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a b s t r a c t

Currently, multi-attribute auctions are becoming widespread awarding mechanisms for contracts in con-
struction, and in these auctions, criteria other than price are taken into account for ranking bidder propos-
als. Therefore, being the lowest-price bidder is no longer a guarantee of being awarded, thus increasing
the importance of measuring any bidder’s performance when not only the first position (lowest price)
matters.

Modeling position performance allows a tender manager to calculate the probability curves related to
the more likely positions to be occupied by any bidder who enters a competitive auction irrespective of
the actual number of future participating bidders.

This paper details a practical methodology based on simple statistical calculations for modeling the
performance of a single bidder or a group of bidders, constituting a useful resource for analyzing one’s
own success while benchmarking potential bidding competitors.

© 2015 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The procurement process in the construction context is charac-
terized by contractors that usually bid short-termproject contracts
rather than longer-term supply chain contracts [1]. In addition, the
unique project delivery system constitutes another founding stone
of this industry [2]; therefore, the supply chain in construction is
disaggregated and distinguished by a collection of large and small
firms, related bulkmaterial suppliers, andmany other support pro-
fessionals [3]. In this context, the supply chain for a construction
project generally encompasses architects and engineers, prime and
specialty subcontractors, and material suppliers characterized by
adversarial short-term relationships and driven by the competitive
bidding process inwhich the ‘‘lowbidwins’’ has been the dominant
pricing model for many years [3].
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In this sense, in 1974, Pim implied that any bidder who faces an
auction against otherN�1 competitors should expect a 1/N prob-
ability value of being the lowest bidder [4]. For obvious reasons,
Pim’s model was named the ‘‘equal probability model’’ [5]; how-
ever, this model did not take into consideration two major issues.
First, there are usually bidders who outperform others, i.e., not all
bidders can be equally successful when competing simultaneously
under the same tender; otherwise, there would not be a winner
(Pim’s model therefore produces results that are only valid on av-
erage). Second, the number of biddersN is not generally known be-
fore the tender reaches its deadline, so the probability value 1/N ,
despite being extremely simple, cannot be calculated either.

Of course, other bid tender forecasting models appeared
(e.g., Carr (1982); Friedman (1956); Gates (1967); Skitmore (1991);
and Wade and Harris (1976) [6–10] to cite some of the most
representative) that solved, at least partially, these two major dis-
advantages of Pim’s model at the expense of adding additional hy-
potheses and requiring more elaborated calculations. In fact, since
then, Pim’smodel has always been used as amere ‘‘controlmodel’’.

Nevertheless, it remains unclear howwell any company or bid-
der performs concerning its economic bids [11] and, in particular,
how effective it is when compared to its competitors, especially
in multi-attribute auctions in which other awarding criteria apart
from the price are considered [12,13]. Hence, economic positions
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other than the first (lowest bid) can eventually win when taking
into account the technical score. In this connection,multi-attribute
auctions, due to their non-price criteria, have been proven to in-
crease project success considering the whole project cycle [14,15],
a fact that will undoubtedly encourage their use.

Initially, an alert reader might think that trying to model any
bidder’s performance would be as simple as calculating a relative
frequency curve thatwould describe how often this bidder ends up
being the first (lowest), second (second lowest), third. . . and so on,
but in real-life situations, there are usually an insufficient number
of previous encounters among bidders for these probability values
to be calculated with any representativeness and/or accuracy [16].
Therefore, this straightforward approach is not generally feasible,
and an alternative is required.

Concerning the importance of describing a bidder’s position
performance, it is worth highlighting that the term ‘‘performance’’
is far more complex than a Win/No Win ratio [17]. Instead, the
concept of performance is directly related to how often any bidder
reaches high positions. For example, a bidder that was repeatedly
secondwhen competing against 30 bidderswouldmost likely have
higher chances of being first in future tenders if it competes against
only five bidders. However, assuming similarity between tenders,
would it be able to beat another bidder that repeatedly occupied
the first position competing against five bidders? These and
other insights can be discovered by using a position performance
approach without the need of complicated statistical procedures.

The importance of using themethod suggested above lies in the
fact that any bidder who needs to know how effective he or she
is when competing against others will always need a framework
with which to compare performances with those of rivals [18], and
this can only be effectively achieved by using a quantitative and
objective approach that, to the best of our knowledge, has not been
proposed within the bidding literature to date.

This paper is organized as follows: Section 2 reviews the short
literature on bidding performance, and then it presents the ac-
tual construction tender dataset that will be used as an example.
Finally, it devotes the third subsection to outlining the method-
ology proposed for calculating a bidder’s position performance.
Section 3 develops calculations by means of a real case study, tak-
ing advantage of the tender dataset introduced in Section 2.2. Sec-
tion 4 presents the major results including a validation subsection,
and Sections 5 and 6 present the discussion addressing the math-
ematical limitations of the methodology and the conclusions, re-
spectively.

2. Materials and methods

2.1. Literature review

Bidding performance concerns the relationship between bids
submitted by different bidders in a competition [19]. Currently, as
a likely consequence of the near global economic slowdown and
construction demand shrinkage, the internationalization of con-
struction companies has become of significant interest [20], and
this jump into the international market forces firms to take part in
foreign countries’ bidding processes, multilateral funds and over-
seas tenders [21]. As a consequence, to beat other local and foreign
competitors, a culture that enhances a company’s competitiveness
and performance becomes vital for success [22].

Similarly, predictive information concerning the competitive-
ness of contractors is a potentially valuable asset formany decision
makers involved in the construction procurement process [23].
For instance, it is frequently stated that ‘‘the resulting fierce com-
petition for jobs forces construction companies to look for more

sophisticated analytical tools to analyze and improve their bid-
ding strategies’’ [17]; this leads to the conclusion that ‘‘[construc-
tion] managers need statistical estimation techniques for effec-
tivelymining data generated by auctions to predict future behavior
and to dynamically improve operational decisions’’ [24].

One approach to acquiring competitiveness information is by
monitoring past bidding behavior [23], but this seems to be done
rather subjectively in the construction setting [25], in contrast to
other industries in which there seems to be a more structured
monitoring [26], in particular in terms of innovative approaches to
procurement (e.g., online auctions, dynamic bidding models, com-
binatorial auctions, sequential markets, e-marketplaces).

In a more general construction context, scattered efforts have
been made to develop conceptual frameworks for assessing and
comparing construction company’s performance [27].

