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Abstract

A generalization of Arakawa and Schubert’s convective quasi-equilibrium

principle is presented for a closure formulation of mass-flux convection pa-

rameterization. The original principle is based on the budget of the cloud

work function. This principle is generalized by considering the budget for

a vertical integral of an arbitrary convection-related quantity. The closure

formulation includes Arakawa and Schubert’s quasi-equilibrium, as well as

both CAPE and moisture closures as special cases. The formulation also in-

cludes new possibilities for considering vertical integrals that are dependent

on convective-scale variables, such as the moisture within convection.

The generalized convective quasi-equilibrium is defined by a balance be-

tween large-scale forcing and convective response for a given vertically-integrated

quantity. The latter takes the form of a convolution of a kernel matrix and

a mass-flux spectrum, as in the original convective quasi-equilibrium. The

kernel reduces to a scalar when either a bulk formulation is adopted, or only

large-scale variables are considered within the vertical integral. Various phys-
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ical implications of the generalized closure are discussed. These include the

possibility that precipitation might be considered as a potentially-significant

contribution to the large-scale forcing. Two dicta are proposed as guiding

physical principles for the specifying a suitable vertically-integrated quantity.

Keywords: Parameterization, Closure, Mass-Flux Formulation,

Quasi-Equilibrium

1. Introduction

Quasi-equilibrium is often considered an important guiding principle for

understanding the role of moist convection in the large-scale atmospheric

circulations (cf., Emanuel et al. 1994). However, it is often forgotten that the

concept of convective quasi-equilibrium was originally introduced by Arakawa

and Schubert (1974: hereafter AS) in a rather specific and technical manner.

In spite of the great influence of this concept, the original specific formulation

is strangely not much investigated in the literature (cf., Yano and Plant

2012a). The goal of the present paper is to present its direct generalization.

Arakawa and Schubert’s original quasi-equilibrium principle is specifically

introduced as a closure condition for mass-flux convection parameterization.

Thus, the present paper pursues its generalization also in the context of

parameterization closure. The importance of subgrid-scale parameterization

and the challenges that we still face cannot be overemphasized (cf., McFarlane

2011). The closure problem remains one of the major difficulties, for which

many hypotheses have been proposed but without any clear consensus (cf.,

Yano et al. 2013, 2014).

For this goal, a general formulation for the convection parameterization
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closure is developed. Some existing closure hypotheses are also examined and

compared on a equal footing in the light of the developed general formulation.

Although the general formulation itself does not provide an ultimate answer

to the question of the closure choice, a well-defined and consistent perspective

on the possible formulations is definitely a step forward. A well-defined

physical basis for closure must be capable of being incorporated within a

suitably general framework, and this statement in itself may help to narrow

down the acceptable possibilities.

General conceptual reflections on the convective closure problem are pro-

vided by Arakawa and Chen (1987), and Arakawa (1993), in which they

propose to categorize the closures into the four types. The present paper de-

velops a general closure formulation in mathematical terms, mostly focusing

on the type IV in their terminologies.

We take the mass-flux parameterization structure as the basis for consid-

ering this general closure formulation, also because the majority of current

operational parameterizations follow this approach. For a presentation and

discussion of the whole structure of the mass-flux convection parameteriza-

tion, we refer to Yano (2014a). In terms of the mass-flux parameterization,

the closure refers more specifically to the problem of defining the value of the

convective mass-flux at the convection base.

This problem arises in the following manner. In the process of comput-

ing the tendency of resolved-scale variables due to convection, a mass-flux

convection parameterization needs to determine both the mass flux and the

values of convective-scale variables. A spectrum of the mass flux may be

considered, Mi, with i an index for a convection type. Alternatively, a single
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bulk mass flux, M , may be preferred. Once this quantity is defined, all of the

convective-scale variables, here designated by ϕi, are then calculated from:

∂

∂z
Miϕi = Eiϕ̄ − Diϕi + ρσiFi. (1.1)

Here the bar designates the grid-box average, ρ is the air density, σi is the

fractional area occupied by the i-th convection type and Fi is the forcing on

ϕ averaged over the i-th convection type. z is the height coordinate.

The procedure for solving Eq. 1.1 is relatively straightforward once the

mass flux, Mi, is known, so long as the variable is conserved (i.e., Fi = 0).

For issues concerning non-conservative processes, we refer to Donner (1993).

The issues of prescribing the entrainment and detrainment rates, Ei and Di,

are reviewed by de Rooy et al. (2013).

Thus, the main problem in mass-flux convection parameterization reduces

to that of defining the mass flux, Mi. The usual practice is to consider

it under a separation of variables into a vertical dependence and temporal

dependence:

Mi = ηi(z)MB,i(t). (1.2)

Here, ηi(z) is a “normalized” vertical profile and MB,i(t) is a time-dependent

amplitude of convection. The problems of defining them are usually called

“the cloud model” and “the closure” respectively, and the latter is the topic

of the present paper. MB,i(t) is usually defined as a value at the convection

base, but mostly for a historical reason (cf., Yano 2011).

The cloud model is usually formulated in terms of prescribed fractional

rates, ǫi = Ei/Mi and δi = Di/Mi, for the entrainment and detrainment by

1

ηi

∂

∂z
ηi = ǫi − δi. (1.3)
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Vertical integration leads to

ηi = exp

[
∫ z

zB

(ǫi − δi)dz′
]

(1.4)

such that the normalization of the mass flux profile is obtained with ηi(z =

zB) = 1.

The present paper presents a general formulation for mass-flux convection

parameterization closure (i.e., for the calculation of MB,i) as an extension of

the common current closures which are based on CAPE (convective available

potential energy) and moisture convergence. A general statement of the

problem is made in the next section and the formulation is developed over

Secs. 3–6, gradually increasing its generalizabilty and providing examples of

how existing closure methods fit into the overall structure. The most general

case is presented in Sec. 6. Hence, the two earlier sections may be considered

preparations for presenting this general result. Nevertheless, these sections

also contain their own useful results for some simple but important examples.

The results are summarized and further examined in Sec. 7. The gener-

alized convective quasi-equilibrium principle presented herein naturally does

not cover all of the existing closure hypotheses. These more general aspects

are discussed in the last section in conclusions.

2. General Statement of the Problem

A common approach for defining the mass-flux convection parameteriza-

tion closure is to assume that a certain vertical integral, I, is quasi-stationary

under interactions between convection and the large-scale dynamics. Thus,

∂

∂t
I = 0, (2.1)
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where

I =

∫ zT

zB

fdz. (2.2)

Various possibilities for the integrand f will be specified in the following

sections. The integral may be performed from the convection base, zB, to the

convection top, zT , but this can be modified as in Sec. 3.2 below. Equation 2.1

along with Eq. 2.2 may be considered as a generalization of the AS convective

quasi-equilibrium principle, as will be demonstrated in the following.

