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On Competitive Bidding: Scoring and Position Probability Graphs 

Abstract 

Iso-Score Curves Graph (iSCG) and mathematical relationships between Scoring 

Parameters (SP) and Forecasting Parameters (FP) can be used in Economic Scoring 

Formulas (ESF) used in tendering to distribute the score among bidders in the economic part 

of a proposal. 

Each contracting authority must set an ESF when publishing tender specifications and the 

strategy of each bidder will differ depending on the ESF selected and the weight of the 

overall proposal scoring. 

The various mathematical relationships and density distributions that describe the main SPs 

and FPs, and the representation of tendering data by means of iSCGs, enable the 

generation of two new types of graphs that can be very useful for bidders who want to be 

more competitive: the Scoring and Position Probability Graphs. 

Keywords: bid; tender; auction; construction; score, forecast. 

1. Introduction 

Competitive bidding is a transparent procurement method in which bids from competing 

contractors, suppliers, or vendors are invited by openly advertising the scope, specifications, 

and terms and conditions of the proposed contract; as well as the criteria by which the bids 

will be evaluated. Competitive bidding aims at obtaining goods and services at the lowest 

price by stimulating competition and preventing favoritism. 

Research in the area of competitive bidding strategy models has been in progress since the 

1950s (Deltas & Engelbrecht-Wiggans, 2005; Dikmen et al., 2007; Engelbrecht-Wiggans, 

1980, 1989; Harstad & Saša Pekec, 2008; Lo et al. 2007; Naoum, 1994; Näykki, 1976; 

Rothkopf & Harstad, 1994; Rothkopf, 1969; Ye et al., 2008). 

Competitive bidding strategy models have been developed to predict the probability of a 

bidder winning an auction (Engelbrecht-Wiggans, 1980; Näykki, 1976) or being awarded a 

project (Ravanshadnia et al., 2010; Vergara, 1977). Most of these models are based on the 

theory of Games, Decision Analysis and Operational Research and are difficult to apply to 

real-world business contexts given the complex mathematical formulations used in the 

models (Engelbrecht-Wiggans, 1980; Harstad & Saša Pekec, 2008; Rothkopf & Harstad, 

1994). 

http://www.businessdictionary.com/definition/transparent.html
http://www.businessdictionary.com/definition/procurement.html
http://www.businessdictionary.com/definition/method.html
http://www.businessdictionary.com/definition/bid.html
http://www.businessdictionary.com/definition/competing.html
http://www.businessdictionary.com/definition/contractor.html
http://www.businessdictionary.com/definition/supplier.html
http://www.businessdictionary.com/definition/vendor.html
http://www.businessdictionary.com/definition/advertising.html
http://www.businessdictionary.com/definition/scope.html
http://www.businessdictionary.com/definition/specification-spec.html
http://www.businessdictionary.com/definition/terms-and-conditions.html
http://www.businessdictionary.com/definition/contract.html
http://www.businessdictionary.com/definition/criteria.html
http://www.investorwords.com/997/competitive.html
http://www.investorwords.com/8993/bidding.html
http://www.businessdictionary.com/definition/aim.html
http://www.businessdictionary.com/definition/goods.html
http://www.businessdictionary.com/definition/services.html
http://www.businessdictionary.com/definition/price.html
http://www.businessdictionary.com/definition/competition.html
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Because of the multiple technical and financial criteria involved in public tendering 

(Engelbrecht-Wiggans, 1980; Fayek, 1998; Harstad & Saša Pekec, 2008; Näykki, 1976; 

Rothkopf & Harstad, 1994; Skitmore & Drew, 2001; Skitmore, 2002, 2004) there is still a 

need for the development of new tools to help decision makers and improve the selection 

process for bidders (Watt et al., 2009). 

Ballesteros-Pérez, 2010 devised, and Ballesteros-Pérez et al., 2012a subsequently 

extended, the iso-Score Curve Graph (iSCG) as a practical tool to help bidders improve their 

competitive bidding strategies and increase their chances of winning a contract. This tool 

enables bidders to place their bids using simple statistical procedures based on previous 

bidding experiences sharing the same Economic Scoring Formula (ESF). 

The economic criterion is usually one of the most important evaluation criteria and Economic 

Scoring Formulae are used to rate different proposals. The variables of these formulae are 

termed Scoring Parameters (SP) (Ballesteros-Pérez et al., 2012b). To predict SPs, some 

other parameters, which are termed Forecasting Parameters (FP) (Ballesteros-Pérez et al., 

2012b), must be measured. This paper takes advantage of the new Bid Tender Forecasting 

Model (BTFM) which is based on the relationship between Scoring and Forecasting 

Parameters (SPs and FPs respectively) previously studied in Ballesteros-Pérez et al., 2012a 

and 2012b, and, furthermore, it is also shown how the different variables and results can be 

plotted on two new types of graphs: the Scoring Probability Graph (SPG) and the Position 

Probability Graph (PPG). 

The BTFM equations described and implemented in this paper have been derived from 

capped tenders so far. Capped tender contract value is upper-limited by the contracting 

authority and this limitation is clearly stated in the tender specifications. Hence, all bidders 

must underbid that estimation. Nevertheless, the graphs presented later will not be restricted 

to these tenders once new equations are found to be valid in uncapped tendering contexts. 

2. Background 

Despite the extensive literature on the theory of auctions and competitive bidding for contract 

tendering, most models are based on theoretical assumptions that are difficult to apply to 

real cases (Skitmore, 2008). Bidding theory and strategy models (see Stark and Rothkopf, 

1979, for an early bibliography) frequently make use of the so-called ‘the statistical 

hypotheses’ because auction bids are assumed to contain statistical properties such as fixed 

parameters and randomness (Skitmore, 2002). 

The first studies (e.g., Friedman, 1956) assumed that each bidder drew bids from a 

probability distribution unique to that bidder, with low-frequency bidders being pooled as a 

special case. Pim (1974) analyzed a number of projects awarded to four American 
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construction companies. His study indicated that the average number of projects awarded is 

proportional to the reciprocal of the average number of bidders competing - the proportion 

that would be expected to be won by pure 'chance' alone. That suggested an extremely 

simple ‘equal probability’ model in which the expected probability of entering the lowest bid 

in a k-size auction, that is, an auction in which k bidders enter bids, is the reciprocal of k. 

McCaffer and Pettitt (1976) and Mitchell (1977) assumed non-unique and homogeneous 

probability distributions, enabling a suitable distribution shape to be empirically fitted 

(uniform, in the case of McCaffer and Pettitt) and the derivation of other statistics based on 

an assumed (Normal) density function 

Since then, different models have been developed to calculate the probability, Pr(m), of 

individual bidders winning an auction (Skitmore et al., 2007) but only in uncapped tendering: 

Friedman, 1956 assumed either interdependence or perfect estimation; Gates, 1967 used a 

Weibul probability distribution function; Carr, 1982, assumed homogeneous variances; and 

Skitmore, 1991, used a lognormal probability distribution function; among others. 