Obviously, this research gap also encompasses the lack of
frameworks for bidding performance [28–30], for which only spo-
radic studies have appeared, most of them related to bidding ac-
curacy, namely, cost estimating accuracy [31,32]. The scarce num-
ber of measurements for bidding competitiveness in the literature
proposes indices that describe how close each bidder i’s bid (bi)
was to the lowest bidder’s bid (bmin) in a particular auction, for in-
stance [19]:

C = bi � bmin

bmin
(1)

where C is the measure of competitiveness and ranges from 0
(maximum competitiveness, when bi = bmin) to +1 (ideally,
when bi = 1 or is infinitely expensive).

However, concerning competitiveness in bidding, paradoxi-
cally, a significant amount of research has been published linking
the size of the bidder and the size of the contracts, i.e., proving that
there are usually some affinities between them [19,33].

On the other hand, Data Envelopment Analysis (DEA), a non-
parametric method for the estimation of production frontiers, has
begun to be used to gain insight into bidders’ comparative perfor-
mances. This approach was first used in 2005 to develop a con-
tractor prequalification system aiming to assist auctioneers in ten-
ders to select the best contractors, as well as to inform contrac-
tors concerning their performance providing guidance for future
improvement [34]. Five years later, another study stated that the
best bids/candidates in the selection process are usually located on
the DEA frontier, an outcome that has immediate applications re-
garding bid/no-bid decisions [35].

Particularly, the present work differs from these two studies on
DEA in terms of how the concept ‘‘performance’’ is applied and to
what end within a construction contract. Namely, ‘‘performance’’
in theseworks is conceived as how effectively the bidders carry out
a contract when awarded, a measurement that can be used later
by the auctioneer to rate future bidding proposals and to compare
them, which definitively has nothing to do with analyzing how
likely it is that each potential bidder will occupy a given position
when competing against others, themain goal of the present study.

On the other hand, quite recently, Wang et al. [36] developed
a Revenue/Cost Analysis Model for competitive bidding strategy
planning. This approach used Price/Performance analysis models
(P/PAM), marginal utility functions, and profit function to form
a new method for planning the bidding strategy of maximum
expected profitwhile trying to take into account that the auctioned
item generally varies with the price.

Our study can be considered complementary to the one
developed by Wang et al. [36], as the latter developed a tool for
obtaining the maximum profit when bidding mid-term, but the
method itself requires highly processed information that cannot
always be derived solely from the application of marginal utility
and profit functions, unlike the tool proposed here that can be
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applied when a short and recent tender dataset involving previous
auctions from the same owner is available.

Finally, Ballesteros-Pérez et al. [18] devised a methodology
for measuring bidding performance applicable for capped tenders
(tenders with a maximum price threshold set by the auctioneer).
This attempt is the most similar to the model proposed here, but it
includes several improvements. First, the current method is valid
for virtually any type of auction (capped and uncapped); second,
it provides more robust statistical measures concerning the bid-
ding performance and a series of newprobability distributions that
improve the fitness with construction tendering data; and third, it
proposes closed mathematical expressions to calculate the posi-
tion probability curves of any bidder. Nevertheless, it goes without
saying that the first work by Ballesteros-Pérez et al. [18] actually
paved the path for this study and even proposed a first expression
to calculate group bidding performance, which will also be used
here later.

Therefore, although recognitionworthy,many of these previous
publications did not take into account the way each bidder’s
performance can be easily described by means of its position
probability curve, a calculation that is relatively simple, though not
obvious.

In summary, due to the current competitive environment of
the construction industry, ‘‘companies need to be aware of their
performance status as well as their competitors’ efficiency lev-
els’’ [37]. There are multiple recent studies that indicate that past
performance conditions not only predict future owner–contractor
relationships [38] but also allow bidders who use reinforcement
learning bidding strategies to consistently outperform those who
do not [39]. This eventually means that bidders are still urged to
implement systematicmethods of performance assessment far be-
yond the common Bid/No bid decisions [40] to avoid subjective
judgments based on past experience. This paper provides a fresh
start when addressing this recurrent problem.

2.2. Tender dataset

The methodology presented later will take advantage of a bid
tender dataset already published in 1994 (see Table 1 in Ref. [41]).
This dataset contains 51 contracts and was originally donated by
a construction company operating in the London area (United
Kingdom) fromApril 1980 to June 1982. The number of bidders (N)
for each tender ranges from 3 to 10 participants, and the identities
of the actual 93 companies were replaced by a non-correlative
random numerical code to preserve confidentiality.

Specifically, this bid tender dataset was chosen for several rea-
sons. First, it is already published, so it does not need to be repeated
here. Second, anyone can replicate the results without suspicion of
authors’ manipulation. Third, the size of the tender dataset is suffi-
ciently large to allow representative performance calculations but
not so large that these calculations occupy too much space.

The next logical step was to select the bidder performances to
focus on. For illustrative purposes, three out of the 93 bidders were
chosen, namely, 55, 152 and 24. They were selected because they
reflect very different performance levels: The first exhibited poor
performance; the secondwas an average bidder; and the third was
a highly effective bidder. In addition, they also took part in a differ-
ent set of contracts (each of the 51 contracts boasted a participation
of one, two, three or none of these three bidders) and a different
number of times (bidder 55 entered 20 contracts, 152 participated
in 9 contracts, and 24 took part in 7 contracts).

2.3. Methodology outline

The methodology proposed is valid for nearly any type of
bidding process that are currently used in the construction set-
ting, that is, simultaneous and sequential bidding, first- and
second-price auctions, sealed and open formats, etc., because the
basic assumptions of the model are rather simple and shared
among auction formats. Unfortunately, the model also has some
drawbacks because to keep it as simple as possible, it was neces-
sary to ignore othermore complex (although likely) scenarios such
as the existence of cover pricing and non-economic rational bid-
ding. Finally, an additional limitation is the assumption that bid-
ders will behave as they behaved in the past, an issue that can
be partially minimized by using only a recent and short timespan
when choosing historical bidding data.

Concerning implementation of the methodology, four steps
must be sequentially followed:

1. Choose an adequate parameter for measuring bidders’ posi-
tions. This parameter, which will be named Pik, describes on a
scale from 0 to 1 how close bidder iwas to the first (lowest) and
last (highest) bidders when taking part in auction k.