Here, note that the definition for the bottom and the top of convection is

itself an open question. The convection base, zB, would be most conveniently

defined at the top of the planetary boundary layer (assuming a well-mixed

convective boundary layer), as assumed by AS. In many CRM/LES (cloud-

resolving model/large-eddy simulation) diagnostic analyses, the convection

base is simply defined as a cloud base, or a lifting condensation level. The

ECMWF model, for example, also takes this latter definition. Alternatively,

we may take the convection base simply at the surface. The convection

top, zT , is relatively straightforward to define if we follow the basic ideas

of convective plumes (cf., de Rooy et al. 2013, Yano 2014b): it would be

equated with the level of neutral buoyancy. However, this is not a unique

option, and one may for example wish to consider the possibility of convective

overshooting.

The basic idea behind this closure formulation may be understood by

explicitly writing down a budget equation in the form:

∂I

∂t
=

(

∂I

∂t

)

L

+

(

∂I

∂t

)

c

(2.3)

Here, (∂I/∂t)L is the rate at which the quantity I is generated by large-scale

processes (i.e., the large-scale forcing), and −(∂I/∂t)c is the rate at which I is
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consumed by convection (i.e., convective damping). The precise meanings of

these two terms will be specified step by step as the formulation is developed

in the following. The closure of Eq. 2.1 implies that whenever I is generated

by a large-scale process, it is consumed by convection almost immediately so

that a balance
(

∂I

∂t

)

L

+

(

∂I

∂t

)

c

= 0 (2.4)

is maintained. The idea was originally proposed by AS, and their specific

formulation (convective quasi-equilibrium closure) is presented in Sec. 6.2. In

this respect, Eq. 2.4 may be considered a generalization of the AS convective

quasi-equilibrium principle (cf., Yano and Plant 2012a).

Note that generally, the two terms, (∂I/∂t)L and (∂I/∂t)c, on the right-

hand side of Eq. 2.3 are not necessarily positive and negative definite, respec-

tively. Thus, some modifications of the physical interpretation of the balance

condition 2.4 may be required. Nevertheless, it is reasonable to expect that

the condition 2.1 or 2.4 remains a useful guiding principle for convection-

parameterization closure.

3. Closures depending only on the large-scale variables: f = f(ϕ̄)

The simplest choice for the vertical integral, I, is

I =

∫ zT

zB

f(ϕ̄)dz, (3.1)

where f is an unspecified function of an unspecified physical variable, ϕ̄, that

is defined as a grid-box average (i.e., a “large-scale” variable).

The function f may, in general, depend on multiple such variables, in

which case, ϕ̄ must be replaced by a vector representing those variables. The
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possibility for this generalization is kept implicit in much of the following

analysis, because it introduces only a minor modification of the notation in

so far as the derivations are concerned. The important point for now is that

the function, f , is taken to depend solely on large-scale variables. As it turns

out, the two most commonly adopted types of closure fall into this category.

3.1. Equation for the large-scale variable

In order to find a more explicit expression for Eq. 2.1, we substitute

Eq. 2.2, and perform the temporal derivative:

∂I

∂t
=

∫ zT

zB

(

∂f

∂ϕ̄

)

∂ϕ̄

∂t
dz + żT fT − żBfB (3.2)

by invoking Leibniz’s theorem. Here and hereafter, the subscripts T and B

denote values at the top and the bottom of the integration limits.

As already remarked, it is convenient to separate the temporal tendency,

∂ϕ̄/∂t, into terms due to convective activity and terms due to large-scale

processes:
∂ϕ̄

∂t
=

(

∂ϕ̄

∂t

)

c

+

(

∂ϕ̄

∂t

)

L

(3.3)

Substitution of Eq. 3.3 into Eq. 3.2 leads to:

(

∂I

∂t

)

c

=

∫ zT

zB

(

∂f

∂ϕ̄

)(

∂ϕ̄

∂t

)

c

dz, (3.4a)

(

∂I

∂t

)

L

=

∫ zT

zB

(

∂f

∂ϕ̄

)(

∂ϕ̄

∂t

)

L

dz + żT fT − żBfB. (3.4b)

Note that the top and the bottom contributions are mostly conveniently

assigned to be a part of the large-scale forcing for now. However, in later

developments, it turns out that a part of these terms may be better considered

as corresponding to a convective-scale contribution, as discussed in Sec. 7.1.
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In the mass flux parameterization framework, the prognostic equation for

a large-scale variable ϕ̄ can be written as in Eq. 7.9 of Yano (2014a), with

the convective and large-scale tendencies being given respectively by:
(

∂ϕ̄

∂t

)

c

=
1

ρ

∑

i

[

Di(ϕ
D
i − ϕ̄) + Mi

∂ϕ̄

∂z

]

(3.5a)

(

∂ϕ̄

∂t

)

L

= −∇̄ · ϕ̄ū −
1

ρ

∂

∂z
ρw̄ϕ̄ + Fe. (3.5b)

Here, the superscript D is added to ϕi to indicate the value on detrainment,

and Fe is the forcing on ϕ averaged over the environment.

By substituting Eq. 3.5a into Eq. 3.4a we obtain:
(

∂I

∂t

)

c

=
∑

i

KiMB,i (3.6)

where

Ki =

∫ zT

zB

ηi

ρ

∂f

∂ϕ̄

[

δi(ϕi − ϕ̄) +
∂ϕ̄

∂z

]

dz (3.7)

It is obvious that this type of closure depending only on the large-scale

variables cannot define a spectrum of convective types, since only a single

constraint is available. In order to emphasize this point, where a bulk for-

mulation is necessary, we replace the index i by the subscript c as required.

Thus,
∂I

∂t
= KMB +

(

∂I

∂t

)

L

(3.8a)

where

K =

∫ zT

zB

ηc

ρ

∂f

∂ϕ̄

[

δc(ϕc − ϕ̄) +
∂ϕ̄

∂z

]

dz. (3.8b)

By substituting Eq. 3.8a into the closure condition 2.1, we obtain

MB = −
1

K

(

∂I

∂t

)

L

. (3.9)
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3.2. Kuo’s (1974) moisture-based closure

The moisture-based closure proposed by Kuo (1974) is probably the best

known example of a closure solely based on large-scale variables. It sets

f = ρq̄ (3.10)

with q the moisture mixing ratio. In applying the general formulation derived

above, we note that the vertical eddy flux in the boundary layer, especially

the surface evaporation rate, is important for the moisture budget. In order

to see this contribution explicitly, we set

Fe = −
1

ρ

∂

∂z
ρw′q′. (3.11)

The closure condition is then given by Eq. 3.9 with

K =

∫ zT

zB

ηc

[

δc(qc − q̄) +
∂q̄

∂z

]

dz (3.12a)

(

∂Iq

∂t

)

L

= −

∫ zT

zB

[

ρ∇ · ūq̄ +
∂

∂z
ρw̄q̄

]

dz + HE (3.12b)

Here we have added a subscript q to I to indicate results specific to the

moisture-based closure. The vertical integral of the forcing term has been

written as HE , which is simply the surface evaporation rate if zB is taken at

the Earth’s surface. The top of the integral, zT , is taken at the top of the

atmosphere for now, so that there is no contribution from that limit to the

eddy moisture flux.