A major problem is that in the context of construction contract bidding, it is difficult to collect 

the necessary data of each bidder for predictions to be effective (Skitmore, 2002). Moreover, 

Skitmore showed that the homogeneity assumption (Skitmore, 1991) was untenable for real 

datasets of construction contract auctions, at least insofar as its superiority in predicting the 

probability of lowest bidders is concerned (Skitmore, 1999), and Runeson and Skitmore 

(1999) cast doubt on the whole future of the heterogeneous approach to modeling 

construction contract auction bids on the basis of its necessary, but forced, assumption of 

temporal invariance (fixed parameters) in the absence of the lengthy repeated trials 

assumed by the statistical model — each bidder not bidding frequently enough to generate a 

reasonable size dataset. 

The Bid Tender Forecasting Graphs proposed in this paper are based on previous research 

developed by Ballesteros-Pérez et al., 2012a and 2012b and solve, although only in capped 

tendering for the time being, the main problems encountered in previous models (Skitmore & 

Runeson, 2006) as it enables (1) studying bidding behaviors with a significantly smaller 

database than previous works; (2) forecasting the probability of obtaining a particular score 

and/or position among competitors; (3) analyzing time variations between tenders, and (4) 

measuring the tender forecast performance. 

Items (1) and (3) allow the present BTFM to use a heterogeneous approach based on 

parameters that vary over time (not on fixed parameters as suggested by Skitmore, 1999, 

and Runeson and Skitmore, 1999). 

https://www.researchgate.net/publication/233227821_The_construction_contract_bidder_homogeneity_assumption_An_empirical_test?el=1_x_8&enrichId=rgreq-ce0ff6ed-2474-483a-ae2c-71a7c4b682c7&enrichSource=Y292ZXJQYWdlOzI1NzA5NDY3MTtBUzoxMzE1NDg4NzU1OTU3NzZAMTQwODM3NTEwNDI5Ng==
https://www.researchgate.net/publication/233227821_The_construction_contract_bidder_homogeneity_assumption_An_empirical_test?el=1_x_8&enrichId=rgreq-ce0ff6ed-2474-483a-ae2c-71a7c4b682c7&enrichSource=Y292ZXJQYWdlOzI1NzA5NDY3MTtBUzoxMzE1NDg4NzU1OTU3NzZAMTQwODM3NTEwNDI5Ng==
https://www.researchgate.net/publication/43474832_Gates'_Bidding_Model?el=1_x_8&enrichId=rgreq-ce0ff6ed-2474-483a-ae2c-71a7c4b682c7&enrichSource=Y292ZXJQYWdlOzI1NzA5NDY3MTtBUzoxMzE1NDg4NzU1OTU3NzZAMTQwODM3NTEwNDI5Ng==
https://www.researchgate.net/publication/272541571_The_Probability_of_Being_the_Lowest_Bidder?el=1_x_8&enrichId=rgreq-ce0ff6ed-2474-483a-ae2c-71a7c4b682c7&enrichSource=Y292ZXJQYWdlOzI1NzA5NDY3MTtBUzoxMzE1NDg4NzU1OTU3NzZAMTQwODM3NTEwNDI5Ng==
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Finally, although other formal and analytical risk models have recently been developed to 

prescribe how risk is to be incorporated into construction bids (Egemen & Mohamed, 2007; 

Han et al., 2005; Hartono & Yap, 2011; Mohamed et al., 2011; Oo et al., 2008a, 2008b), in 

practice, price risks are usually excluded from the final bid (or at least subjectively biased) in 

order to improve competitiveness (Banki et al, 2008; Han et al., 2005; Laryea & Hughes, 

2011). The BTFM that will be developed by the authors does not consider risk issues yet, 

and so, risk models may be a useful complement to the proposed forecasting model. 

3. Basic definitions 

Spanish tendering terminology is mainly used as this study was carried out in Spain, 

although some new terms are included. The BTFM described in this paper has been applied 

to capped tenders, that is, tenders upper-limited to the contracting authority estimate stated 

in the tender specifications. 

However, the graphs shown below will not be only restricted to this type of tenders. If the 

main mathematical relationships between SPs and FPs are re-written to leave out the tender 

amount/price (A), the graphs shown below could also be used for both capped and non-

capped tenders, since this latter type of tender is the most common in many countries 

For the sake of clarity, we will define some terms used in this paper (see Appendix A for 

further information). 

‘Economic Scoring Formula’ (ESF) refers to the mathematical expressions used to assign 

numerical scores to each bidder from the bid price expressed on a monetary-unit basis. ESF 

comprises the mathematical operations that provide the score and the mathematical 

expression that determines which bids are abnormal or risky (Abnormally Low Bids Criteria 

(ALBC). ALBC has received much less attention in the literature than analysis of bidding 

behaviors (Chao & Liou, 2007). 

‘Bidder’s Drop’ (Di). It is the discount or bid reduction on the initial price of a contract (A) 

submitted by a given contractor i for a particular capped tender. It is mathematically 

expressed as: 

          (1) 

Where Di is the Drop (expressed in per-unit values) of bidder ‘i’, Bi is the Bid (expressed in 

monetary values) of bidder ‘i’, and A is the initial Amount of money (in monetary value) of the 

tender (generally set by the contracting authority in many countries). 

In Spanish tendering practice, when referring to bid amounts, it is usual to use a discount on 

the contract value A. This discount is called in Spanish ‘baja’, meaning literally fall or drop. 
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This term has been translated merely as ‘Drop’ because no similar concept has been found 

in the international bibliography. 

The ESF scores are obtained by either using the bidders’ bids (Bi) in monetary values or 

converting bids into drops (Di) in per-unit values. However, for the comparison of bids in 

different bidding processes with different initial bid amounts (A) for each tender, it is 

preferable to use Drops (Di) rather than monetary-based Bids (Bi). 

‘Scoring Parameter’ (SP). SPs are the variables used in ESFs and are calculated from the 

distribution of the bids participating in a tender contest. The main SPs are: mean Drop (Dm), 

maximum Drop (Dmax); minimum Drop (Dmin); Drops’ standard deviation (σ) and abnormal 

Drop (Dabn) (see Ballesteros-Pérez et al., 2012b or Appendix B ‘Relationship between SP 

monetary-based and Drop-based values’ for further information) 

‘Forecasting Parameters’ (FP). FP refers to the variables that can be estimated in advance 

before the tender submission deadline. Their values must be closely related to the SPs to be 

useful. In this study the variable ‘Estimated Cost’ (D0) is used as an FP calculated in per-unit 

Drop rather than monetary value. 

Some recent conceptual models have also been developed for use by contractors as part of 

a more reliable approach to identifying key competitors and as a basis for formulating 

bidding strategies (Oo et al., 2008a, 2010). Competitiveness between bids is examined 

using linear mixed models that employ variables such as project type and size; work sector; 

work nature; market conditions; as well as number of bidders (Drew & Skitmore, 1997; Oo, 

et al., 2008a, 2008b). Some of these variables can also be considered as FPs (project type 

and size; work sector; work nature; market conditions) but are difficult to quantify. 

