively collect pollen, which may impair their efficiency as crop pollinators. Body size was 

defined according to the intertegular span (ITD), the distance between the two insertion points 212 

(tegula) of the wings of female workers of each species. Body size classes for bees were as 

following: tiny (< 1.5 mm ITD, typical foraging distance < 50 m), small (1.5–2.0 mm ITD, typical 214 

foraging distance 50–300 m), medium (2–3.3 mm ITD, typical foraging distance 300–1100 m), and 

large (> 3.3 mm ITD, typical foraging distance > 1100 m) (Greenleaf et al. 2007). We follow the 216 

same classification for syrphids for consistency and butterflies and moths were commonly classified 

as large. Mouthpart length, i.e. tongue or proboscis, was classified as short (< 3 mm), medium (3–8 218 

mm) or long (> 8 mm; see figure 1 in (Stang, Klinkhamer & van der Meijden 2006). Finally, we 

classified flower visitors according to whether they are capable of buzz pollination (yes vs. no), and 220 

if they were central place foragers (yes vs. no). As our study represents a major effort of data 

sampling at a global scale, we could not measure intra-specific differences for all flower-visitor 222 

species in all crop systems and we focus only on inter-specific differences (i.e. mean values per 

species for all crop systems). However, except for size measurement (body and mouthparts), these 224 

traits (e.g. sociality) are not likely to vary among individuals within a species. 

 Crops were also classified according to four traits expected to be relevant for pollination 226 

success (Table S1) (Fontaine et al. 2006). Flower diameter at the widest part of the flower was 

classified as small (1–10 mm), medium (> 10–35 mm), or large (> 35 mm). Nectar accessibility, 228 

high vs. low, reflected the accessibility of the nectar resources (nectaries) to the flower visitors 

(Stang, Klinkhamer & van der Meijden 2006; Fontaine et al. 2006; Junker et al. 2013). Crops with 230 

low nectar accessibility had narrow or tubular flowers, and showed a ratio between flower diameter 
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(mm) and the distance of the nectaries to the anthers (mm) lower than 1.5. Generally, crops with 232 

less accessible nectar are expected to suffer a greater degree of nectar robbery (e.g. see page 178 for 

oilseed rape in Free 1993). For acerola and annato, crops that do not secrete nectar, the 234 

classification refers to accessibility of oil and pollen, respectively. Pollinator dependence was 

defined as the percentage of yield reduction in the absence of pollinators (Klein et al. 2007). We 236 

also classified crops according to their typical duration of flowering into short (< 10 days per plant), 

medium (10–25 days), or long (> 25 days). 238 

 We chose three complementary, uncorrelated, trait diversity indices (Laliberté & Legendre 

2010; Mouchet et al. 2010) and calculated these indices using the eight traits of flower visitors 240 

described above as predictors of fruit set. Trait richness, defined as the total branch length of a trait 

dendrogram, measures the extent of trait complementarity among species (Petchey & Gaston 2006). 242 

This index is highly correlated with the trait richness proposed by Villéger, Mason & Mouillot 

(2008) but allows quantification of assemblages with low species richness. Trait evenness is defined 244 

as the regularity of the abundance distribution in the volume of the trait space occupied by the 

pollinator assemblage (Villéger, Mason & Mouillot 2008). Trait dispersion is defined as the mean 246 

distance in multidimensional trait space of individual species to the centroid of all species, and is 

mathematically related to Rao's Q (Laliberté & Legendre 2010). 248 

 The community weighted mean (hereafter, CWM) is a single trait index that provides an 

estimate of the trait states that dominate in a community (i.e. trait identity; Díaz et al. 2007). It is 250 

calculated by weighting the measure of a trait by the relative abundance of all species carrying that 

trait, and summing over all trait states. For example, CWMs for body size range from zero when all 252 

species in a field are tiny to four when all species are large, whereas CWMs for sociality range from 

zero when all species are solitary to one when all species are social. Package FD (R Development 254 

Core Team 2013) and publicly-available code (https://github.com/ibartomeus/fundiv) were used to 

calculate all indices. 256 
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Statistical analyses 258 

Observations for fruit set and each predicting variable (y) in each field (i) of each crop system (j) 

were standardized using z-scores (𝑧𝑖𝑗 =
(𝑦𝑖𝑗−𝑦𝑗¯ )

𝑆𝐷𝑗
) to allow comparisons among crop systems, despite 260 

contrasting means (𝑦�̄�) and standard deviations (𝑆𝐷𝑗), and differences in methodology. Unlike other 

standardizations, such as logarithms, z-scores do not modify the form (e.g. linear or curvilinear) of 262 

the relationship between response and predicting variables. Furthermore, z-scores allow for direct 

comparison of the values of the partial regression coefficients, and therefore are useful for 264 

understanding the relative effects of predicting variables. 