2. Adjust probability distributions for modeling both the bidder
positions (by means of the parameter in step 1) and the num-
ber of bidders (Nk) who took part in previous encounters. That
is, when modeling a number of auctions, we will have a series
of Pik values for each bidder and a series ofNk total participating
bidders for all the auctions analyzed.Wewill fit a different Beta
or Kumaraswamy distribution to the Pik values of each bidder,
whereas a single Poisson, Normal or Laplace distribution will
constitute the best fit for the series of Nk values.

3. Obtain the joint probability distribution from the distributions
calculated in step 2 to obtain the unique bidder’s position per-
formanceprobability curve. Thepositionperformanceprobabil-
ity curve for bidder i describes the probabilities that this bidder
i will occupy the first, second, third and so on positions in a fu-
ture tender assuming that this bidder will perform as it did in
the past but without the need of knowing how many bidders
will participate in that future tender. In other words, we will
cross the probabilities obtained by the distribution that repre-
sent the number of biddersNk (Poisson, Normal or Laplace)with
the probabilities of the distribution that models each bidder i’s
position performance parameter Pik (Beta or Kumaraswamy).

4. Optionally, the three previous steps can be repeated or calcu-
lated simultaneously for several bidders, and then the curves
are combined into a single group performance curve. This curve
will allow knowing how likely it is that at least one of the bid-
ders analyzed as a groupoccupies the first, second, and so onpo-
sitions, a very useful result when trying to beat a specific group
of key competitors.

These four stepswill be progressively explained in detail in Sec-
tions 3 and 4.

3. Calculations

This section presents the necessary calculations for themethod-
ology summarized in Section 2.3 to be implemented along with a
case study taking advantage of the tender dataset introduced in
Section 2.2.

3.1. Position performance parameter selection

A position performance parameter for bidder i in a tender k (Pik)
is defined as the coefficient calculated as a function of the position
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Table 1

Position performance coefficient comparisons.

Position performance coefficient Mathematical expression jik =
1 2 3 4 5
Lowest price (example Nk = 5) Highest price

Pik (chosen) (Nk � jik + 0.5)/Nk 0.90 0.70 0.50 0.30 0.10
P 0
ik (Nk � jik)/(Nk � 1) 1.00 0.75 0.50 0.25 0.00

P 00
ik (Nk � jik + 1)/Nk 1.00 0.80 0.60 0.40 0.20

P 000
ik (Nk � jik + 1)/(Nk + 1) 0.83 0.67 0.50 0.33 0.17

Position performance
coefficient

Distances between bidders j
and j + 1

Central bidder j = (Nk + 1)/2 at
the midrange (0.5)

Bidder jik = 1’s distance
with upper bound (1)

Bidder jik = Nk ’s distance
with lower bound (0)

Pik (chosen) 1/N
k

Yes 1/2N
k

1/2N
k

P 0
ik 1/(Nk � 1) Yes 0 0

P 00
ik 1/N

k

No 0 1/Nk

P 000
ik 1/(Nk + 1) Yes 1/(Nk+1

) 1/(Nk+1

)

that was achieved by the bidder i in tender k (jik) and the number
of total participating bidders in that same tender k (Nk).

In the literature, very few examples of performance parameters
can be found, examples being the following four displayed at the
top of Table 1, and nearly the only exceptions: Pik [30], P 0

ik [18],
P 00
ik [42] and P 000

ik [43]. In addition, in the upper table, a numerical
example for Nk = 5 bidders is given to illustrate how each of these
position performance coefficients calculates the values for a range
of different positions jik from 1 to 5.

The four coefficients share one common feature: They always
range from 0 to 1, and the closer this value is to 1, the higher
the performance of bidder i was in tender k, i.e., the bidder
occupied the first positions. However, they also exhibit important
differences highlighted at the bottom of Table 1 (the lower table).

For example, Pik and P 00
ik keep the value 1/Nk as the constant

distance that separates bidder j from j � 1 and j + 1. This is
important because themagnitude 1/Nk also reflects the equivalent
cumulative probability increment between bids in a tenderwithNk
bidders.

Second, not all of these position performance coefficients dis-
tribute the values symmetrically, i.e., assign a Pik = 0.5 value to
the bidder who occupied the central position (when Nk is an odd
number) or to the average of the couple of bidders who were right
below and above the ideal intermediate position (when Nk is an
even number). Again, this is also important because distributing
coefficient values unevenly on the whole coefficient range causes
problems when later fitting a probability distribution. In addition,
an equivalency between bidders that occupied the same relative
positionswhen competing against differentNk�1 bidders can also
be established. For example, it is logical to attribute the samemerit
to a bidder that ended up being third when competing against five
bidders than to a bidder that was second when competing against
three. This works for any position jik, in addition to the central po-
sition when values are distributed symmetrically. Only Pik, P 0

ik and
P 000
ik grant this condition.
Finally, it is recommended that the position performance co-

efficient avoids assigning the extreme values, that is, 1 and 0, to
the best (jik = 1) and worst (jik = Nk) bidders, respectively. This
last condition, which is only fulfilled by coefficients Pik and P 000

ik , is
based upon the fact that any subset of a bidder’s coefficient values
that are exactly located at the extremes will noticeably worsen the
p-value of the statistical distribution because that curve will nec-
essarily have to work within the finite limits 0 and 1 in the X-axis,
which are related to the probability values 0 and 1 in the Y -axis,
respectively, as well, a fact that is not true when there are several
coefficient values located at either X = Pik = 0 or X = Pik = 1.

Therefore, only one out of the four coefficients proposed
meets the four conditions, the coefficient Pik, and will henceforth
represent any bidder’s position performance irrespective of the
number of bidders Nk.

Finally, it might be worth mentioning that working with the
actual positions (jik) instead of with a from-0-to-1 coefficient is
not generally possible because although it would be an option
to use another probability distribution that fitted these positions
directly from 0 to +1 (the Weibull distribution, for example),
therewouldnot be a sufficient number of previous encounters to fit
that PDF accurately. In otherwords, converting the actual positions
occupied into a coefficient as proposed here allows working with
a substantially lower amount of data.

3.2. Position performance and number of bidders distribution selec-
tion

By using the tender dataset introduced in Section 2.2 with
tenders k = 1, . . . , 51 for bidders 55 (i = 1), 152 (i = 2) and 24
(i = 3), whose respective positions (j1k, j2k, j3k) in those 51 tenders
are known, their respective position performance coefficients
(P1k, P2k, P3k) can be calculated according to the expression chosen
in Table 1 for which the variables were already presented as well:

Pik = Nk � jik + 0.5
Nk

. (2)

If this expression is applied to the 20, 9 and 7 tender bidders
that 55, 152 and 24 participated in (Ti values for i = 1, 2, 3),
respectively, the results can be observed in Table 2.