The major interest of Kuo (1974) is to obtain the convective moisture

tendency, (∂q̄/∂t)c, which may be expressed as:

(

∂q̄

∂t

)

c

= −
f̃ (z)

K

(

∂Iq

∂t

)

L

, (3.13a)
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where

f̃(z) =
ηc

ρ

[

∂q̄

∂z
+ δc(q

D
c − q̄)

]

. (3.13b)

In Kuo’s (1974) original formulation, the vertical profile, f̃(z), is deter-

mined in a rather arbitrary manner. However, once Kuo’s (1974) closure

is re-cast into the mass-flux framework as presented here, this issue simply

reduces to that of determining a vertical profile for the mass flux, ηc, as seen

from Eq. 3.13b. Kuo’s (1974) formulation has been further pursued by e.g.,

Krishnamurti et al. (1976), Anthes (1977), Molinari (1985).

3.3. CAPE–based closure

Many current operational models adopt CAPE (cf., Roff and Yano 2002)

as the basis for their closure. This is perhaps a less obvious example, but it

does belong to the same closure category. It amounts to setting

f = b (3.14)

in Eq. 2.2, where b is the lifting-parcel buoyancy defined in terms of the

virtual temperature, Tv, by:

b = g
Tvp − T̄v

T̄v

. (3.15)

Here, Tvp is the lifting-parcel virtual potential temperature, in which no

mixing with the environment is assumed. The virtual temperature may be

defined by:

Tv = (1 + δ̂q − l)T,

with δ̂ = Rv/Rd−1 defined in terms of the gas constants for dry air, Rd, and

water vapour, Rv. The cloud liquid water is denoted by l. Alternatively, it
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is convenient to express the lifting-parcel buoyancy as:

b = ρα(svp − s̄v), (3.16)

in terms of the virtual static energy:

sv = CpTv + gz, (3.17)

where Cp is the specific heat at constant pressure, and

α =
g

ρCpT̄v

. (3.18)

The CAPE closure can be considered as a case where the function f only

depending on large-scale variables, given that the lifting-parcel virtual po-

tential temperature, Tvp, may be interpreted as a large-scale variable. Specif-

ically, Tvp does not follow the standard rule for convective-scale variables as

being influenced by entrainment, as reviewed below in Sec. 4.2. By following

the same procedure as for the moisture-closure case (Sec. 3.2), the CAPE

closure is again given by Eq. 3.9, setting I = CAPE and ϕ̄ = svp − s̄v to

produce:

K =

∫ zT

zB

α
∂

∂z
(svp − s̄v)dz (3.19a)

(

∂CAPE

∂t

)

L

= −

∫ zT

zB

ρα

[

∂

∂t
(svp − s̄v)

]

L

dz. (3.19b)

Note that ηc = 1 for non-entraining parcel ascent. In writing Eq. 3.19b, it is

also assumed that the integral limits are set where the lifting–parcel buoyancy

vanishes. Eq. 3.19a can be further simplified by neglecting any changes to the

lifting–parcel moist virtual static energy svp during a non-entraining ascent,

so that

K ≈ −Cp

∫ zT

zB

α

(

∂T̄v

∂z
+

g

Cp

)

dz (3.20)
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which is a typically adopted formulation in operations (cf., Bechtold et al. 2014).

In many current operational implementations, however, the large-scale

tendency, (∂CAPE/∂t)L, is usually not directly calculated but instead re-

placed by the term
CAPE

τ
(3.21)

where τ is known as the closure timescale. This replacement is necessary

in practice, because otherwise a parameterization “underestimates convec-

tive activity in situations where the large-scale forcing is weak, and where

convective heating precedes the dynamic adjustment” (Bechtold et al. 2014).

Various other examples and further discussions of such an implementation

are found in Bechtold et al. (2001), Emanuel (1993), Fritsch and Chappell

(1980), Gregory (1997), Gregory et al. (2000), Kain (2004), and Zhang and

McFarlane (1995).

By putting all those approximations and assumptions together, a final

expression for the closure is given by

MB =
CAPE

τ

[

Cp

∫ zT

zB

α

(

∂T̄v

∂z
+

g

Cp

)

dz

]−1

. (3.22)

3.3.1. Boundary–layer and parcel–environment based closure

The CAPE tendency may, furthermore, be divided into two contributions:

one coming from the parcel virtual temperature, Tvp, and the other directly

from the environmental state, T̄v. These are given by

(

∂CAPE

∂t

)

BL

=

∫ zT

zB

g

T̄v

∂Tvp

∂t
dz (3.23a)

and
(

∂CAPE

∂t

)

env

= −

∫ zT

zB

g

T̄v

∂T̄v

∂t
dz (3.23b)

13



respectively. We have neglected any contributions arising from changes to T̄v

in the denominator of the integrand: this factor may be absorbed into a part

of the integration variable if the integral is performed in terms of pressure.

The contribution from the parcel virtual temperature, Tvp is considered as

arising due to boundary–layer (BL) processes, because the parcel originates

from the boundary layer and, by definition, does not interact with the envi-

ronmental air aloft. On the other hand, the contribution from the large-scale

virtual temperature, T̄v, is labelled as environmental (env).

Our physical intuition would suggest that most of the CAPE variability

originates from the boundary layer, so that

∂CAPE

∂t
≃

(

∂CAPE

∂t

)

BL

(3.24)

Emanuel (1995) and Raymond (1995), thus, argue that the CAPE closure can

be well approximated by considering only its boundary–layer contribution:

(

∂CAPE

∂t

)

BL

≃ 0. (3.25)

This idea is called boundary–layer quasi-equilibrium.

However, the observational data analyses by Zhang (2002, 2003) and Don-

ner and Phillips (2003) lead to rather unexpected conclusions. The data

both from the tropics and the mid-latitudes does not support boundary–

layer quasi-equilibrium observationally (see Yano et al. 2013 for detailed dis-

cussions). These authors instead propose that the CAPE closure should be

replaced by that for the parcel environment, i.e.,

(

∂CAPE

∂t

)

env

≃ 0. (3.26)
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This leads to the idea of the parcel–environment based closure. For an opera-

tional implementation of the parcel–environment based closure, see Bechtold

et al. (2014).

An important variant on CAPE is to replace the integrated buoyancy b by

the density–weighted integrated buoyancy, choosing f = ρb. The resulting

integral is named PCAPE by Bechtold et al. (2014), who also show that this

modification is a key ingredient for simulating the diurnal cycle of convection

along with the adoption of the parcel–environment closure.