4. Tendering specifications review 

Ballesteros-Pérez, 2010 (Annex I) reviewed 120 tender specifications documents from 

Spanish Public Administrations and private companies in order to study the scoring 

parameters (SPs) and Economic Scoring Formulas (ESFs) used in Spain. 

The review is quite representative of the Spanish tendering system, as it comprises: tenders 

and auctions from private companies and public administrations (city councils, local councils, 

semi-public entities, universities, ministries, etc), it also includes a wide variety of civil 

engineering works and services from various geographical regions (including the islands) 

and features a wide range of economic tender amounts. Although the sample only contains 

Spanish tender documents, the variables analyzed are directly applicable to any country 

where requesting administrations or contracting authorities set an initial tender amount (A) 

against which candidates must underbid (capped tendering or upper-limited-price tendering). 

https://www.researchgate.net/publication/227609778_Competitor_analysis_in_construction_bidding?el=1_x_8&enrichId=rgreq-ce0ff6ed-2474-483a-ae2c-71a7c4b682c7&enrichSource=Y292ZXJQYWdlOzI1NzA5NDY3MTtBUzoxMzE1NDg4NzU1OTU3NzZAMTQwODM3NTEwNDI5Ng==
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Among the wide range of tender documents collected, several contracting authorities 

generated sufficient tendering processes to enable an in-depth statistical analysis. Although 

the results obtained from these contracting authorities were very similar, a sub-dataset from 

one public administration was selected in order to illustrate through a numeric example how 

the mathematical relationships between SPs and one FP (Estimated Cost or D0 , in this 

case) allows any bidding practitioner to draw up two new kinds of bid tender forecasting 

graphs. 

The selected public administration is the ‘Agencia Catalana del Agua’ (Catalan Water 

Agency), ACA hereinafter, a semi-public administration that manages most of the water 

supply system in the Catalan region of Spain. ACA managed 51 construction tenders in 

approximately one year (from May 2007 to June 2008) and used the same ESF in its tender 

specifications (see Ballesteros-Pérez, 2010, Annex II). 

5. Drawing the Scoring Probability Graph (SPG) 

To create the SPG, the following 5-step procedure is proposed (Ballesteros-Pérez, 2010; 

Ballesteros-Pérez et al., 2012a): 

1. Obtain and screen previous tenders that are as similar as possible to the tender to be 

forecasted (sharing the same ESF is a must). 

2. Calculate SPs and FPs regression coefficients. 

3. Specify the Estimated Cost (D0) in SP regression equations. 

4. Draw the iso-Score Curve Graph (iSCG) 

5. Draw the Scoring Probability Graphs (SPG) 

These five steps will be explained in detail when developing a numeric example based on a 

real ACA tendering dataset. 

5.1. Analysis of previous tenders 

An historical dataset is necessary for any forecast, otherwise it is difficult to calculate a 

proper prediction. Every tender must include a register of, at least, the following data: tender 

code / ID; tender deadline; nature of work, economic tender amount, number of bidders (N), 

mean Drop (Dm), maximum Drop (Dmax), minimum Drop (Dmin), bidders’ Bids’ standard 

deviation (σ) and estimated Cost (D0). 
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Furthermore, concerning BTFM it is necessary to start with a collection of previous tenders 

that are homogeneous with the tender to be forecasted. By the term ‘homogeneous’ we 

understand that previous and future tenders must be identical or very similar in terms of: 

scope of works, ESF and geographical region. 

Moreover, it is also desirable that the tender datasets are fairly recent, otherwise it will be 

necessary to check if there has been a time variation, because of changes in the economic 

situation or the potential competition. Finally, sharing the same contracting authority is 

advantageous. 

The bidder who plans to forecast must have taken part in a minimum of three analyzed 

tenders so that the connection between FPs and SPs, can be calculated and some previous 

tenders estimated costs known (D0 values). 

In this example, a bidder intends to bid for the construction of a Waste Water Treatment 

Plant (WWTP) with a tender amount around €4.5 million. The tender has been published by 

public Spanish Administration ‘ACA’ and the deadline is June 2008. With this data we can 

use a real historical and homogeneous 9-tender sub-dataset as presented in Table 1. 

 

Table 1: ACA historical tender sub-dataset 

It can be observed that the deadlines, nature of work, and tender amounts are very similar to 

the tender to be forecasted. 

The ESF and the ALBC used by the Administration for these tenders were always the same 

and coincident with those of the future tender (see Appendix A to find the meaning of each 

variable): 

ESF:              
          

   ALBC:                (2, 3) 

 

Tender Code ID Tender Deadline Nature of Work Tender Amount (€) Dmax Dm Dmin σ Do a (Dmax) b (Dmin) c(σ) d (Do) N

CT08000389 8 2008-03-31 WWTP 4,745,844.66 € 0.2732 0.1813 0.0514 0.0491 0.1170 -0.6193 0.8751 0.1277 1.0786 22
CT07002822 18 2008-01-23 WWTP 2,279,367.16 € 0.2367 0.1854 0.1028 0.0381 0.0700 -0.3398 0.5470 0.0991 1.1416 14
CT07002921 19 2008-01-23 WWTP 4,346,995.62 € 0.2833 0.2262 0.1818 0.0383 -0.3268 0.2533 0.1001 14
CT07002108 24 2007-12-11 WWTP 5,208,624.36 € 0.2390 0.1765 0.0955 0.0386 0.1210 -0.4301 0.5573 0.1003 1.0674 22
CT07001934 27 2007-09-17 WWTP 6,557,087.95 € 0.2200 0.1277 0.0325 0.0530 0.1120 -0.8282 0.8547 0.1409 1.0181 16
CT07001972 28 2007-09-17 WWTP 8,764,690.65 € 0.2800 0.2097 0.1550 0.0428 -0.4246 0.3299 0.1112 10
CT07002052 29 2007-09-17 WWTP 6,217,700.13 € 0.2985 0.2361 0.1489 0.0561 -0.3459 0.4837 0.1468 9
CT07001903 33 2007-08-30 WWTP 2,773,494.15 € 0.1500 0.0855 0.0105 0.0523 0.0350 -0.8248 0.9592 0.1474 1.0552 9
CT07001602 36 2007-08-20 WWTP 3,489,863.47 € 0.2450 0.1199 0.0374 0.0666 -1.1863 0.7816 0.1785 9

am bm cm dm Nm

Average : -0.59 0.63 0.13 1.07 13.89
aσ bσ cσ dσ Nσ

Desvest : 0.30 0.25 0.03 0.05 5.28
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5.2. Calculation of SP and FP regression coefficients 

Once the previous tender dataset is available and has been filtered to select past tenders as 

similar as possible to the tender to be forecasted, the next step is to know which particular 

regression coefficient values have the mathematical relationships that interconnect SPs and 

FPs (see ‘Regression equations between SPs and FPs’ in Appendix B). 