Furthermore, other calculations are performed at the bottom of
Table 2. Namely, right below the Nk values, the total number of
tenders (T ) as well as their average (µ), standard deviation (� ),
median (m) and Laplace’s scale parameter (b, see Eq. (6)) values
are calculated. These values will be useful for defining the best
probability distribution for Nk later.

In addition, at the bottom, taking into account that the number
of times each bidder entered a tender was known (Ti) and that
the total number of tenders equals 51 (T ), the three bidders’
Participation Ratios (Ri) can also be calculated by dividing Ti by T .

Finally, the four rows at the bottom of Table 2 calculate the
MaximumLikelihoodEstimates (MLE) of the two shapeparameters
for both the Beta distribution (ai and bi) and the Kumaraswamy
distribution (↵i and �i) required to fit the series of the Pik values
for the three chosen bidders (i = 1, 2 and 3).

Concerning the best distribution to fit these series of Pik values,
it is known that the options in terms of the continuous statistical
distributions that are supported on a bounded interval ([0, 1] in
this case) are very short, the Beta distribution being the premier
option [44]. However, the Kumaraswamy distribution is nearly as
versatile as the Beta distribution and will also be considered.

The following are quotes from statistical researchers concern-
ing these two options: ‘‘The Beta distribution is fairly tractable, but
in someways not fabulously so; in particular, its distribution func-
tion is an incomplete beta function ratio and its quantile function
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Table 2

Bidders i = 1, 2 and 3’s coefficients (Pik) and participation ratios (Ri).

Tenders analyzed Bidder ID I 55 152 24
k Nk |Nk � m| j1k P1k j2k P2k j3k P3k

1 6 0.0 6 0.083
2 4 2.0
3 7 1.0
4 6 0.0
5 6 0.0 3 0.583
6 9 3.0
7 7 1.0 6 0.214
8 4 2.0
9 6 0.0

10 4 2.0
11 6 0.0
12 6 0.0 4 0.417
13 4 2.0 3 0.375
14 6 0.0
15 6 0.0 6 0.083
16 3 3.0
17 10 4.0 4 0.650
18 6 0.0 1 0.917
19 9 3.0 9 0.056
20 8 2.0 4 0.563 5 0.438
21 7 1.0 5 0.357
22 6 0.0
23 5 1.0 5 0.100
24 8 2.0 6 0.313
25 6 0.0 4 0.417 6 0.083
26 7 1.0 4 0.500 1 0.929
27 4 2.0 2 0.625
28 7 1.0
29 6 0.0 2 0.750
30 6 0.0 5 0.250 2 0.750
31 6 0.0
32 6 0.0 6 0.083 1 0.917
33 6 0.0 4 0.417
34 7 1.0 1 0.929
35 6 0.0
36 6 0.0 2 0.750
37 9 3.0
38 5 1.0
39 7 1.0
40 8 2.0
41 6 0.0 2 0.750
42 8 2.0 6 0.313
43 6 0.0
44 5 1.0 2 0.700 2 0.700
45 4 2.0 2 0.625
46 7 1.0
47 8 2.0 6 0.313 2 0.813
48 7 1.0 7 0.071 2 0.786
49 5 1.0
50 5 1.0
51 6 0.0

Total # tenders (T ) 51 H
P |Nk � m|H Bidder (i) 1 2 3

Average (µ) 6.235 52.000 Ti 20 9 7
Std. deviation (� ) 1.464 Ri = Ti/T 0.392 0.176 0.137
Median (m) 6.0 Beta distr. param. (ai) (MLE) 0.970 0.849 3.847
Laplace scale param. (b) 1.020 Beta distr. param. (bi) (MLE) 1.775 0.780 1.295

Kumaraswamy’s distribution parameter (↵i) (MLE) 0.859 0.840 3.701
Kumaraswamy’s distribution parameter (�i) (MLE) 1.411 0.781 1.351

the inverse thereof’’ [44]. On the other hand: ‘‘The Kumaraswamy’s
distribution is a much simpler option to use especially in simula-
tion studies due to the simple closed form of both its probability
density function and cumulative distribution function’’ [45].

However, despite its use in the hydrological literature, in which
it dates back to 1980 [45], ‘‘this distribution does not seem to be
very familiar to statisticians’’, and it had not been investigated sys-
tematically until 2009, ‘‘nor had its relative interchangeabilitywith
the Beta distribution been widely appreciated’’ [44].

Particularly, in the case of this analysis, both the PDF and CDF
of the distribution, which better fits the Pik values, will have to be
used, so, for the sake of mathematical simplicity, in this instance,

theKumaraswamydistributionwill be the last standing option. Ad-
ditionally, it is worth highlighting that this is possibly the first time
that this distribution is applied in a constructionmanagement con-
text.

Therefore, Kumaraswamy’s distribution, which will henceforth
be shortened to ‘‘Kum distribution’’, has the following density
(PDF), cumulative (CDF) and quantile functions:
f (x) = f (x, ↵,�) = ↵�x↵�1 (1 � x↵)��1 (3)

F (x) = F (x, ↵,�) = 1 � (1 � x↵)� (4)

Q (y) = F�1 (y) =
�

1 � (1 � y)1/�
�1/↵ (5)

where 0  x = Pik  1 and 0  y = Probability  1.
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Fig. 1. Representation of the bidders i = 1, 2 and 3’s Pik curves goodness of fit for
the Beta and Kumaraswamy distributions.

If the goodness of fit is obtained for both the Beta and Kum
distributions (see Table 3), it can be verified that both provide very
good results (p-values ⌧ 0.05 in all cases).

It must also be noted that the degrees of freedom (d.f.) for
bidders i = 1 and i = 3 do not coincide with Ti � 1, that is, with
19 and 7, but with 15 and 5 instead, because bidder i = 1 had
4 repeated P1k values, whereas bidder i = 3 had 2 repeated P3k
values, which account for that difference.

Finally, the fit of these two distributions is also displayed in
Fig. 1, which shows that the adjustment is very similar for the three
bidders’ Pik series of data.

Once the more suitable option for describing the three bidders’
position performance coefficients (Pik) is calculated, the study
can be carried out on the distribution that best fits the variable
‘‘number of participating bidders’’ (Nk), for which statistics
(µ, � ,m and b) were already calculated in Table 2.