4. Closures depending only on the convective-scale variables: fi =

f(ϕi)

4.1. General formulation

An alternative possibility, considered now, is to assume that the integral

function, f , depends only on convective-scale variables, ϕi. This assump-

tion has some physical appeal, because the properties of the convection are

expected to reach quasi-equilibrium (or quasi-stationarity: Yano and Plant,

2012a) against the large-scale state, and not the other way round. Here,

note that the convective-scale variables are already slaved to the large-scale

variables under the steady-plume hypothesis (cf., Sec. 7.3 in Yano 2014a),

as suggested by Eq. 1.1 above, and as will be fully elucidated in Sec. 4.2

below. Thus, this attempt should not be confused with that of closing a con-

vection parameterization solely in terms of convective-scale variables. The

latter attempt would be ill-posed.

In this case, a vertical integral, Ii, is defined for each convection type, i,

and thus it can more readily be applied to a spectral formulation. Specifically,
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in this case the vertical integral may be defined by

Ii =

∫ zTi

zB

f(ϕi)dz, (4.1)

and the quasi-equilibrium condition becomes

∂

∂t
Ii = 0. (4.2)

The convection top, zT i, is considered to depend on the convection type, i,

whereas the convection base, zB, is assumed to be common to the all types.

Taking Eq. 4.1 to define Ii, we can re-write Eq. 4.2 as:

∂Ii

∂t
=

∫ zTi

zB

∂fi

∂ϕi

∂ϕi

∂t
dz + żT ifT i − żBfB (4.3)

in analogy with Eq. 3.2.

In order to derive a full expression for Eq. 4.3, however, we need an

explicit expression for the tendency, ∂ϕi/∂t, which is the subject of the next

subsection.

4.2. Convective-scale variables

4.2.1. Diagnostic solution

The convective-scale variables are dealt with diagnostically under the

standard mass-flux formulation as carefully discussed in Sec. 7 of Yano (2014a).

This diagnostic equation is given by Eq. 1.1 for a convective-scale variable,

ϕi. That may be re-written as

(

∂

∂z
+ ǫ̃ϕi

)

ϕi = ǫi ˜̄ϕi, (4.4)

where

˜̄ϕi = ϕ̄ +
ρσi

ǫiMi

F̃i, (4.5a)
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and

ǫ̃ϕi
= ǫi −

ρσi

Miϕi

F̂i. (4.5b)

Here and hereafter, the subscript ϕi is added whenever it is necessary to

indicate a definition depending on ϕi. The final terms in both of the expres-

sions 4.5a,b are obtained by dividing the forcing term, Fi, into two arbitrary

contributions:

Fi = F̃i + F̂i. (4.6)

The division can be made in any manner desired so as to obtain a more con-

venient analytic expression for the particular variable ϕi. The ideal division

would be to make the parameter ǫ̃ϕi
a function of height only (with a pos-

sible extension to the case with additional dependence on ϕi), and for ˜̄ϕi to

have a simple closed expression (ideally independent of the convective-scale

variables: see immediately below).

In general, ˜̄ϕi may depend on other physical variables such as χi and χ̄

so that Eq. 4.5a takes the form

˜̄ϕi = ϕ̄ + F̃L,i(χi, χ̄), (4.7a)

where

F̃L,i =
ρσi

ǫiMi

F̃i. (4.7b)

This possibility will be considered only later in Sec. 5.2. For now, however,

˜̄ϕi is assumed to be a function of height only with no additional functional

dependence.

Eq. 4.4 is readily solved, and the solution is

ϕi =
1

η̃ϕi

[

ϕiB +

∫ z

zB

ǫiη̃ϕi
˜̄ϕidz′

]

, (4.8)
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where

η̃ϕi
= exp

[
∫ z

zB

ǫ̃ϕi
dz′
]

. (4.9)

Note that η̃ϕi
6= ηi (compare Eqs. 1.4 and 4.9) even when ǫ̃ϕi

= ǫi, unless

a purely entraining plume is assumed. Keep in mind that this paper pur-

sues a general formulation without this assumption. It is also convenient to

introduce

η̂i = exp

[
∫ z

zB

ǫidz′
]

(4.10)

for later use.

4.2.2. Prognostic equations

A prognostic equation for a convective variable, ϕi, is obtained by taking

a time derivative of Eq. 4.8. This procedure is consistent with the spirit

of the bounded–derivative method (Kreiss 1980, Browning et al. 1980): i.e.,

when a balance condition (diagnostic relation) is assumed for a given variable,

its prognostic equation is obtained by taking a time derivative of the given

balance condition.

In order to proceed towards this direction, we first need to note that

∂η̃ϕi

∂t
= − ˙̃zB ǫ̃ϕi,B η̃ϕi

(4.11a)

where

˙̃zB = żB −
1

ǫ̃ϕi,B

∫ z

zB

∂ǫ̃ϕi

∂t
dz′. (4.11b)

Before taking the time derivative of Eq. 4.8, we first re-write it as

η̃ϕi
ϕi = ϕiB +

∫ z

zB

ǫiη̃ϕi
˜̄ϕidz′.
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The time derivative of the left hand side is:

∂

∂t
η̃ϕi

ϕi = η̃ϕi

∂ϕi

∂t
− ˙̃zB ǫ̃ϕi,Bη̃ϕi

ϕi.

The time derivative of the integral on the right hand side gives:

∂

∂t

∫ z

zB

ǫiη̃ϕi
˜̄ϕidz′ =

∫ z

zB

ǫiη̃ϕi

(

∂

∂t
− ˙̃zB ǫ̃ϕi,B

)

˜̄ϕidz′ − żBǫiB ˜̄ϕiB

Putting these two expressions together, and simplifying the result with the

help of Eqs. 4.8 and 4.11b we obtain

η̃ϕi

∂ϕi

∂t
= −żBǫiB∆ϕ̃iB +

[

∂

∂t
− żB

(

ρσi

Miϕi

F̂i

)

B

−

∫ z

zB

∂ǫ̃ϕi

∂t
dz′
]

ϕiB

+

∫ z

zB

ǫiη̃ϕi

∂ ˜̄ϕi

∂t
dz′ (4.12a)

where

∆ϕ̃i,B = ˜̄ϕiB − ϕiB. (4.12b)

For further developments, we also need the following prognostic equation:

∂ ˜̄ϕi

∂t
=

1

ρ

[

∑

j

Dj(ϕ
D
j − ϕ̄) + Mc

∂ϕ̄

∂z

]

+

(

∂ ˜̄ϕi

∂t

)

L

, (4.13a)

where
(

∂ ˜̄ϕi

∂t

)

L

=

(

∂ϕ̄

∂t

)

L

+
∂

∂t

(

ρσi

ǫiMi

F̃i

)

, (4.13b)

which follows immediately from Eqs. 3.3 and 4.5a. In general, the second

term on the right hand side of Eq. 4.13b may depend on convective-scale

variables, but it is assumed for now to depend only on the large-scale vari-

ables, with modifications to be considered later in Sec. 5.2.