 We evaluated how trait richness varied with species richness across fields (and the same for 266 

trait and species evenness). In case of functional redundancy, trait richness would increase with 

species richness across sites with a regression coefficient < 1. Alternatively, in the case of little 268 

functional overlap between species, an approximately one to one relationship would be expected 

(see Introduction). Because both trait and species richness are random variables, model I 270 

regressions (e.g. through ordinary least squares) will underestimate the slope of the linear 

relationship (see section 10.3.2 of Legendre & Legendre 1998). Instead, we performed model II 272 

regressions, as the emphasis was not on forecasting trait richness but on estimating the correct value 

of the slope for the relationship between trait and species richness (R software version 3.0.2, 274 

lmodel2 package, lmodel2 function) (R Development Core Team 2013; Legendre 2014). Among 

the estimation methods for model II regressions, we chose major axes because both variables were 276 

in the same units (z-scores), variance of error was about the same for both variables, and 

distribution was approximately bivariate normal (Legendre & Legendre 1998). 278 

 To forecast fruit set, we estimated the influences of a priori selected combinations of 

predicting variables through general linear mixed-effects models (R software version 3.0.2, nlme 280 

package, lme function, with Gaussian error distribution) (R Development Core Team 2013; 
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Pinheiro et al. 2014), which are effective for integrated analysis of data from many sources (Qian et 282 

al. 2010). This approach produces similar results to Bayesian hierarchical models when 

uninformative priors are employed, especially with large samples, as in our case (Gelman & Hill 284 

2007; Qian et al. 2010). By including crop system as a random variable, our models estimated 

intercepts (αj) for each system (j) to account for the hierarchical data structure and differences 286 

among systems (random intercept models) (Gelman & Hill 2007; Qian et al. 2010). Each partial 

regression coefficient (β+) was considered a fixed effect reflecting the influence of a predicting 288 

variable on fruit set over all crop systems. We tested the Gaussian and homoscedasticity 

assumptions for the standardized residuals of the models with graphical analyses and Kolmogorov-290 

Smirnov tests (Type I error rate = 0.05). These assumptions were valid in all cases. 

 To test whether trait diversity better predicts fruit set than species diversity, we compared 292 

Akaike’s Information Criterion (hereafter, AIC) values for three a priori models (Table S3). All 

models included visitation rate to control for abundance variation among fields, combined with 294 

either species richness and evenness based on Pielou's J (model A), trait richness and evenness 

(model B), or trait dispersion (model C) as predicting variables. Model B is conceptually equivalent 296 

to model A but used trait instead of species diversity indices, whereas model C was included to be 

comprehensive in the trait indices employed (see previous section). In the three models we 298 

estimated all possible interactions among predicting variables. We expected models B and C to 

show lower AIC than model A (see second paragraph of the Introduction). We also present a fourth 300 

“best” model, which was the one with the lowest AIC, after evaluating the models resulting from all 

possible combinations of the six predicting variables (visitation rate, species richness, species 302 

evenness, trait richness, trait evenness, and trait dispersion) and their paired interactions (MuMIn 

package, dredge function) (Bartoń 2014). The four models were compared to a fifth, “null” model 304 

without any fixed predicting variable to understand if they provide any relevant fit. The five models 

did not present multicollinearity, and all variance inflation factors (VIFs) were lower than 1.4 (see 306 
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also Table S4). AIC values were obtained based on maximum likelihood estimates of regression 

coefficients, because models differed in the fixed structure but shared the same random structure 308 

(random intercepts for different crop systems), whereas parameter estimates for models presented in 

tables and figures were obtained using the restricted maximum likelihood method (Zuur et al. 310 

2009). 

 It is important to note that evenness indices have different approaches for weighting rare and 312 

common species and this can influence the results (Ricotta & Avena 2003; Marini et al. 2014). 