Regarding this particular variable, there still seems to be no con-
sensus among researchers concerning what probability distribu-
tion best fits Nk. One early study [6] suggested that the Poisson
distribution might be a logical option; however, many researchers
discredited this alternative someyears later [46]. Other researchers
have implemented the Normal distribution [18] despite the fact
that this is indeed a continuous distribution, not a discrete one.
The third option and the one chosen here will be the Laplace dis-
tribution, another continuous and non-parametric distribution not
commonly used in construction management but paradoxically
the only one that has the most adequate shape when the number
of bidders decrease exponentially around the average Nk value m
(this distribution has a ‘‘peak’’ exactly located at the medianm and
two concave tails at both sides) as displayed in Fig. 2.

The goodness of fit of these three distributions is shown in
Table 4, taking into account that both the Normal and Laplace
distributions have been converted into discrete distributions by
calculating every x value as F (Nk + 0.5) � F (Nk � 0.5).

It is also observed that to seek the best fit possible, Poisson’s
distribution parameter equaled µ; the Normal distribution used
directly µ and � ; whereas the Laplace distribution parameters
were the median m (location) and b (scale), all of which are
calculated in Table 2. Particularly, the MLE of b equals:

b = 1
T

T
X

k=1

|Nk � m| (6)

whereas the Laplace Cumulative Distribution Function is:

F (x) = 1
2

+ 1
2
sgn (x � m)

✓

1 � exp
✓

� |x � m|
b

◆◆

(7)

where x = Nk and sgn (·) is the sign function.

Fig. 2. Representation of the total number of participating bidders’ Nk curves for
the Normal, Poisson and Laplace distributions.

In all cases, the three distributions fulfilled the condition
that their p-values were below 0.05, but the Laplace distribution
constituted the best alternative in this occasion.

Finally, it must also be noted that both the Normal and Laplace
distributions were discretized before calculating their p-values.
As an example, the Discrete Laplace PDF used in Table 4 was
calculated as follows:

Discrete Laplace PDF (x,m, b) =
= F (x = Nk + 0.5) � F (x = Nk � 0.5) =

= 1
2
sgn (Nk + 0.5 � m)

✓

1 � exp
✓

� |Nk + 0.5 � m|
b

◆◆

� 1
2
sgn (Nk � 0.5 � m)

✓

1 � exp
✓

� |Nk � 0.5 � m|
b

◆◆

(8)

3.3. Position performance joint probability curve

The next step consists of calculating the position probability
curve by taking into account simultaneously the probabilities
of the best position performance coefficient and the number
of participating bidders, i.e., the Kumaraswamy and Laplace
distributions.

To obtain this particular curve, the outcome depends on the
number of participating bidders Nk and on how competitive those
bidders are. Specifically, if Nk = 1 (a situation that happens with a
0.004 probability, see Table 4), that bidder would have had a 100%
probability of winning because there would not be another com-
petitor. However, if Nk = 2 (a situation that happens with a 0.010
probability), the probability of occupying the first position would
be equivalent to the probability that the position performance co-
efficient for this bidder i, that is, Pik, was approximately located
within the interval [0.5, 1] or, in a more general form, between,
h

Nk�jik
Nk

= 2�1
2 = 0.5, Nk�jik+1

Nk
= 2�1+1

2 = 1
i

, which is indeed the

range whose limits coincide with a distance 0.5
Nk

above and below
Pik = Nk�jik+0.5

Nk
. This last probability would be calculated using Ku-

maraswamy’s CDF (see Eq. (4)) and for the range above, as follows:

Discrete Kumaraswamy PDF (x = ji, ↵i, �i) =

= F
✓

x = Nk � ji + 1
Nk

, ↵i, �i

◆

� F
✓

x = Nk � ji
Nk

, ↵i, �i

◆

=

=
✓

1 �
✓

Nk � ji
Nk

◆↵i
◆�i

�
✓

1 �
✓

Nk � ji + 1
Nk

◆↵i
◆�i

(9)
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Table 3

Bidders i = 1, 2 and 3’s Pik curves goodness of fit for the Beta and Kumaraswamy’s distributions.

Bidder i = 1 Cumulative probability Beta CDF (expected) Beta Chi2 (residuals) Kum. CDF (expected) Kum Chi2 (residuals)
P1k values (observed) f (P1k; a1; b1) (Obs. � Exp.)2/Exp. f (P1k; ↵1; �1) (Obs. � Exp.)2/Exp.

0.056 0.025 0.104 0.060 0.116 0.071
0.071 0.075 0.132 0.024 0.143 0.032
0.083 0.125 0.152 0.005 0.163 0.009
0.100 0.275 0.181 0.049 0.189 0.039
0.214 0.325 0.361 0.004 0.354 0.002
0.250 0.375 0.412 0.003 0.400 0.002
0.313 0.425 0.498 0.011 0.477 0.006
0.357 0.525 0.555 0.002 0.528 0.000
0.375 0.575 0.577 0.000 0.548 0.001
0.417 0.625 0.626 0.000 0.593 0.002
0.500 0.725 0.717 0.000 0.677 0.003
0.563 0.775 0.777 0.000 0.735 0.002
0.583 0.825 0.795 0.001 0.754 0.007
0.625 0.875 0.830 0.002 0.789 0.009
0.750 0.925 0.918 0.000 0.883 0.002
0.917 0.975 0.988 0.000 0.976 0.000

0.162 Chi2(sum) 0.187
15 d.f. 15
4.26E�13 p-value 1.26E�12

Bidder i = 2 Cumulative probability Beta CDF (expected) Beta Chi2 (residuals) Kum. CDF (expected) Kum Chi2 (residuals)
P2k values (observed) f (P2k; a2; b2) (Obs. � Exp.)2/Exp. f (P2k; ↵2; �2) (Obs. � Exp.)2/Exp.

0.083 0.056 0.098 0.018 0.098 0.019
0.100 0.167 0.114 0.024 0.115 0.023
0.313 0.278 0.309 0.003 0.308 0.003
0.438 0.389 0.418 0.002 0.417 0.002
0.625 0.500 0.584 0.012 0.583 0.012
0.650 0.611 0.606 0.000 0.606 0.000
0.750 0.722 0.700 0.001 0.699 0.001
0.813 0.833 0.761 0.007 0.761 0.007
0.929 0.944 0.888 0.004 0.888 0.004

0.070 Chi2(sum) 0.070
8 d.f. 8
6.19E�08 p-value 6.11E�08

Bidder i = 3 Cumulative probability Beta CDF (expected) Beta Chi2 (residuals) Kum. CDF (expected) Kum Chi2 (residuals)
P3k values (observed) f (P3k; a3; b3) (Obs. � Exp.)2/Exp. f (P3k; ↵3; �3) (Obs. � Exp.)2/Exp.