These coefficients are named: a, b, c and d, and their partial and final results are shown in 

the last five columns in Table 1 (the mathematical expressions applied are shown in 

Appendix B, as ‘Expressions for calculating regression equation coefficient values). In 

Ballesteros-Pérez, 2012b it was demonstrated that these coefficient variations follow a 

Normal distribution, so their dispersion can be studied by means of their respective averages 

and standard deviations. 

5.3. Future tender’s Estimated Cost (D0) specification 

Regarding this variable, the only factor we consider to be significant is that the calculation 

must always be made in the same way, which means: being calculated by the same person 

or the same group of people with the same criteria; and always aggregating the same type of 

costs (taxes, indirect costs, structure cost from the company, etc). If a mark-up were 

included in D0, then, when D0 is calculated again it should include the same mark-up 

percentage. 

Finally, the type of works and the ESF must be the same in every case. When these items 

suffer an important change, the historical D0 data will be deleted and it is necessary to start 

from scratch correlating D0 with the SPs for future tenders, i.e., determining a, b, c and d 

values again. 

In other words, accuracy and homogeneity while estimating costs are both important, even 

though this cost differs for each company. Observing these few homogeneity rules, D0 

values can be studied by means of a Normal distribution (Ballesteros-Pérez, 2012b). 

Once the future tender D0 is calculated by the bidder who is going to forecast (in our 

example, the estimated cost equals D0=0.25), its value must be introduced in the BTFM 

regression expressions (see ‘BTFM regression expressions as a function of D0‘ and 

‘Expressions for calculating asterisk regression coefficient values’ in Appendix B). Table 2 

and Figure 1 show the main results, where ‘nσ’ represents the multiples of standard deviation 

that are related to a particular accumulated Standard Normal Distribution probability (axis Y) 

and ‘h’ represents a coefficient that takes into account the number of dimensions involved in 

the multivariate Normal Distribution (see Appendix A) 

https://www.researchgate.net/publication/257371482_The_iso-Score_Curve_Graph_A_new_tool_for_competitive_bidding?el=1_x_8&enrichId=rgreq-ce0ff6ed-2474-483a-ae2c-71a7c4b682c7&enrichSource=Y292ZXJQYWdlOzI1NzA5NDY3MTtBUzoxMzE1NDg4NzU1OTU3NzZAMTQwODM3NTEwNDI5Ng==
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Figure 1: Dm, Dmax, Dmin, σ and Dabn probability curves for D0=0.25 

In Table 2, Scoring Parameter Dabn has also been calculated. Values depend exclusively on 

Dm and σ for the ALBC shown as an example (           once it has been transformed 

into drops). 
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Table 2: Dm, Dmax, Dmin, σ and Dabn probability curves calculations for D0=0.25 

5.4. Draw the iso-Score Curves Graph (iSCG) 

Ballesteros-Pérez, 2010 and Ballesteros-Pérez et al., 2012a explain how an iSCG is built. 

Applied to our example, the procedure to generate iso-Score Curves from the ESF is as 

follows: 

1. Express mathematically the Economic Scoring formula. In our example this would 

lead to: 

Probability (axis Y) 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

BTFM's Dm's regression curves

dm 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07
h (1 variable total) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

nσ -2.32 -1.65 -1.28 -0.84 -0.52 -0.25 0.00 0.25 0.52 0.84 1.28 1.65 2.32
dσ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

d*=dm + h·nσ·dσ 0.97 1.00 1.01 1.03 1.05 1.06 1.07 1.08 1.10 1.11 1.13 1.15 1.18
Dm (axis X) 0.22 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.32 0.34 0.35 0.36

BTFM's Dmax's regression curves

am -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59 -0.59
h (2 variables total) 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

nσ 2.32 1.65 1.28 0.84 0.52 0.25 0.00 -0.25 -0.52 -0.84 -1.28 -1.65 -2.32
aσ 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

a*=am + h·nσ·aσ -0.10 -0.24 -0.32 -0.41 -0.48 -0.54 -0.59 -0.64 -0.70 -0.77 -0.86 -0.94 -1.08
dm 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07

h (2 variables total) 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71
nσ -2.32 -1.65 -1.28 -0.84 -0.52 -0.25 0.00 0.25 0.52 0.84 1.28 1.65 2.32
dσ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

d*=dm + h·nσ·dσ 1.00 1.02 1.03 1.05 1.06 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.15
Dmax (axis X) 0.27 0.31 0.34 0.37 0.39 0.41 0.42 0.44 0.46 0.48 0.52 0.54 0.59

BTFM's Dmin's regression curves

bm 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
h (2 variables total) 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

nσ 2.32 1.65 1.28 0.84 0.52 0.25 0.00 -0.25 -0.52 -0.84 -1.28 -1.65 -2.32
bσ 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

b*=bm + h·nσ·bσ 1.04 0.92 0.85 0.78 0.72 0.67 0.63 0.58 0.53 0.48 0.40 0.33 0.21
dm 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07

h (2 variables total) 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71
nσ -2.32 -1.65 -1.28 -0.84 -0.52 -0.25 0.00 0.25 0.52 0.84 1.28 1.65 2.32
dσ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

d*=dm + h·nσ·dσ 1.00 1.02 1.03 1.05 1.06 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.15
Dmin (axis X) 0.05 0.09 0.10 0.13 0.14 0.16 0.17 0.18 0.20 0.21 0.24 0.26 0.30

BTFM's σ's regression curves

cm 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
h (2 variables total) 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

nσ -2.32 -1.65 -1.28 -0.84 -0.52 -0.25 0.00 0.25 0.52 0.84 1.28 1.65 2.32
cσ 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

c*=cm + h·nσ·cσ 0.08 0.10 0.10 0.11 0.12 0.12 0.13 0.13 0.14 0.14 0.15 0.16 0.17
dm 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07

h (2 variables total) 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71
nσ -2.32 -1.65 -1.28 -0.84 -0.52 -0.25 0.00 0.25 0.52 0.84 1.28 1.65 2.32
dσ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

d*=dm + h·nσ·dσ 1.00 1.02 1.03 1.05 1.06 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.15
σ (axis X) 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06

BTFM's Dabn's curves

Dm 0.22 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.32 0.34 0.35 0.36
σ 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06

Dabn (axis X) 0.29 0.32 0.34 0.36 0.37 0.38 0.40 0.41 0.42 0.43 0.45 0.46 0.49
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                   (2, 3) 

2. Convert the ESF (when expressed in monetary units) into Drops (with parameters 

expressed in per-unit values): 

             
          

                  (4, 5) 

3. Work out the ESF value of variable Di (Bidder’s Drop): 

         (    )(          )      (6) 

4. Represent the different iso-Score Curves graphically for the required and/or selected 

Score values (Si). In our example, Table 3 shows the Scores (Si) from 0 to 1, placed 

equidistantly at 0.10 intervals (using the first three equations shown in Appendix B 

‘Regression equations between SPs and FPs’ and the expression obtained in step 

3). 