The final result is obtained by substituting from Eqs. 4.12a and 4.13a

into Eq. 4.3. In this process, an additional key step is to exchange the order
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of integration, e.g.,

∫ zTi

zB

1

η̃ϕi

∂fi

∂ϕi

∫ z

zB

ǫiη̃ϕi

∂ ˜̄ϕi

∂t
dz′dz =

∫ zTi

zB

ǫiη̃ϕi

∂ ˜̄ϕi

∂t

∫ zTi

z

1

η̃ϕi

∂fi

∂ϕi

dz′dz. (4.14)

We finally obtain
∂Ii

∂t
=
∑

j

KijMjB +

(

∂Ii

∂t

)

L

(4.15)

where

Kij =

∫ zTi

zB

1

ρ
ãϕi

ǫiη̃ϕi
ηj

[

δj(ϕ
D
j − ϕ̄) +

∂ϕ̄

∂z

]

dz (4.16a)

(

∂Ii

∂t

)

L

=

∫ zTi

zB

ǫiãϕi
η̃ϕi

(

∂ϕ̄

∂t

)

L

dz +

∫ zTi

zB

ǫiãϕi
η̃ϕi

∂

∂t

(

ρσ

ǫiMi

F̃i

)

dz

+

[

ãϕi,B

∂

∂t
− c̃ϕi

]

ϕiB + żT iGT i + żBGBi

(4.16b)

and

GT i = fT i (4.17a)

GBi = −ãϕi,B

[

ǫiB∆ϕ̃iB +

(

ρσi

Miϕi

F̂i

)

B

ϕiB

]

− fBi. (4.17b)

The coefficients in Eq. 4.16 are defined by:

ãϕi
=

∫ zTi

z

1

η̃ϕi

∂fi

∂ϕi

dz′ (4.18a)

c̃ϕi
=

∫ zTi

zB

ãϕi

∂ǫ̃ϕi

∂t
dz. (4.18b)

4.3. Two-part vertical integral

In vertically integrating convective-scale variables, it often becomes con-

venient to divide the integration range into two parts, in order to adopt a
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different form for the integrand when crossing the condensation level, zci.

Thus,

Ii =

∫ zci

zB

f1(ϕi)dz +

∫ zTi

zci

f2(ϕi)dz. (4.19)

We also denote f1(ϕi) = f1i and f2(ϕi) = f2i. We assume that the two

functions are continuous over the interface, z = zci, so that

f1i(z = zci) = f2i(z = zci). (4.20)

Even with this separation of the integral, the derivation of the budget for

Ii proceeds in a similar manner as before. The starting point is

∂Ii

∂t
=

∫ zci

zB

∂f1i

∂ϕi

∂ϕi

∂t
dz +

∫ zTi

zci

∂f2i

∂ϕi

∂ϕi

∂t
dz + żT if2i(z = zT i) − żBf1i(z = zB).

(4.21)

Here the assumption of continuity (Eq. 4.20) of the two functions over z =

zci ensures that contributions at the integral boundary z = zci cancel out.

However, some care is required in changing the order of the integrals. In

place of Eq. 4.14 above, we need to use:

∫ zci

zB

1

η̃ϕi

∂f1i

∂ϕi

∫ z

zB

ǫiη̃ϕi

∂ ˜̄ϕi

∂t
dz′dz =

∫ zci

zB

ǫiη̃ϕi

∂ ˜̄ϕi

∂t

∫ zci

z

1

η̃ϕi

∂f1i

∂ϕi

dz′dz, (4.22a)

∫ zTi

zci

1

η̃ϕi

∂f2i

∂ϕi

∫ z

zB

ǫiη̃ϕi

∂ ˜̄ϕi

∂t
dz′dz =

∫ zTi

zB

ǫiη̃ϕi

∂ ˜̄ϕi

∂t

∫ zTi

max(z,zci)

1

η̃ϕi

∂f2i

∂ϕi

dz′dz.

(4.22b)

Following a similar reduction, we arrive at the same general form as Eq. 4.15,
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although with different definitions for the terms:

Kij,c =

∫ zci

zB

ǫiã1,ϕi
η̃ϕi

ρ
ηj

[

δj(ϕ
D
j − ϕ̄) +

∂ϕ̄

∂z

]

dz

+

∫ zTi

zB

ǫiã2,ϕi
η̃ϕi

ρ
ηj

[

δj(ϕ
D
j − ϕ̄) +

∂ϕ̄

∂z

]

dz (4.23a)

(

∂Ii

∂t

)

L,c

=

[

(ã1,ϕiB + ã2,ϕiB)
∂

∂t
− (c̃1,ϕi

+ c̃2,ϕi
)

]

ϕiB

+

∫ zci

zB

ǫiã1,ϕi
η̃ϕi

(

∂ ˜̄ϕi

∂t

)

L

dz +

∫ zTi

zB

ǫiã2,ϕi
η̃ϕi

(

∂ ˜̄ϕi

∂t

)

L

dz

+ żT iGT i + żBGBi (4.23b)

with

GT i = f2T i (4.24a)

GBi = −(ã1,ϕiB + ã2,ϕiB)

[

ǫiB∆ϕ̃iB +

(

ρσi

Miϕi

F̂i

)

B

ϕiB

]

− f1Bi. (4.24b)

For later ease of reference, a further subscript c has been added to the defini-

tions in Eq. 4.23 in order to indicate that these terms arise from an integrand

with dependence on convective-scale variables.

The new definitions of the coefficients are

ã1,ϕi
=

∫ zci

z

1

η̃ϕi

∂f1i

∂ϕi

dz′ (4.25a)

ã2,ϕi
=

∫ zTi

max(z,zci)

1

η̃ϕi

∂f2i

∂ϕi

dz′ (4.25b)

c̃1,ϕi
=

∫ zci

zB

ã1,ϕi

∂ǫ̃ϕi

∂t
dz (4.25c)

c̃2,ϕi
=

∫ zTi

zB

ã2,ϕi

∂ǫ̃ϕi

∂t
dz. (4.25d)

It is easy to check that the results of this subsection reduce to those of Sec. 4.2

by setting zci = zT i or zci = zB.
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4.4. Convective-scale moisture closure

As a variant of the standard moisture closure presented in Sec. 3.2, we

can consider a closure based on a quasi-equilibrium of the column-integrated

convective-scale water vapour. Such a possibility is identified by a cloud-

resolving model analysis by Yano et al. (2012). In particular, their Fig. 10(a)

demonstrates that this quantity satisfies the quasi-equilibrium. Thus, we

may set fi = ρqi.