0.417 0.071 0.053 0.006 0.053 0.007
0.700 0.214 0.344 0.049 0.343 0.048
0.750 0.357 0.436 0.014 0.435 0.014
0.786 0.643 0.509 0.035 0.509 0.035
0.917 0.786 0.820 0.001 0.825 0.002
0.929 0.929 0.850 0.007 0.855 0.006

0.114 Chi2(sum) 0.112
5 d.f. 5
2.23E�04 p-value 2.16E�04

Table 4

Total number of participating bidders’ Nk probability curves and goodness of fit for the Normal, Poisson and Laplace distributions.

Number of
bidders

Number of
tenders

Relative freq.
(observed)

Normal PDFa
(expected)

Normal Chi2 Poisson PDF
(expected)

Poisson Chi2 Laplace PDFa
(expected)

Laplace
Chi2

(Nk) (TN ) (FqN) f (Nk; µ; � ) (residuals) f (Nk; µ) (residuals) f (Nk;m; b) (residuals)

0 0 0.000 0.000 0.000 0.002 0.002 0.002 0.002
1 0 0.000 0.001 0.001 0.012 0.012 0.004 0.004
2 0 0.000 0.005 0.005 0.038 0.038 0.010 0.010
3 1 0.020 0.025 0.001 0.079 0.045 0.027 0.002
4 6 0.118 0.087 0.011 0.123 0.000 0.072 0.029
5 5 0.098 0.190 0.044 0.154 0.020 0.191 0.046
6 21 0.412 0.264 0.083 0.160 0.397 0.388 0.002
7 9 0.176 0.234 0.014 0.142 0.008 0.191 0.001
8 5 0.098 0.133 0.009 0.111 0.002 0.072 0.010
9 3 0.059 0.048 0.002 0.077 0.004 0.027 0.038
10 1 0.020 0.011 0.007 0.048 0.017 0.010 0.009
11 and so on 0 0.000 0.002 0.002 0.027 0.027 0.004 0.004
P

N (categ.) T = P

TN
P

FqN Chi2 (sum) 0.179 Chi2 (sum) 0.572 Chi2 (sum) 0.156
12 51 1.000 d.f. = P

N � 1 11 d.f. = P

N � 1 11 d.f. = P

N � 1 11
p-value 5.46E�09 p-value 2.80E�06 p-value 2.61E�09

a Since both the Normal and Laplace distributions are continuous, not discrete, the PDF for each x = Nk value was calculated as the difference between their respective
CDF evaluated at x = Nk + 0.5 and x = Nk � 0.5. Residuals are calculated as (Observed � Expected)2/Expected.
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Therefore, the probability that a bidder i in any tender k was
first when Nk = 2 is:

Discrete Kum PDF (x = ji = 1, ↵i, �i |Nk = 2 )

=
✓

1 �
✓

2 � 1
2

◆↵i
◆�i

�
✓

1 �
✓

2 � 1 + 1
2

◆↵i
◆�i

.

It is important to deduce that the probability of being first (ji =
1) for a bidder i corresponds to the sum of probabilities from all
possible scenarios that are calculated as the product of two prob-
abilities, given by Eq. (8) (which allows calculating the probabil-
ities that there were Nk = 1, 2, . . . + 1 bidders) multiplied by
Eq. (9) (which calculates the probability that bidder i, according
to its position performance curve defined by means of ↵i and �i,
obtained a position performance coefficient located right within
h

Nk�ji
Nk

, Nk�ji+1
Nk

i

).
Logically, this result would only be valid for position ji = 1;

however, it is trivial to reach the general expression for the position
performance joint probability curve for bidder i (Ji), which is:

Ji PDF (x = ji, ↵i, �i,m, b) =

=
Nk=+1
X

Nk=ji

{Discrete Kum PDF (x, ↵i, �i) · Discrete Laplace PDF (x,m, b)} =

= 1
2

Nk=+1
X

Nk=ji

8
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>

>
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✓
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(10)

Despite its disproportionate length, this equation is easy to
handle.

It must also be noted that this expression has resulted in the
equation above because two specific statistical distributions were
chosen for Pik (Kumaraswamy) and Nk (Laplace); however, the
final result would have also been easy to obtain in case these
distributions had been different.

4. Results

4.1. Single bidder’s position performance joint probability curve

If Eq. (10) is applied to the data gathered so far for bidders
i = 1, 2 and 3, Table 5 and Fig. 3 could be directly calculated where
several considerations must be taken into account: Ji CDF curves
were obtained directly bymeans of adding up the results displayed
on the Ji PDF columns; and a correction is implemented over the
Discrete Laplace PDF expression. Namely, instead of using Eq. (8)
directly in Eq. (10), Eq. (8) was divided by the following correction
factor Cf = 1 � Discrete Laplace PDF (x = Nk = 0.5,m, b), which
allows not considering the probability that no bidder participated
in a tender, subsequently enabling that the probabilities when
Nk = 1, 2, . . . + 1 can be corrected (slightly increased) to equal 1
when added up. This correction factor Cf is a constant, so it can be
left outside the sum

PNk=+1
Nk=ji

{·}, keeping the original and relative
simplicity of Eq. (10).

Despite these minor details, the curves depicted in Fig. 3 con-
stitute a valuable tool with a two-fold purpose. First, they identify
the probabilities that any bidder, whose past performancewas reg-
istered, ends up being the lowest, second lowest, etc., irrespective
of the number of bidders. Second, these curves can be compared
to each other, enabling an objective bidders’ performance compar-
ison, an issue that had not been solved in detail in the literature

Table 5

Position performance joint probability curves for bidders i = 1, 2 and 3.

ji J1 PDF J1 CDF J2 PDF J2 CDF J3 PDF J3 CDF

1 0.077 0.077 0.230 0.230 0.402 0.402
2 0.127 0.204 0.169 0.399 0.316 0.718
3 0.159 0.362 0.154 0.552 0.171 0.889
4 0.181 0.544 0.145 0.697 0.075 0.964
5 0.191 0.735 0.134 0.831 0.026 0.990
6 0.164 0.899 0.106 0.936 0.007 0.998
7 0.067 0.966 0.042 0.978 0.002 0.999
8 0.023 0.988 0.014 0.993 0.000 1.000
9 0.008 0.996 0.005 0.997 0.000 1.000

10 0.003 0.999 0.002 0.999 0.000 1.000
11 0.001 0.999 0.001 1.000 0.000 1.000

Fig. 3. Position performance joint probability curves for bidders i = 1, 2 and 3.

so far. For instance, as displayed in Fig. 3, Bidder 3 is the tougher
competitor because it has higher chances of occupying the first po-
sitions compared to Bidders 2 and 3. At the same time, Bidder 2 sta-
tistically outperforms Bidder 1 in the first three positions (ji = 1, 2
and 3). Hence, if a tendermanager had to focus on beating a specific
competitor, it would be Bidder 3.