 

Table 3: Calculations of the iso-Score Curve Graph for the ESF and ALBC examples 

It must be pointed out that the ESF proposed by the requesting administration in our 

example gives a maximum score (Si) to the bidder who proposes a maximum (but not 

abnormally high) drop. This is the reason why D*
max is equal to the minimum value between 

Dmax and Dabn for any probability level. 

If Table 3 is represented as a function of variable Dm, the iSCG is drawn and the first of the 

BTFM graphs is obtained. 

SPs D*max Si (iso-Scoring Curves)

Dm Dmax Dmin σ Dabn
min 

(Dmax;Dabn) 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,01 0,02 0,00 0,03 0,06 0,02 0,02 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,00
0,02 0,03 0,01 0,03 0,08 0,03 0,03 0,03 0,03 0,02 0,02 0,02 0,02 0,01 0,01 0,01 0,01
0,03 0,05 0,01 0,04 0,10 0,05 0,05 0,04 0,04 0,04 0,03 0,03 0,03 0,02 0,02 0,02 0,01
0,04 0,06 0,02 0,04 0,12 0,06 0,06 0,06 0,05 0,05 0,04 0,04 0,03 0,03 0,03 0,02 0,02
0,05 0,08 0,02 0,04 0,13 0,08 0,08 0,07 0,07 0,06 0,05 0,05 0,04 0,04 0,03 0,03 0,02
0,10 0,15 0,04 0,05 0,19 0,15 0,15 0,14 0,13 0,12 0,11 0,10 0,09 0,08 0,07 0,05 0,04
0,15 0,23 0,07 0,05 0,25 0,23 0,23 0,21 0,19 0,18 0,16 0,15 0,13 0,12 0,10 0,09 0,07
0,20 0,29 0,10 0,05 0,30 0,29 0,29 0,28 0,26 0,24 0,22 0,20 0,18 0,16 0,14 0,12 0,10
0,25 0,36 0,13 0,05 0,35 0,35 0,35 0,33 0,30 0,28 0,26 0,24 0,22 0,20 0,18 0,15 0,13
0,30 0,42 0,17 0,05 0,39 0,39 0,39 0,37 0,35 0,33 0,30 0,28 0,26 0,24 0,21 0,19 0,17
0,35 0,48 0,21 0,05 0,44 0,44 0,44 0,42 0,39 0,37 0,35 0,32 0,30 0,28 0,25 0,23 0,21
0,40 0,54 0,25 0,04 0,49 0,49 0,49 0,46 0,44 0,42 0,39 0,37 0,34 0,32 0,30 0,27 0,25
0,45 0,60 0,29 0,04 0,53 0,53 0,53 0,51 0,48 0,46 0,44 0,41 0,39 0,37 0,34 0,32 0,29
0,50 0,65 0,34 0,04 0,58 0,58 0,58 0,55 0,53 0,51 0,48 0,46 0,44 0,41 0,39 0,37 0,34
0,55 0,70 0,39 0,03 0,62 0,62 0,62 0,60 0,57 0,55 0,53 0,51 0,48 0,46 0,44 0,42 0,39
0,60 0,74 0,45 0,03 0,66 0,66 0,66 0,64 0,62 0,60 0,58 0,56 0,53 0,51 0,49 0,47 0,45
0,65 0,78 0,51 0,03 0,71 0,71 0,71 0,69 0,67 0,65 0,63 0,61 0,59 0,57 0,55 0,53 0,51
0,70 0,82 0,57 0,02 0,75 0,75 0,75 0,73 0,71 0,69 0,68 0,66 0,64 0,62 0,60 0,59 0,57
0,75 0,86 0,63 0,02 0,79 0,79 0,79 0,77 0,76 0,74 0,73 0,71 0,70 0,68 0,66 0,65 0,63
0,80 0,89 0,70 0,02 0,83 0,83 0,83 0,82 0,81 0,79 0,78 0,77 0,75 0,74 0,73 0,71 0,70
0,85 0,93 0,77 0,01 0,87 0,87 0,87 0,86 0,85 0,84 0,83 0,82 0,81 0,80 0,79 0,78 0,77
0,90 0,95 0,84 0,01 0,92 0,92 0,92 0,91 0,90 0,89 0,89 0,88 0,87 0,87 0,86 0,85 0,84
0,95 0,98 0,92 0,00 0,96 0,96 0,96 0,95 0,95 0,95 0,94 0,94 0,94 0,93 0,93 0,92 0,92
1,00 1,00 1,00 0,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
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Figure 2: iso-Score Curve Graph for the ESF and ALBC examples 

5.4. Drawing the Scoring Probability Graph (SPG) 

Once the ESF is calculated as a function of Di  (see step 3 in previous sub-section), Dm, 

Dmax, Dmin, σ and Dabn Probability Curves values from Table 2 (figures in bold) or Figure 1 

can be introduced in that expression, and the lower part of Table 4 is easily reached. 

 

Table 4: Calculations of the SPG for the ESF and ALBC examples for D0=0.25 

If Table 4 values are represented by rows, the first SPG is obtained (see Figure 3); and if 

Table 4 values are represented by columns, a second SPG is also obtained (see Figure 4). 
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D
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Dm

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Dabn

↓SP    Prob→ 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
Dmax 0.27 0.31 0.34 0.37 0.39 0.41 0.42 0.44 0.46 0.48 0.52 0.54 0.59
Dm 0.22 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.32 0.34 0.35 0.36

Dmin 0.05 0.09 0.10 0.13 0.14 0.16 0.17 0.18 0.20 0.21 0.24 0.26 0.30
σ 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06

Dabn 0.29 0.32 0.34 0.36 0.37 0.38 0.40 0.41 0.42 0.43 0.45 0.46 0.49
D*max 0.27 0.31 0.34 0.36 0.37 0.38 0.40 0.41 0.42 0.43 0.45 0.46 0.49

↓Si    Prob→ 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99
1.00 0.27 0.31 0.34 0.36 0.37 0.38 0.40 0.41 0.42 0.43 0.45 0.46 0.49
0.90 0.25 0.29 0.31 0.33 0.35 0.36 0.37 0.38 0.39 0.41 0.43 0.44 0.47
0.80 0.23 0.27 0.29 0.31 0.33 0.34 0.35 0.36 0.37 0.39 0.41 0.42 0.45
0.70 0.20 0.24 0.27 0.29 0.30 0.32 0.33 0.34 0.35 0.36 0.38 0.40 0.43
0.60 0.18 0.22 0.24 0.27 0.28 0.29 0.30 0.32 0.33 0.34 0.36 0.38 0.41
0.50 0.16 0.20 0.22 0.24 0.26 0.27 0.28 0.29 0.31 0.32 0.34 0.36 0.39
0.40 0.14 0.18 0.20 0.22 0.23 0.25 0.26 0.27 0.28 0.30 0.32 0.34 0.37
0.30 0.12 0.15 0.17 0.20 0.21 0.22 0.24 0.25 0.26 0.28 0.30 0.32 0.35
0.20 0.10 0.13 0.15 0.17 0.19 0.20 0.21 0.23 0.24 0.26 0.28 0.30 0.34
0.10 0.08 0.11 0.13 0.15 0.16 0.18 0.19 0.20 0.22 0.24 0.26 0.28 0.32
0.00 0.05 0.09 0.10 0.13 0.14 0.16 0.17 0.18 0.20 0.21 0.24 0.26 0.30
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Figure 3: SPG in which curves represent different possible scores 

 

Figure 4: SPG in which curves represent various probable scoring distribution curves 
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The graph in Figure 3 enables any bidder to discover, for every possible Drop (price 

discount, on axis X), the probabilities it has of surpassing any possible score and of 

surpassing the abnormally high drop threshold. This graph constitutes the core of the BTFM, 

since its simplicity enables easy reading while including valuable processed tendering data. 