Therefore, we repeated the analyses using nine other evenness indices, including Evar, inverse of 314 

Simpson index, and seven evenness profiles covering the entire spectrum of weights for dominant 

species (Ricotta & Avena 2003; Marini et al. 2014). These analyses did not modify our conclusions 316 

based on Pielou's J (data not shown). 

 Finally, we evaluated how individual traits of flower visitors and crops (trait identity and 318 

matching) might increase our ability to predict fruit set. Specifically, we compared AIC of four a 

priori, mixed-effects models of the influences of selected crop traits, CWM of flower visitor traits, 320 

and their interaction on fruit set (Table S5). An interaction between crop traits and flower visitor 

traits indicates trait matching, whereas no interaction indicates that a given trait is best for all crops 322 

(i.e. only trait identity). In addition, the models always included all the fixed effects of the best 

model tested in Table S3. Among the eight traits measured for flower visitors, we selected three for 324 

which we had a priori expectations (Stang, Klinkhamer & van der Meijden 2006; Fontaine et al. 

2006; Hoehn et al. 2008; Albrecht et al. 2012; Martins, Gonzalez & Lechowicz 2015) and for 326 

which we found variation within and across studies, namely sociality, mouthpart length, and body 

size (e.g. little variation was found for cleptoparasitism, as most flower visitors were non-328 

cleptoparasitic, see Results section). Similarly, we selected four relevant crop traits: nectar 

accessibility, degree of pollinator dependence, flower diameter, and flowering length. The four 330 

models included the three selected flower-visitor traits but varied in the crop trait considered to 
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evaluate trait matching. We always estimated all possible interactions among predicting variables. 332 

We also compared these four a priori models with the previous best model, with the null model, 

and with the model with the lowest AIC after evaluating the models resulting from all possible 334 

combinations of the predicting variables and their pair interactions (MuMIn package, dredge 

function) (Bartoń 2014). None of the models presented multicollinearity, and all VIFs were lower 336 

than 2 (see also Table S4). 

 338 

Results 

Crop flower visitors were typically polylectic, non-cleptoparasitic, central place foragers, and active 340 

during the whole flowering period of the crop (Table S2). However, flower visitors had contrasting 

mouthpart lengths, body sizes, social behaviour, or buzz pollination behaviour. Community 342 

weighted means for these traits did not differ among crops with high vs. low nectar accessibility 

(Fig. S1), different flower diameter, pollinator dependence, or flowering length, as linear mixed-344 

effects models including crop traits as predictors of CWMs showed no improvement (lower AIC) to 

null models. On average, fields with bigger flower visitors (CWMs for body size) also had greater 346 

dominance of flower visitors with larger mouthparts (CWMs for mouthpart length; Fig. S2, Table 

S4). 348 

 Trait and species richness were strongly and positively associated across fields, indicating 

low redundancy among species of flower visitors (Fig. 1). Similarly, trait and species evenness were 350 

positively associated across fields. In both cases, the slopes of the model II regressions did not 

differ from a one to one relationship (Fig. 1), as denoted by the 95 % confidence intervals (CI 352 

richness: 0.90–1.13; CI evenness: 0.85–1.34). We found no clear improvement (lower AIC) when 

considering curvilinear relationships between trait and species richness (or evenness), and therefore 354 

we present only models with linear form. In addition, there was no benefit of including crop system 

specific slopes or intercepts (Fig. S3). 356 
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 Fruit set increased with trait and species diversity of flower visitors across fields worldwide 

(models A and C in Table S3). However, trait diversity did not improve model fit on fruit set 358 

beyond species diversity, as models including trait diversity indices did not achieve lower AIC 

(compare models B and C to model A). The model with the lowest AIC included visitation rate, 360 

species richness, species evenness using Pielou's J, and richness × evenness interaction (model 

“best”). Fruit set increased linearly with species richness of flower visitors, but richness effects 362 

were greater in fields with high species evenness as denoted by a positive richness × evenness 

interaction (Fig. 2). The relationships of fruit set with species richness and evenness were 364 

independent of visitation rate, which was also positively associated to fruit set and showed the 

highest partial regression coefficient. In our synthesis, richness ranged between 0 (zero visits 366 

recorded in those fields) and 28 species, with a mean value of 7 species per field (the median was 6 

species per field). For evenness, we found all the possible range of values for Pielou's J (from 0 to 368 