Since the moisture is not a conserved quantity above the condensation

level, it is convenient to look for an alternative expression, which may be

found as Eq. 56 in AS:

qi ≃ q̄∗ +
γ

1 + γ

(

hi − h̄∗

Lv

)

, (4.26)

where γ is defined by

γ =
Lv

Cp

(

∂q̄∗

∂T̄

)

p̄

, (4.27a)

and

h = CpT + Lvq + gz (4.27b)

is the moist static energy with the latent heat of condensation, Lv. The above

expression 4.26 is obtained from a Taylor expansion of qi about q̄∗ = q∗(T̄ , p̄).

By applying the same procedure for a infinitesimal change in q̄∗ in time, it is

straightforward to obtain

∂q̄∗

∂t
=

γ

1 + γ

1

Lv

∂h̄∗

∂t
. (4.28a)

By invoking this relation, we further find that

∂qi

∂t
=

γ

1 + γ

1

Lv

∂hi

∂t
. (4.28b)
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Thus, we set

f1i = ρqi (4.29a)

f2i = ρ

[

q̄∗ +
γ

1 + γ

hi − h̄∗

Lv

]

. (4.29b)

In applying the general results 4.23–4.25 to this closure, we need to keep in

mind that the dependent variable, ϕi, changes when crossing the condensa-

tion level. Apart from this caveat, the application is relatively straightfor-

ward as qi and hi are conserved quantities below and above the condensation

level respectively. Although Eq. 4.29b contains the two large-scale variables

q̄∗ and h̄∗ in its definition, they do not contribute in the following due to the

constraint of Eq. 4.28a.

The final results are:

Kij,c =

∫ zci

zB

ǫi

ρ
η̂iηj

[

δj(qj − q̄) +
∂q̄

∂z

]
∫ zci

z

ρ

η̂i

dz′dz

+

∫ zTi

zB

ǫi

ρ
η̂iηj

[

δj(hj − h̄) +
∂h̄

∂z

]
∫ zTi

max(z,zci)

ρ

η̂iLv

γ

1 + γ
dz′dz

(4.30a)
(

∂Ii

∂t

)

L,c

=
∂qiB

∂t

∫ zci

zB

ρ

η̂i

dz +
∂hiB

∂t

∫ zTi

zci

ρ

η̂iLv

γ

1 + γ
dz

+

∫ zci

zB

ǫiη̂i

(

∂q̄

∂t

)

L

∫ zci

z

ρ

η̂i

dz′dz

+

∫ zTi

zB

ǫiη̂i

(

∂h̄

∂t

)

L

∫ zTi

max(z,zci)

ρ

η̂iLv

γ

1 + γ
dz′dz (4.30b)

This is an attractive alternative closure because unlike classical closures

based on large-scale variables as considered in Sec. 3, it does not lose the

predictability of the large-scale variable (e.g., column–integrated moisture,

CAPE) that is chosen to be in quasi-equlibrium.
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5. The mixed closure: f = f(ϕi, ϕ̄)

5.1. General formulation

In general, the vertical integral may depend on both large-scale variables,

ϕ̄ and convective-scale variables, ϕi. Under this generalization, the vertical

integral may be defined by

Ii =

∫ zTi

zB

f(ϕi, ϕ̄)dz. (5.1)

Here, we take the same notation for the convective-scale variable as for the

large-scale variable solely for the sake of the simplicity. In general, the two

could be different variables. As already discussed in the last section, more

generally, the vertical integral may also be separated into two parts:

Ii =

∫ zci

zB

f1(ϕi, ϕ̄)dz +

∫ zTi

zci

f2(ϕi, ϕ̄)dz. (5.2)

In this section, we consider closures based on Eq. 5.2. As before, we denote

f1(ϕi, ϕ̄) = f1i and f2(ϕi, ϕ̄) = f2i.

Here, the time derivatives can be expanded as, for example for f1i,

∂f1i

∂t
=

∂f1i

∂ϕi

∂ϕi

∂t
+

∂f1i

∂ϕ̄

∂ϕ̄

∂t
(5.3)

with a similar expression for f2i. From this expression, it is seen that the

present case can be considered a linear combination of the cases considered

in the previous two sections. Thus, we write

Kij = Kij,L + Kij,c (5.4a)
(

∂Ii

∂t

)

L

=

(

∂Ii

∂t

)

L,L

+

(

∂Ii

∂t

)

L,c

(5.4b)
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The terms Kij,c and (∂Ii/∂t)L,c are defined by Eqs. 4.23a and 4.23b respec-

tively. The terms Kij,L and (∂Ii/∂t)L,L are easily obtained as modest gener-

alizations of Eqs. 3.8b and 3.4b respectively, and are:

Kij,L =

∫ zci

zB

ηj

ρ

∂f1i

∂ϕ̄

[

δj(ϕj − ϕ̄) +
∂ϕ̄

∂z

]

dz

+

∫ zTi

zci

ηj

ρ

∂f2i

∂ϕ̄

[

δj(ϕj − ϕ̄) +
∂ϕ̄

∂z

]

dz (5.5a)

(

∂Ii

∂t

)

L,L

=

∫ zci

zB

∂f1i

∂ϕ̄

(

∂ϕ̄

∂t

)

L

dz +

∫ zTi

zci

∂f2i

∂ϕ̄

(

∂ϕ̄

∂t

)

L

dz. (5.5b)

5.2. Dependence of forcing on convective-scale variables

As discussed in Sec. 4.2.1, for the derivations so far we have assumed

that the pseudo large-scale tendency, (∂ ˜̄ϕi/∂t)L, can be treated as a part of

the large-scale forcing. In general, this is not the case, and a dependence

on convective-scale variables may be present, as indicated by Eq. 4.7. This

subsection considers further modifications of the closure formulation in order

to accommodate this generalization.

Moreover, the tendency of the pseudo-fractional entrainment rate, ǫ̃i,

could also depend on convective-scale variables, as indicated by Eq. 4.5b.

Such a further generalization is in fact straightforward. However, with the

convective buoyancy, bi, as a specific example in mind, it turns out that only

the generalized treatment of (∂ ˜̄ϕi/∂t)L is necessary. Thus we do not explic-

itly consider a generalized treatment of ∂ǫ̃ϕi
/∂t in this paper since it would

serve only to complicate the final results presented.

The generalization means that (∂ ˜̄ϕi/∂t)L does not solely represent a large-

scale tendency, but also contains some convective contributions that stem

from the second term on the right hand side of Eq. 4.13b. That term should
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therefore be separated into the contributions associated with the large scale

and convection:

∂

∂t

(

ρσi

ǫiMi

F̃i

)

=

(

∂F̃ϕi

∂t

)

L

+

(

∂F̃ϕi

∂t

)

c

(5.6)

by referring to the definition 4.7b. As a result, Eqs. 4.13a and 4.13b read:

∂ ˜̄ϕi

∂t
=

1

ρ

[

∑

j

Dj(ϕ
D
j − ϕ̄) + Mc

∂ϕ̄

∂z

]

+

(

∂F̃ϕi

∂t

)

c

+

(

∂ ˜̄ϕi

∂t

)

L

, (5.7a)

and
(

∂ ˜̄ϕi

∂t

)

L

=

(

∂ϕ̄

∂t

)

L

+

(

∂F̃ϕi

∂t

)

L

, (5.7b)

respectively.