Furthermore, a third use can be made of this methodology
because it allows aggregating several bidders’ probability curves
as a group to calculate the probability that one of them occupied
a given position. This is a remarkable feature for a tender manager
whose concern is to beat several competitors at the same time and
will be implemented below.

4.2. Group of bidders’ position performance joint probability curve

A previous study, [18] proposed a way of calculating group
performance curves for capped tenders based on the probability
that several independent random events took place. This approach
is equally valid here with hardly any changes:

_
J i PDF (x = ji) = 1 �

i=n
Y

i=1
(1 � Ri · Ji PDF) (11)

where:
_
J i PDF (·) is a discrete probability density function that denotes
the probability that one of the bidders (i = 1, . . . , n) occupies
the position x = ji.
Ri are the bidders’ participation ratios calculated at the bottom
of Table 2, which represent how frequently each bidder partic-
ipates in the set of tenders analyzed; therefore, 0  Ri  1.

Finally, Ji PDF are the bidder i’s position performance joint
probability density function for i = 1, . . . , n calculated according
to Eq. (10).
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Table 6

Group (bidders i = 1 + 2 + 3) position performance probability curve calculations.

Bidders’ participation ratios

i = 1 2 3
Ri = 0.392 0.176 0.137

ji R1 ⇤ J1 PDF R2 ⇤ J2 PDF R3 ⇤ J3 PDF PDF CDF
1 � ⇧(1 � Ri ⇤ Ji) 1 � ⇧(1 � Ri ⇤ Ji)

1 0.030 0.041 0.055 0.121 0.121
2 0.050 0.030 0.043 0.118 0.239
3 0.062 0.027 0.023 0.109 0.348
4 0.071 0.026 0.010 0.104 0.452
5 0.075 0.024 0.004 0.100 0.552
6 0.064 0.019 0.001 0.083 0.635
7 0.026 0.007 0.000 0.034 0.668
8 0.009 0.002 0.000 0.011 0.680
9 0.003 0.001 0.000 0.004 0.684

10 0.001 0.000 0.000 0.001 0.685
11 0.000 0.000 0.000 0.000 0.685

Fig. 4. Group (bidders i = 1 + 2 + 3) position performance probability curve.

Therefore, if Eq. (11) is applied to bidders i = 1, 2 and 3’s
position performance curves, Table 6 and Fig. 4 are easily obtained.

It is easy to note that the gray curve with thick line (obtained
by applying Eq. (11)) will only reach the 100% probability value
in the case that all the bidders from the tender dataset analyzed
were incorporated into the calculations (93 bidders for the tender
dataset presented in Section 2.2). Indeed, this is the reason for
which these curves become flat when compared to Fig. 3.

Indeed, from Fig. 4, it is easy to determine that the probabilities
that one bidder out of bidders i = 1, 2 and 3 occupies the
first position (when no one knows how many or which bidders
will participate) are approximately 12% and remain slightly
decreasingly at approximately the 10% probability value up to the
sixth position. Of course, none of these probability values seem to
be too high to worry other competitors; however, this is due to
the fact that these three bidders do not have high participation
ratios, as shown at the top of Table 6. If any bidder knew for certain
that one or several of these bidders is going to enter a bid in a
forthcoming tender, these curves could be recalculated assigning
a 100% participation ratio value to those specific competitors, as
was considered in Fig. 3, and the group curve would raise their
probabilities significantly, thus making the group of bidders 1, 2
and 3muchmore competitive (for instance, bidder 1 alone reached
40% probability values of occupying the first position when its
participation ratio was 100%, as Fig. 3 indicates).

With these last observations and calculations, every possible
approach to study any bidder’s position performance has been
completed, and therefore, the case study is also complete.

Fig. 5. Bidders i = 1’s actual and model position performance probability curves
comparison.

4.3. Validation

As stated in the Introduction, the main reason to calculate the
position performance curves by means of the method explained
so far instead of directly calculating the relative frequency curves,
which would describe how often a bidder ends up being the
first, second, and so on, was that in real-life situations, there is
not usually a sufficient number of previous encounters among
construction bidders for these probability values to be calculated
with accuracy.

Particularly, in the tender database used in this analysis, the first
bidder (i = 1) was nearly the only onewith sufficient participation
(in addition to the bidder who gathered the complete database,
which has not been displayed) to draw up its probability curves.
To be exact, the first bidder participated 20 times out of the total
51, so if we represented its actual position performance density
and cumulative curves, the result compared to the ones obtained
in the model is depicted in Fig. 5.

Both couple of curves evidence quite similar trajectories,
especially taking into account that the amount of data only allowed
for 5%-probability steps, i.e., 1/20. This fact qualitatively validates
that the results were quite close to the reality, although a deeper
analysis might have been made if this bidder had participated in
manymore occasions. Nevertheless, froma 51-tender dataset, only
two bidders out of 93 companies had sufficient data to barely
represent their curves (the next most frequent bidder took part
in 12 auctions), which means that in general, even with far bigger
datasets, a significant percentage of the participating bidders could
not be analyzed directly but for the method proposed here.
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This is indeed the real advantage of the model and the evi-
dence of the applicability in the construction industry: The pro-
posed model allows for the analysis of the number of total partic-
ipating bidders and the position performance of every bidder on
a scale from 0 to 1, even when resorting to far shorter databases.
Later, these results are aggregated into the single or group posi-
tion probability curves, which are not expected to deviate much
from the actual (but unknown, due to data scarcity) position per-
formance curves.

Unfortunately, short tender databases along with the unique-
project nature are common features of the construction context.
Therefore, the method proposed, although not free of limitations,
constitutes an approximate but useful tool.