1) showing a mean of 0.67 per field (the median was 0.73 per field). For visitation rate and species 

richness, we tested models with both linear and curvilinear (i.e. second order polynomial) forms. 370 

We found no clear improvement (lower AIC) when considering curvilinear relationships in mixed-

effects models, and therefore we present only models with linear form. In addition, inclusion of 372 

system-specific partial regression coefficients (βj) for each of the predicting variables (random 

slopes) in the best model did not decrease AIC, showing that the fixed effects (β+) considered 374 

explained the heterogeneity of responses among crop systems. 

 In contrast to trait diversity, models including information on trait identity and matching 376 

increased model fit beyond species diversity and visitation rate (see models in Table S5). 

Specifically, the model with the lowest AIC (model “best”) included as predictors of fruit set the 378 

CWM of sociality, body size, and mouthpart length, the nectar accessibility of the flowers, and the 

interactions (trait matching) of CWM for body size and mouthpart length with the nectar 380 

accessibility, in addition to visitation rate, species richness, species evenness, and richness × 
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evenness interaction. Fruit set of crops with less accessible nectar decreased at fields with flower 382 

visitors of larger bodies and shorter mouthparts (Fig. 3; Fig. S4), whereas crops with more 

accessible nectar showed the opposite pattern (Fig. 3; Fig. S5). The values (in z-score scale) of the 384 

partial regression coefficients (β+) for the interactions (trait matching) of CWM for body size and 

mouthpart length with the nectar accessibility were the greatest (Table S5). The β+ values for 386 

visitation rate, species richness, and species evenness were similar to the ones obtained from a 

previous model (“best” in Table S3) that did not include as predicting variables aspects of trait 388 

identity and matching, reflecting their independent contribution to model fit on fruit set. Similarly, 

our results were not confounded by differences in crop management system (Table S6). The effects 390 

of CWM for sociality on fruit set were not clear. 

 392 

Discussion 

If trait diversity indices predict functioning better than species diversity indices, it suggests that 394 

there are a subset of traits shared across species that are overwhelmingly important for functioning. 

Contrary to this idea, here we demonstrate that although trait diversity indices were positively 396 

related to crop fruit set (functioning), they did not provide greater model fit compared to species 

diversity indices (including both richness and evenness). Furthermore, we found very low 398 

functional redundancy among flower-visitor species, suggesting that there is not enough sharing of 

important traits among species to make the trait diversity indices more useful than species diversity. 400 

 Worldwide, we found positive and linear (one to one) relationships between trait and species 

richness across 33 crop systems. It is important to note that trait richness increases, and functional 402 

redundancy decreases, with the number of traits included in richness indices (Cadotte, Carscadden 

& Mirotchnick 2011). In our synthesis, the low functional redundancy across flower-visitor species 404 

was mainly related to different combinations of mouthpart lengths, body sizes, social behaviour, 

and buzz pollination behaviour. Therefore, our results cannot be explained by an excess of traits, 406 
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but by the variation across species in the a priori selected morphological and behavioural traits 

known to affect pollination efficiency (Fontaine et al. 2006; Hoehn et al. 2008; Campbell et al. 408 

2012; Albrecht et al. 2012; Martins, Gonzalez & Lechowicz 2015). In contrast, previous evidence 

indicated that the relationship between trait and species diversity was complex and context 410 

dependent (Cadotte, Carscadden & Mirotchnick 2011). This lack of consistency across studies may 

reflect different criteria for trait selection, a limitation that was overcome in our synthesis. 412 

 The failure of trait diversity indices to improve predictions of fruit set is not explained by a 

lack of information on key traits in our synthesis, because we did find important trait effects, as 414 

specific combinations of individual traits of flower visitors and crops (i.e. interactions) increased 

model fit to species diversity. Specifically, flower visitors with large bodies and short mouthparts 416 

were more effective on crops with high rather than low nectar accessibility (i.e. trait matching). 

These results agree with previous studies on wild plants that thoroughly discussed the benefits of 418 

longer pollinator mouthparts for narrow or tubular flowers (Fontaine et al. 2006; Campbell et al. 