The graph in Figure 4 represents the same variable on axis X, i.e., Di., but this time the Y-

axis represents scores, which means that every curve shown (except for the Dabn curve 

which coincides with the previous SPG) represents the various probable scoring distribution 

curves that the final group of bids is likely to produce (the thicker a curve the more likely the 

real scoring distribution curve will occupy that position once the bids are opened and 

known). 

6. Drawing the Position Probability Graph (PPG) 

PPG constitutes a further step once the previous graphs have been calculated. 

6.1. Estimation of number of potential bidders 

To determine the probable positions each competitor will occupy it is necessary to delimit the 

number of potential bidders that will probably bid in the future tender. Indeed, an extensive 

literature has focused on the study of the potential number of bidders (Carr, 2005; Banki et 

al, 2008; Ngai et al., 2002); however, no variable has yet been proven to be reliable enough 

to forecast the number of bidders that will take part in a future tender. 

Therefore, the BTFM will consider the variable ‘number of bidders’ (N) as a random variable. 

Runeson, 1988, proved that when homogeneous tenders are analyzed, N follows a Normal 

distribution and can be delimited through average and standard deviation values of Ns from 

previous tenders (see last column in Table 1). 

The necessary next step is to study the bids distances from each other, so that the various 

competitor positions can be forecasted. Concerning this particular problem, the BTFM has 

two advantages that previous models do not have: firstly, the limits of the maximum (Dmax) 

and minimum (Dmin) drops can be statistically determined; and, secondly, it is known the 

drop value (Dm) that will cut in half the bids distribution. 

Moreover, a simplifying assumption must be made: inside each range, the N/2 bidders will 

be placed equidistantly at the same probability intervals. Figure 5 shows that the relationship 

between bidder position (n) and probability of surpassing the bidders’ drops (Pnth) while 

Figure 6 shows the relationship between the bidders’ drops (Dnth) and the aforementioned 

probability Pnth. 
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Figure 5: Diagram showing the relationship between n and Pnth. 

The straight line represented in Figure 5 corresponds to this expression: 

      
     
            (7) 

 

Figure 6: Diagram showing the relationship between Dnth and Pnth. 



 

18 

The apparently simple linear and bi-linear distribution of bidders’ drops in Figures 5 and 6, 

respectively, has also been studied in Ballesteros-Pérez, 2010, and the correlation factors 

(R) obtained between real Bidders’ drops and estimated bidders equidistant drops are 

almost always above 0.95, meaning that the bi-linear bidders’ distribution model is simple 

and accurate. 

6.2. Calculating and representing bidders position curves 

Once variables Dmin, Dm ,Dmax and N* are known for each possible probability level, it is 

assumed that the potential number of bidders will follow a bi-linear distribution as 

represented in figure 6. The task remains of calculating each bidder’s n position curve by 

applying the general expressions shown below Figure 6, or its simplified equation 

(combination of equations 7 and the equation shown below Figure 6) as follows:  

        
       
    (       )   

 [                   (    ) ] [( 
      )  |       |]   (8) 

Calculations using equation 8 for the first 25 potential bidders’ positions are shown in Table 

5 and represented in Figure 7. The only precaution that must be taken is not to use N* 

values lower than 2 in order to maintain equation consistency. 

This last type of graph enables any bidder to study which positions are the most attractive as 

a function of any possible drop (bid), since, quite often, the first positions involve high risks of 

disqualification because of the ALBC (as happens to the first and second bidders 

represented in figure 7 because they have most of their curves to the right of Dabn). 

In the example analyzed, a third, fourth or even fifth position would be more attractive since 

they would become first, second, and third positions, respectively, once the riskier bidders 

were eliminated. Therefore, this graph gives complementary information regarding the data 

given by the Scoring Probability Graphs. 
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Table 5: Calculations of the PPG for the ESF and ALBC examples for D0=0.25 

 

Figure 7: Position Probability Graph for the ESF and ALBC examples and for D0=0.25 

↓SP    Prob→ 0,01 0,05 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 0,95 0,99
Dmax 0,27 0,31 0,34 0,37 0,39 0,41 0,42 0,44 0,46 0,48 0,52 0,54 0,59
Dm 0,22 0,25 0,26 0,27 0,28 0,29 0,30 0,31 0,32 0,32 0,34 0,35 0,36

Dmin 0,05 0,09 0,10 0,13 0,14 0,16 0,17 0,18 0,20 0,21 0,24 0,26 0,30
Dabn 0,29 0,32 0,34 0,36 0,37 0,38 0,40 0,41 0,42 0,43 0,45 0,46 0,49

Total number of Bidders' Estimate (N*)
Nm 13,89 13,89 13,89 13,89 13,89 13,89 13,89 13,89 13,89 13,89 13,89 13,89 13,89

h (1 variable total) 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
nσ -2,05 -1,65 -1,28 -0,84 -0,52 -0,25 0,00 0,25 0,52 0,84 1,28 1,65 2,32
Nσ 5,28 5,28 5,28 5,28 5,28 5,28 5,28 5,28 5,28 5,28 5,28 5,28 5,28

N*=Nm + h·nσ·Nσ 3,07 5,18 7,13 9,46 11,14 12,57 13,89 15,21 16,63 18,32 20,65 22,60 26,13

Dnth
↓ Bidders ↓n Bidder  Prob→ 0,02 0,05 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 0,95 0,99
1st = Dmax 1 0,27 0,31 0,34 0,37 0,39 0,41 0,42 0,44 0,46 0,48 0,52 0,54 0,59

2nd 2 0,24 0,29 0,32 0,35 0,37 0,39 0,41 0,42 0,44 0,47 0,50 0,52 0,57
3rd 3 0,08 0,26 0,29 0,33 0,35 0,37 0,39 0,41 0,43 0,45 0,48 0,51 0,56
4th 4 -0,24 0,21 0,27 0,31 0,33 0,35 0,37 0,39 0,41 0,43 0,46 0,49 0,54
5th 5 -0,56 0,10 0,23 0,29 0,31 0,33 0,35 0,37 0,39 0,41 0,45 0,47 0,52
6th 6 -0,88 0,00 0,17 0,26 0,30 0,32 0,34 0,35 0,37 0,40 0,43 0,46 0,50
7th 7 -1,20 -0,10 0,11 0,22 0,27 0,30 0,32 0,34 0,36 0,38 0,41 0,44 0,49
8th 8 -1,52 -0,20 0,05 0,18 0,24 0,27 0,30 0,32 0,34 0,36 0,39 0,42 0,47
9th 9 -1,84 -0,31 -0,01 0,14 0,21 0,25 0,28 0,30 0,32 0,34 0,38 0,40 0,45