5. Discussion

Early bid tender models (e.g., [6–10]) took into account the
bid/cost ratio, the probability of winning and a few other variables
under the condition that the product quality does not vary with
the price [36]. This last condition does not usually hold in real-
life situations [47], so the lowest bidder stops being identified
with the most advantageous tenderer [11]. With this in mind,
the methodology proposed above allows anyone analyzing a set
of tender processes to calculate the position probability curves
based on those bidders potentially involved in future tenders
assuming that they will perform in accordance with their previous
performance.

Specifically, by means of a four-step procedure, the best
position performance parameter expression has been chosen for
bidders, and subsequently, by gathering a series of these parameter
values for different bidders, the Kumaraswamy distribution has
been found to be a good candidate for modeling a single bidder’s
position performance when the number of participating bidders is
known.

However, through modeling the number of bidders in parallel
by means of the Laplace distribution, the position performance
curve can be easily expressed irrespective of the number of
bidders, a convenient feature because, generally, the number of
participating bidders in future tenders is not knownbefore a tender
reaches its deadline in the Construction context.

Finally, the single bidder’s position performance curves can be
analyzed either independently or as a group, enhancing the appli-
cability of the methodology because it is also quite common that
one company who enters a bidding process is forced somehow to
economically outperform several key competitors simultaneously.
Nonetheless, the methodology also has two mathematical minor
limitations. First, the Kumaraswamy distribution can be nearly (as
a function of its two shape parameters ↵i and �i) but not totally
symmetrical, which means that in case a bidder i’s half number of
parameters equaled Pik and the other half equaled 1� Pik, the Beta
distribution would always have a slightly lower p-value because
the Beta distribution can actually be totally symmetrical as long as
ai = bi.

The second limitation is that both the Kumaraswamy and the
Beta distribution require at least two previous non-equal Pik values
to be fitted, that is, when a tender dataset comprises bidders
who only participated in one tender or when a bidder repeats
the same position against the same number of competing bidders,
it is advisable to resort to a simpler expression for which the
supports are [0, 1] in both axes (as in the Beta and Kumaraswamy
distributions) instead of using Eq. (4), which is:

F (x) = F (x, �i) = x�i (12)

with �i = LN 0.5/LN Pik and Pik being the unique (repeated or not)
value position performance coefficient obtained by bidder i in the
one or several tenders k (Pik calculated according to Eq. (2)).

Furthermore, if a tender manager wanted to model a bidder
from whom no previous encounters were available, it would be
better to define its position performance curve parameters (either
Beta’s or Kumaraswamy’s) as totally random, i.e., ai = bi = ↵i =
�i = 1.

Finally, an additional pending issue that justified the selection
of the Kumaraswamy’s over the Beta distribution was that the
latter has less friendly cumulative and quantile distribution
functions because they involve an Incomplete Beta function. The
major finding of this paper, Eq. (10), made use of Kumaraswamy’s
CDF, but it is obvious that the quantile function can also be useful
when, given a particular probability value y, it is recommended
to calculate how many participating bidders Nk with which a
particular bidder would be capable of ending first, second or in
any specific position ji (Eq. (13)); or, on the contrary, with a given
number of bidders Nk, the best position that bidder i could achieve
(Eq. (14)).

Both questions stem from the same expression, which takes
advantage of Eq. (5):
�

1 � (1 � y)1/�
�1/↵ = Nk � ji

Nk
.

The expression above leads to Eqs. (13) and (14) when either
variable’s bidder i’s position (ji) or number of bidders (Nk) are
worked out, respectively:

Nk = ji/
n

1 �
�

1 � (1 � y)1/�
�1/↵

o

(13)

ji = Nk

n

1 �
�

1 � (1 � y)1/�
�1/↵

o

. (14)

6. Conclusions

The ‘‘lowest bidmethod’’ has beendominant in the construction
industry for many years and that is why the majority of bid tender
forecasting models focused initially on the lowest bidder’s bids.
However, multi-attribute auctions give out a score to each bid,
which is eventually added up to the technical score, allowing
the auctioneer to determine the bidder that deserves to be the
awardee. This paper focuses on analyzing the economic bidding
performance by means of studying the bid order in a series of
homogeneous auctions in which the awarding criterion might
include more aspects in addition to the price. Obviously, if the
only awarding criterion is the price, bidders’ positions are not
important except for the lowest bidder (first position); conversely,
when other technical criteria are included to obtain the final
bidders’ ranking (such as inmulti-attribute auctions), knowing the
probabilities of occupying a given position as a consequence of the
economic bid becomes more important.

The methodology proposed in this paper addresses the
problem of quantitatively defining what level of bidding position
performance should be expected when a bidder takes part in
a future auction, that is, determining the more likely positions
that the bidder will occupy when competing against a known or
unknown number of bidders in a construction auction. In addition,
the auction format was stated as not relevant when applying the
methodology discussed above because all construction auction
formats share the same variables the methodology makes use of,
i.e., bidders’ identities and positions as well as total number of
participating bidders.

Additionally, the bidders’ position performance can be treated
individually or as a group, allowing a tender manager to enrich
the analysis by calculating the probabilities that at least one bidder
among several reaches any position in a competitive tender.

On the other hand, the methodology proposed involves the
use of Kumaraswamy’s distribution, possibly for the first time,
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in construction management, as well as the Laplace distribution
for modeling the number of participating bidders. However, this
last distribution might not be the best alternative for other tender
databases in which the PDF describing the number of bidders were
convex, being the other available non-parametric alternatives also
analyzed here (the Poisson or the Normal distribution).

This paper has proposed an entirely different way of measuring
bidding competitiveness in construction tenders, the applications
of which, although not entirely flawless, as stated in the
Discussions section, might go beyond the ones anticipated here
when analyzing a single or a group of bidders’ performance.

In particular, the main limitations of this research are inherent
to the model hypotheses because it necessarily assumes that
bidders will behave as they behaved in the past, whereas cover
pricing and non-economic rational bidding are ignored. These
three assumptions limit the practical use of the model developed
while actually opening a future topic of research: achieving amore
useful practical tool for modeling bidding position performance
that is not dependent on these three previous assumptions.

Furthermore, there are other obvious shortcomings in the cur-
rent experiment with regard to the case study database; the
authors have made use of an old database that did not use elec-
tronic auctioning processes and from which multi-parameter bid-
ding datawere certainly not available, thereby limiting the analysis
to the study of the economic bid positions. Therefore, the authors’
acknowledge that there is certainly a room for improvement, for
instance, in order to free future models from the limitations and
hypotheses stated above, therefore, further research needs to be
done in this area.
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