2012). However, here we could test the effects of body size and mouthpart length on functioning 420 

after accounting statistically for the co-variation between both, and our findings on body size are in 

contrast to previous studies that could not separate these effects (Fontaine et al. 2006; Campbell et 422 

al. 2012). Larger bodies may deposit more pollen (e.g. Hoehn et al. 2008) and can increase the 

probability that pollinators contact the reproductive parts of crops with open flowers and accessible 424 

nectar. Examples in our data include the larger bodies but similar mouthparts of Xylocopa frontalis 

and X. grisescens vs. Apis mellifera making the former more effective pollinators of passion fruit 426 

(Fig. S5, Table S2). Such benefit of increased body size for improved pollination may not be shared 

in crops with more compact flower structures and less accessible nectar. Reasons for this may be 428 

related to nectar robbery and flower damage (Morris, Vázquez & Chacoff 2010; Aizen et al. 2014), 

which are more likely by larger insects possessing stronger mandibles. For example, rates of raiding 430 

the relatively inaccessible nectar of field bean flowers can be higher for larger Bombus terrestris 
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when compared to the smaller Apis mellifera, despite similar mouthpart lengths (Fig. S4, Table S2; 432 

for nectar robbery data see Garratt et al. (2014). These potential mechanisms should be tested in 

experimental studies. 434 

 Our results agree with studies on wild plants that emphasize the role of trait matching in 

structuring plant–pollinator networks (Stang, Klinkhamer & van der Meijden 2006; Vázquez et al. 436 

2009; Junker et al. 2013). Here, we further demonstrate that trait matching increases functioning at 

the agroecosystem level across crops worldwide, independently of the positive contribution of 438 

species abundance, richness, or evenness. Moreover, in relative terms, the effects (partial regression 

coefficient values) of trait matching on functioning were even greater than the effects of species 440 

abundance, richness, or evenness. 

 The positive effect of species richness on fruit set was stronger in fields with high species 442 

evenness, suggesting that additional species contribute more to agricultural functioning when their 

abundances are more similar. Effects of species richness and evenness were independent from those 444 

of visitation rate (abundance), which agrees with other results suggesting that increasing pollinator 

diversity enhances pollination (e.g. Schleuning, Fründ & García 2015)). These effects are expected 446 

because of different non-exclusive mechanisms (Tscharntke et al. 2005), including pollination niche 

complementarity (Hoehn et al. 2008; Fründ et al. 2013), interspecific interactions such as synergism 448 

(Greenleaf & Kremen 2006; Carvalheiro et al. 2011; Brittain et al. 2013), or sampling effects 

(Cardinale et al. 2006; Schleuning, Fründ & García 2015). However, our study contrasts with 450 

previous evidence (Garibaldi et al. 2013) in finding an effect of richness that is statistically 

independent from visitation rate (abundance), which could be a consequence of the different set of 452 

studies included in our synthesis (see Materials and methods). Furthermore, here we show for the 

first time an ubiquitous and strong positive interaction between the effects of richness and evenness. 454 

Pollinator evenness may enhance fruit set via pollination complementarity among flower visitors, or 

diminish it if a dominant species is the most effective pollinator (Hillebrand, Bennett & Cadotte 456 
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2008). Our results clearly point to the former, positive effect of species evenness on functioning. 

Moreover, a positive interaction between richness and evenness may further suggests synergistic 458 

interactions among species of flower visitors, such as has been found between honey bees and wild 

insects in the few studies on this topic (Greenleaf & Kremen 2006; Carvalheiro et al. 2011; Brittain 460 

et al. 2013). Previous studies have shown that agricultural expansion and intensification reduces 

both species richness of pollinator assemblages and wild insect visitation (e.g. Garibaldi et al. 462 

2011). In contrast, the effects of agricultural expansion and intensification on species evenness have 

been rarely accounted for (Marini et al. 2014), but may also drive ecosystem functioning 464 

(Bommarco et al. 2012). 