10th 10 -2,16 -0,41 -0,07 0,10 0,18 0,22 0,25 0,28 0,30 0,33 0,36 0,39 0,43
11th 11 -2,48 -0,51 -0,13 0,06 0,15 0,20 0,23 0,26 0,29 0,31 0,34 0,37 0,42
12th 12 -2,80 -0,61 -0,20 0,02 0,11 0,17 0,21 0,24 0,27 0,30 0,33 0,35 0,40
13th 13 -3,12 -0,72 -0,26 -0,02 0,08 0,14 0,19 0,22 0,26 0,29 0,32 0,34 0,38
14th 14 -3,44 -0,82 -0,32 -0,06 0,05 0,12 0,17 0,21 0,24 0,27 0,31 0,33 0,36
15th 15 -3,76 -0,92 -0,38 -0,10 0,02 0,09 0,14 0,19 0,22 0,26 0,30 0,32 0,36
16th 16 -4,08 -1,02 -0,44 -0,14 -0,01 0,07 0,12 0,17 0,21 0,25 0,29 0,31 0,35
17th 17 -4,40 -1,13 -0,50 -0,18 -0,04 0,04 0,10 0,15 0,19 0,23 0,28 0,31 0,35
18th 18 -4,71 -1,23 -0,56 -0,22 -0,07 0,01 0,08 0,13 0,17 0,22 0,27 0,30 0,34
19th 19 -5,03 -1,33 -0,63 -0,26 -0,10 -0,01 0,06 0,11 0,16 0,20 0,26 0,29 0,34
20th 20 -5,35 -1,43 -0,69 -0,30 -0,14 -0,04 0,03 0,09 0,14 0,19 0,25 0,28 0,33
21st 21 -5,67 -1,54 -0,75 -0,34 -0,17 -0,06 0,01 0,07 0,13 0,18 0,23 0,27 0,33
22nd 22 -5,99 -1,64 -0,81 -0,38 -0,20 -0,09 -0,01 0,05 0,11 0,16 0,22 0,26 0,32
23rd 23 -6,31 -1,74 -0,87 -0,42 -0,23 -0,12 -0,03 0,03 0,09 0,15 0,21 0,26 0,31
24th 24 -6,63 -1,84 -0,93 -0,46 -0,26 -0,14 -0,06 0,01 0,08 0,14 0,20 0,25 0,31
25th 25 -6,95 -1,95 -0,99 -0,50 -0,29 -0,17 -0,08 0,00 0,06 0,12 0,19 0,24 0,30
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7. Results 

In this paper, Ballesteros-Pérez et al., 2012a and 2012b’s Bid tender forecasting model has 

been completed by generating two new kinds of graphs very useful for bidding manager 

when trying to make predictions. So far, none of the previous models have managed to 

calculate and briefly present in a graphical manner as much information as the presented 

model. 

The whole BTFM is the sum of four graphs: 

1. The iso-Score Curves Graph (iSCG) represents how a particular ESF distributes the 

economic points in a certain tender and represents the relationships between the 

main Scoring Parameters involved. There is no need for previous tender D0 values, 

because it is a merely descriptive tool. Once the user is trained in its use, the iSCG 

highlights potential bidding strategies that the bidders will probably deploy to be more 

competitive. 

2. The Scoring Probability Graphs (SPG), by means of two representations form the 

major outcome of the BTFM. These complementary and easy-to-use graphs enable 

any bidder to measure the probabilities of obtaining any economic score as a 

function of any bid. Moreover, they provide indispensable information regarding the 

likely limits for abnormally low bid thresholds. 

3. The Position Probability Graph (PPG) enables the study of the problem from the 

perspective of the likely positions, that is, it takes into consideration the previous 

encounters with the competition concerning the number of bidders and its 

distribution. This graph enables bidders to identify the most desirable positions taking 

into account that a minimum economic score is not always enough and that it is 

usually necessary to occupy one of the first and ‘accepted’ positions to be sufficiently 

competitive. 

8. Conclusions and discussion 

Previous models were based on probabilistic descriptions of large groups of single bidders 

where each potential bidder was studied individually (it was even necessary to know the 

bidders’ names and have an enormous amount of previous information with regard to their 

bids). The extended BTFM describes group patterns as a whole (using a significantly smaller 

dataset) and the model discretizes group bidder behavior to study the most likely positions 

only when bidder positions must be studied. 

Nevertheless, there is a drawback: no analysis can be developed regarding how a specific 

bidder (a particular company for instance) will bid, however, the Ballesteros-Pérez et al. 
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2012a and 2012b’s BTFM, whose new graphs have been shown here, solves the major 

problems suffered by previous models in capped tendering as it enables us to: 

1. Study bidding behaviors with a significantly smaller database compared to previous 

works, in which it was necessary to gather tens of previous tenders per each 

potential competitor bidder to be able to process useful statistical behaviors. In the 

proposed BTFM, the iSCG needs no previous tender experience, and the rest of the 

graphs can be fully operative with at least three previous tenders whenever they are 

homogeneous with the tender to be forecasted (similar type of work, ESF, location, 

and relatively similar budget). In other words it is no necessary to have shared a 

tender process with a particular competitor bidder, nor to try to predict which specific 

bidders will bid to be forecasted. 

2. Forecast the probability of obtaining a particular score and/or position among 

competitors. The previous models were only able to study the likelihood of occupying 

the first position and did not study likely economic scorings, nor the likely thresholds 

of abnormally low bids. 

3. Analyze time variations between tenders. Although this has not been explained in 

this paper, it is easy to reach the conclusion that time variations are easily studied by 

means of regression coefficient (a, b, c and d) variations. If these coefficient values 

are represented on a Y-axis while X-axis represents deadline dates of every closed 

tender, their trends and evolution (as multiples of each respective standard deviation 

coefficient, for instance) can be easily identified and quantified. 

4. Measure the performance of a tender forecast. Previous models did not allow 

knowing in detail how close the tender outcome was to the initial prediction, and only 

Wallace, Patrick and Dowe (Skitmore, 2002) on their articles about ‘mathematics and 

computers in sports’ started to develop a ‘Scoring logit function’ combined with a new 

form of binomial test to tackle this particular issue of assessing forecast performance. 

The present model allows any tender manager to measure the accuracy of every 

parameter used in it. This can be easily done calculating how many standard 

deviation multiples of each coefficient (a, b, c and d for assessing Dmax, Dmin, σ and 

D0, respectively) differ from their respective mean value (as calculated in Table 1) 

once the tender results are opened and the final bidders’ positions and scores are 

known. 