A new type of term (the second term on the right hand side) appears in

Eq. 5.7a and leads to a corresponding new type of contribution, ∆(∂Ii/∂t)L,

in the budget for Ii, which may be written as

∆

(

∂Ii

∂t

)

L

=

∫ zci

zB

ǫiã1,ϕi
η̃ϕi

(

∂F̃ϕi

∂t

)

c

dz +

∫ zTi

zB

ǫiã2,ϕi
η̃ϕi

(

∂F̃ϕi

∂t

)

c

dz.

(5.8)

by analogy with the second and third terms on the right hand side of Eq. 4.23b.

In order to express this contribution in the form of the other convective terms

within Eq. 4.21 we begin by writing:
(

∂F̃ϕi

∂t

)

c

=
∂F̃ϕi

∂χi

∂χi

∂t
+

∂F̃ϕi

∂χ̄

(

∂χ̄

∂t

)

c

. (5.9)

Here, the tendencies ∂χi/∂t and (∂χ̄/∂t)c can be expressed using the equiv-

alent equations to Eqs. 4.12a and 3.3 for the convective-scale and large-scale

variables χi and χ̄, respectively. Note that the total tendency is considered

for χi, whereas only the convective tendency is considered for χ̄ so that the
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necessary new contributions are properly accounted for. In the following, we

will assume that χ is a conserved variable so that no further forcing terms

applying to χ must be added. This assumption serves only to simplify the

final expression, but a further generalization or the inclusion of a further

dependence of F̃ϕi
on the mass-flux profile, ηi, is also possible if desired.

With these assumptions, the tendency for χi reads

∂χi

∂t
=

1

η̂i

[

−żBǫiB∆χiB +
∂χiB

∂t
+

∫ z

zB

ǫiη̂i

∂χ̄

∂t
dz′
]

. (5.10)

Recall that η̂i is defined by Eq. 4.10. This tendency may furthermore be

divided (somewhat arbitrarily) into the term containing the convective ten-

dency for χ̄ and the remaining terms, adding the subscripts c and L, respec-

tively:

(

∂χi

∂t

)

c

=
1

η̂i

∫ z

zB

ǫiη̂i

(

∂χ̄

∂t

)

c

dz′ (5.11a)

(

∂χi

∂t

)

L

=
1

η̂i

[

−żBǫiB∆χiB +
∂χiB

∂t
+

∫ z

zB

ǫiη̂i

(

∂χ̄

∂t

)

L

dz′
]

. (5.11b)

Accordingly, the tendency, (∂F̃ϕi
/∂t)c, may also be divided into the two

major contributions:

(

∂F̃ϕi

∂t

)

c

=

(

∂F̃ϕi

∂t

)

c,c

+

(

∂F̃ϕi

∂t

)

c,L

(5.12)

where
(

∂F̃ϕi

∂t

)

c,c

=
∂F̃ϕi

∂χi

(

∂χi

∂t

)

c

+
∂F̃ϕi

∂χ̄

(

∂χ̄

∂t

)

c

, (5.13a)

(

∂F̃ϕi

∂t

)

c,L

=
∂F̃ϕi

∂χi

(

∂χi

∂t

)

L

. (5.13b)
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Substituting into Eq. 5.13a using Eq. 5.11a for (∂χi/∂t)c and Eq. 3.5a for

(∂χ̄/∂t)c, and reversing the order of integration for the double integrals, the

required correction due to (∂F̃ϕi
/∂t)c,c can be reduced to have the same form

as the other convective terms in Eq. 4.15:

∆

(

∂Ii

∂t

)

L,c

=
∑

j

∆KijMjB (5.14a)

with the correction to the interaction matrix given by

∆Kij =

∫ zci

zB

ǫi

ρ

[

η̃ϕi
ã1,ϕi

∂F̃ϕi

∂χ̄
+ η̂i

∫ zci

z

ǫiã1,ϕi

η̃i

η̂i

∂F̃ϕi

∂χi

dz′

]

ηj

[

δj(χ
D
j − χ̄) +

∂χ̄

∂z

]

dz

+

∫ zTi

zB

ǫi

ρ

[

η̃iã2,ϕi

∂F̃ϕi

∂χ̄
+ η̂i

∫ zTi

max(z,zci)

ǫiã2,ϕi

η̃ϕi

η̂i

∂F̃ϕi

∂χi

dz′

]

ηj

[

δj(χ
D
j − χ̄) +

∂χ̄

∂z

]

dz. (5.14b)

The term, (∂F̃ϕi
/∂t)c,L, on the other hand, contributes as an additional

term for the large-scale forcing:

∆

(

∂Ii

∂t

)

L

= żB∆GBi,χ

+

∫ zci

zB

ǫiã1,ϕi

η̃ϕi

η̂i

∂F̃ϕi

∂χi

[

∂χiB

∂t
+

∫ z

zB

ǫiη̂i

(

∂χ̄

∂t

)

L

dz′
]

dz

+

∫ zTi

zB

ǫiã2,ϕi

η̃ϕi

η̂i

∂F̃ϕi

∂χi

[

∂χiB

∂t
+

∫ z

zB

ǫiη̂i

(

∂χ̄

∂t

)

L

dz′
]

dz (5.14c)

Here, this term includes contributions from changes of the convection base

with

∆GBi,χ = −ǫiB∆χiB

[

∫ zci

zB

ǫiã1,ϕi

η̃ϕi

η̂i

∂F̃ϕi

∂χi

dz +

∫ zTi

zB

ǫiã2,ϕi

η̃ϕi

η̂i

∂F̃ϕi

∂χi

dz

]

(5.14d)
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Consequently, the interaction matrix and the large-scale forcing are given

by

Kij = Kij,L + Kij,c + ∆Kij (5.15a)
(

∂Ii

∂t

)

L

=

(

∂Ii

∂t

)

L,L

+

(

∂Ii

∂t

)

L,c

+ ∆

(

∂Ii

∂t

)

L

(5.15b)

as generalizations from Eqs. 5.4a and 5.4b respectively.

5.3. Dilute CAPE-based closure (based on convective-scale buoyancy)

As an alternative to the standard CAPE, we may wish to consider bi, the

actual buoyancy felt by the i-th convection type, so that

bi = ρα(sv,i − s̄v). (5.16a)

The generalization of CAPE is then defined by

CAPEi =

∫ zTi

zB

bidz (5.16b)

with the subscript i designating the convection type. This definition is some-

times referred to as “dilute CAPE”.

In practice, the virtual static energy, sv, is not a convenient variable to

work with above the condensation level, zci, because it is no longer conserved.