 Sustainable intensification of agroecosystems represents one of the greatest challenges for 466 

humanity (Bommarco, Kleijn & Potts 2013). To succeed in this challenge it is critical to quantify 

the relationships among trait diversity, species diversity, and agroecosystem functioning 468 

(Schleuning, Fründ & García 2015). Here we show that crop fruit set, an important component of 

agricultural yield, can be increased through both higher species richness (showing a linear increase, 470 

ranging from 0 to 28 species in our synthesis) and evenness (ranging from 0 to 1 in our synthesis) of 

flower visitors. Fruit set might be further enhanced by agricultural practices targeted to promote 472 

specific flower visitors with traits that match those of the focal crop. Indeed, trait matching showed 

the greatest influence on fruit set. Current management practices for greater pollination, however, 474 

focus mostly on enhancing flower-visitor abundance, often of a single species, namely Apis 

mellifera. Although greater abundance is an important contributor to pollination function, our 476 

results show that it cannot replace the additional benefits of species richness, species evenness, and 

trait matching between flower visitors and crops. 478 
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 634 

 

Figure legends 636 

Fig. 1. Globally, trait and species richness (or evenness) of insect visitors to crop flowers are 

strongly linked. Left panel: trait richness of flower visitors increases with species richness at an 638 

indistinguishable rate (solid line) from a 1:1 relationship (broken line) indicating low functional 

redundancy among species. Right panel: trait evenness also increases with species evenness at an 640 

indistinguishable rate (solid line) from a 1:1 relationship (broken line). The solid line is the overall 

regression where each point is a field in a crop system. Data from individual crop systems were 642 

standardized by z-scores prior to analysis, permitting comparison of fields across crop systems. 

 644 

Fig. 2. Fruit set increases with species richness of flower visitors at a higher rate in assemblages 

with high (blue: fields with evenness higher than the 3
rd

 quartile) than low evenness (orange: fields 646 

with evenness lower than the 1
st
 quartile). The solid line is the overall regression where each point 

is a field in a crop system. Data from individual crop systems were standardized by z-scores prior to 648 

analysis, permitting comparison of fields across crop systems. 
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 650 

Fig. 3. Flower visitors with large bodies and short mouthparts are more effective on crops with high 

(open flowers) rather than low (narrow, tubular flowers) nectar accessibility. Data show fruit set of 652 

crops with high (orange) and low (blue) nectar accessibility as a function of community weighted 

means (CWM) of flower visitors for body size (upper panel) and mouthpart length (lower panel). 654 

The solid line is the overall (fixed-effect) prediction from the best model (Table S5), where each 

point is a field in a crop system. Data from individual crop systems were standardized by z-scores 656 

prior to analysis, permitting comparison of fields across crop systems. Flowers of almond (left) and 

red clover (right) are shown as examples of crops with high or low nectar accessibility, respectively 658 

(colours indicate nectar location within the flowers). 

 660 

 

Supporting Information 662 

Additional Supporting Information may be found in the online version of this article: 

Appendix S1. Data supporting our results. 664 

Appendix S2. Methods for unpublished studies. 

Table S1. Plant traits and other characteristics of the 33 crop systems analyzed. 666 

Table S2. Examples of abundant flower visitors and trait classification. 

Table S3. Akaike’s Information Criterion (AIC) and partial regression coefficients for mixed-668 

effects models of the influences on fruit set, including for flower visitors: visitation rate, species 

richness, species evenness, trait richness, trait evenness, and trait dispersion. 670 

Table S4. Correlation coefficients between the quantitative variables measured in our study. 

Table S5. Akaike’s Information Criterion (AIC) and partial regression coefficients for mixed-672 

effects models of the influences on fruit set, including for flower visitors: visitation rate, species 

richness, species evenness, community weighted mean (CWM) of sociality, CWM of body size, and 674 
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CWM of mouthpart length. 

Table S6. The inclusion of crop management practices, such as policulture vs. monoculture, do not 676 

influence our results. 

Fig. S1. Sociality, body size, and mouthpart length of flower visitors do not differ between crops 678 

with high vs. low nectar accessibility. 

Fig. S2. Community weighted means (CWMs) of body size and mouthpart length are positively 680 

related across crop fields globally. 

Fig. S3. For contrasting crops worldwide, trait richness of flower visitors increases with species 682 

richness at a 1:1 relationship indicating low functional redundancy among species. 

Fig. S4. Fruit set of crops with less accessible nectar generally decrease at fields with bigger flower 684 

visitors. 

Fig. S5. In contrast to crops with low nectar accessibility, fruit set of crops with high nectar 686 

accessibility generally increase at fields with bigger flower visitors. 