Finally, the BTFM completed by means of the SPG and the PPG is a very powerful tool for 

any Project or Tender Manager who wants to enter a bid and needs gaining an additional 

competitive edge. Nowadays, lots of companies compete to increase their project portfolios, 
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and, the larger the number of companies that compete, the more difficult is to be awarded a 

contract. 

The BTFM developed in this article allows a Project Manager to handle either vast or small 

amounts of previous tender data (calculations can be gradually developed using a simple 

spreadsheet, as demonstrated in the subsequent tables) and rapidly visualize the results 

represented in four graphs. 

In a nutshell, those graphs enable the Project Manager to know, for every possible economic 

bid, which are the probabilities of occupying the first, second, and subsequent positions; the 

probabilities of achieving any particular score, and even the probabilities of being rejected 

because of an abnormal bid. Nonetheless, the final decision on which specific bid to propose 

(or even the final decision of not bidding) will depend on the Project Manager’s risk 

conception, company profile and market conditions. 

9. Future work 

The BTFM set of equations implemented is not yet universal, as it has only been applied on 

capped tendering. In this kind of tenders, bidders can only underbid an initial monetary 

amount pre-set by the Contracting Authority, so every bid can be represented as a ‘Drop’ (or 

Discount) value. However, for non-capped tendering, as it is not possible to represent 

mathematical relationships in Drop values, the X-axis of the four graphs shown in this paper 

should represent monetary-based bids (ranging from 0 to infinite) instead of Drop values (in 

percentage or per-unit values, ranging from 0 to 1, as used in this paper). 

This change will also involve studying new mathematical relationships between Scoring and 

Forecasting Parameters the current model uses and transforming them as a function of 

monetary values instead of drop values, which is indispensable on non-capped tendering. 

This step will require access to non-capped tenders databases and further statistical 

analyses, nevertheless the adaptation of the model to cope with these new conditions can 

be researched. 

In parallel with BTFM adaptation to non-capped tenders, a comprehensive study on how 

different Economic Scoring Formulas (the mathematical criteria by which scores are given 

out in a tender according to each bidder’s bid, plus the way the abnormally low threshold is 

set as well) produce changes in the bidder behavior will also be made. With just a little 

experience in an ESF proposed for the first time by a contracting authority, the future BTFM 

will be able to make a relatively accurate forecast beforehand. 

Finally, it was explained that the bid tender forecasting graphs shown here do not include 

certain risk issues and so a further step will be required to complement the variable 
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deviations studied in this paper (particularly those related to the Estimated Cost, D0). For 

instance, there is an extensive literature regarding D0 determination, and its connection with 

the present model will be researched to improve accuracy. 

Appendix A 

Main abbreviations used in the text: 

A  Amount of money of a tender (upper price limit) 

a  Regression coefficient to adjust relationship between Dmax and Dm 

a*  Variable calculated according to the expression am+h·nσ·aσ 

am  Average of regression coefficient a values 

aσ  Standard deviation of regression coefficient a values 

ACA Agencia Catalana del Agua (owner of the tendering sub-dataset analyzed) 

ALB Abnormally Low Bid 

ALBC Abnormally Low Bid Criteria 

B  Bid (expressed in monetary value) 

b  Regression coefficient to adjust relationship between Dmin and Dm 

b*  Variable calculated according to the expression bm+h·nσ·bσ 

bm  Average of regression coefficient b values 

bσ  Standard deviation of regression coefficient b values 

Babn Abnormally Low Bid Threshold (expressed in monetary value) 

Bi  Bidder’s i Bid (expressed in monetary value) 

Bm  Mean Bid (expressed in monetary value) 

Bmax Highest Bid (expressed in monetary value) 

B*min Lowest but not Abnormally Low Bid (expressed in monetary value). It is equal to the 

maximum value between Bmin and Babn. 

Bmin Lowest Bid (expressed in monetary value) 

B0  Amount equivalent to the Estimated Cost (expressed in monetary value) 

BTFM Bid Tender Forecasting Model 

c  Regression coefficient to adjust relationship between σ and Dm 
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c*  Variable calculated according to the expression cm+h·nσ·cσ 

cm  Average of regression coefficient c values 

cσ  Standard deviation of regression coefficient c values 

d  Regression coefficient to adjust relationship between D0 and Dm 

d*  Variable calculated according to the expression dm+h·nσ·dσ 

dm  Average of regression coefficient d values 

dσ  Standard deviation of regression coefficient d values 

D  Drop (expressed in per-unit value) 

Dabn Abnormal Drop (expressed in per-unit value) 

Di  Bidder’s i Drop (expressed in per-unit value) 

Dm  Mean Drop (expressed in per-unit value) 

Dmax Maximum Drop (expressed in per-unit value) 

D*max Highest but not Abnormally High Drop (expressed in per-unit value). It is equal to the 

minimum value between Dmax and Dabn. 

Dmin Minimum Drop (expressed in per-unit value) 

Dnth  Bidder’s nth Drop (expressed in per-unit value) 

D0  Drop equivalent to the Estimated Cost (expressed in per-unit value) 

ESF Economic Scoring Formula 

h Multivariate Normal Distribution Coefficient. If there is one variable h=1, and if there 

are two variables (h=√2/2≈0,71). 

iSC  iso-Score Curve 

iSCG iso-Score Curves Graph 

N  Total number of bidders for a particular tender 

N*  Variable calculated according to the expression Nm+h·nσ·Nσ 

Nm  Average of analyzed N values 

Nσ  Standard deviation of analyzed N values 

nσ Number of Standard Deviation multiples that are related to a particular accumulated 

Standard Normal Distribution probability 

P  Probability (usually expressed in per-unit value) 
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Pnth  Probability of surpassing bidder’s nth (usually expressed in per-unit value) 

S  Bids Standard Deviation (expressed in monetary value) 

Si  Score of Bidder i (expressed either in points or in per-unit value) 

SP  Scoring Parameter 

SPG Scoring Probability Graph 

PPG Position Probability Graph 

T  Abnormally High Drop Threshold 

WWTP Waste Water Treatment Plant 

σ  Drops Standard Deviation (expressed in per-unit value) 

Appendix B 

Main equations linking the different variables used in the text: 

Bidder’s i Drop            

Relationship between SP monetary-based and Drop-based values: 

   (    )     ;       (      )   ;       (      )  

       ;       (      )  

Regression equations between SPs and FPs: 

          (   )    ;            (   )    

    (  
 
    )   ;         (    ) 

Expressions for calculating regression equation coefficient values: 

                       
   ;                          

   ;        
      

   ;             
      

 

BTFM regression expressions as a function of D0: 
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Expressions for calculating asterisk regression coefficient values: 

                ;                    

                ;                 

ESF used in the example: 

             
          

  →               
          

  →  

 

  →           (    )(          ) 
ALBC used in the example: 

             →             

Number of bidders for each probability level calculation: 

              
BTFM relationship for probability (Pnth), number of bidders (N*), and position (n): 

     
      
   

BTFM relationship for nth’s bidder Drop (Dnth), probability (Pnth), and number of bidders (N*): 

For 
 
        

 
   and              : 
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General expression (for 
 
           and                ) 
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