For this reason, above the condensation level, we re-write the convective

buoyancy, bi, by invoking a relation

bi = ρβ(hi − h̄∗) + ραεLv[δ̂(q̄
∗ − q̄) − li], (5.17)

as given by Eq. B3 of AS. Here,

β = α

(

1 + γεδ̂

1 + γ

)

, (5.18a)

30



with

ε =
CpT̄

Lv

. (5.18b)

while α was already defined by Eq. 3.18.

Thus, the dilute CAPE reduces to a vertical integral of the form of Eq. 5.2

with the two functions defined by

f1i = ρα(sv,i − s̄v), (5.19a)

f2i = ρβ(hi − h̄∗) + ραεLv[δ̂(q̄
∗ − q̄) − li]. (5.19b)

Here, note ραεLv = g/(1 + δ̂q̄). In the following, the variables, α and β,

associated with the large-scale virtual temperature profile, T̄v, are treated as

constant with time, as in Sec. 3.3.

The temporal tendency of the dilute CAPE is given by

∂CAPEi

∂t
=

∫ zci

zB

[

∂f1i

∂svi

∂svi

∂t
+

∂f1i

∂s̄v

∂s̄v

∂t

]

dz

+

∫ zTi

zci

[

∂f2i

∂hi

∂hi

∂t
+

∂f2i

∂li

∂li
∂t

+
∂f2i

∂h̄∗

∂h̄∗

∂t
+

∂f2i

∂q̄∗
∂q̄∗

∂t
+

∂f2i

∂q̄

∂q̄

∂t

]

dz

− żBf1Bi + żT if2T i. (5.20)

The forms of the functional derivatives are straightforward to derive from

the definitions of f1i and f2i. In order to simplify the result it is useful to

invoke Eq. B9 of AS, which reads

−ρα
∂s̄v

∂t
= ρβ

∂h̄∗

∂t
+ ραεLv δ̂

∂

∂t
(q̄∗ − q̄)

and from which it follows that:

∂f2i

∂h̄∗

∂h̄∗

∂t
+

∂f2i

∂q̄∗
∂q̄∗

∂t
+

∂f2i

∂q̄

∂q̄

∂t
=

∂f1i

∂s̄v

∂s̄v

∂t
.
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This relation allows us to simplify Eq. 5.20 to

∂CAPEi

∂t
=

∫ zci

zB

∂f1i

∂svi

∂svi

∂t
dz +

∫ zTi

zci

[

∂f2i

∂hi

∂hi

∂t
+

∂f2i

∂li

∂li
∂t

]

dz

+

∫ zTi

zB

∂f1i

∂s̄v

∂s̄v

∂t
dz − żBf1Bi + żT if2T i. (5.21)

In order to follow the full recipe of Sec. 5.2, we now need to consider

further the treatment of forcing terms for the convective-scale variables. The

moist static energy, hi, is the simplest since this is conserved, and so the

associated entrainment, ǫ̃hi
= ǫi, the hat-forcing, F̂hi

= 0 and c̃2,hi
= 0. For

the virtual static energy, svi, there may be a forcing due to evaporation and

we partition this as being an effective modification of svi rather than as an

effective entrainment. Thus, the associated entrainment, ǫ̃svi
= ǫi, the hat-

forcing F̂svi
= 0 and c̃1,svi

= 0 while the profile of svi itself is determined from

Eq. 4.4 as
(

∂

∂z
+ ǫi

)

svi = ǫi ˜̄svi, (5.22a)

where

˜̄svi = s̄v − Lv(1 − εδ̂)
ρσi

ǫiMi

ei. (5.22b)

Here, ei is the evaporation rate from the i-th convective type, and note that

AS assume ei = 0.

A major additional hidden contribution from the convective-scale arises

from a term involving (∂˜̄li/∂t)L. A closer look at the convective-scale cloud-

water budget is required in order to obtain an explicit form for this term.

This is facilitated by examining the convective total-water budget. The only

sink term for convective total-water, qti, is the precipitation, ri. Thus,
(

∂

∂z
+ ǫi

)

qti = ǫiq̄t −
ρσi

ǫiMi

ri, (5.23a)
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where qti = qi + li and q̄t = q̄ + l̄.

We consider a division for the precipitation rate, ri, of the i-th convective

type into two contributions by setting

ρσi

ǫiMi

ri = c0li +
ρσi

Mi

r̃i. (5.23b)

Thus, the precipitation is treated as being potentially an effective entrain-

ment, potentially as an external forcing modifying qti, and also potentially as

a combination of the two. AS took the first of these options and set c0 to be

a constant as well as r̃i = 0. The additional term r̃i 6= 0 is introduced here to

provide a possible further freedom for the convective precipitation rate for-

mulation. Rewriting Eq. 5.23a as an equation for the convective cloud-water

li, it takes the form
(

∂

∂z
+ ǫ̃li

)

li = ǫi
˜̄li, (5.24)

where

ǫ̃li = ǫi + c0 (5.25a)

and

˜̄li = q̄ + l̄ −

(

1

ǫi

∂

∂z
+ 1

)

qi −
ρσi

ǫiMi

r̃i. (5.25b)

Partitioning the forcing in this way means that, recalling Eq. 4.9,

η̃ϕi
= η̂i (5.26a)

for ϕi = svi, hi, but for li we have

η̃li = exp

[
∫ z

zB

(ǫi + c0)dz′
]

. (5.26b)

According to Eq. (5.25b) above, ˜̄li depends on q̄ and qi. Thus the tenden-

cies in these variables must be taken into account in computing the tendency
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for ˜̄li. Specifically, the recipe of Sec. 5.2 requires that (∂F̃li/∂t)c must be

evaluated, which is given by
(

∂F̃li

∂t

)

c

=
∂

∂t

[

q̄ −

(

1

ǫi

∂

∂z
+ 1

)

qi

]

c

Working directly on those tendencies is not quite convenient, because the

moisture is not a conserved quantity. Rather, we re-write these tendencies in

terms of those for dry and moist static energies, obtaining:

∂

∂t

[

q̄ −

(

1

ǫi

∂

∂z
+ 1

)

qi

]

= −
1

ǫiLv

∂

∂z

(

γ

1 + γ

)

∂hi

∂t
+

1

Lv(1 + γ)

∂h̄

∂t
−

1

Lv

∂s̄

∂t
.

(5.27)

This result is straightforward to verify by starting from Eqs. 4.26 and 4.27b

and taking appropriate derivatives. It immediately follows that
(

∂F̃li

∂t

)

c,c

= −
1

ǫiLv

∂

∂z

(

γ

1 + γ

)(

∂hi

∂t

)

c

+
1

Lv(1 + γ)

(

∂h̄

∂t

)

c

−
1

Lv

(

∂s̄

∂t

)

c

,

and corresponding to Eq. 5.8 in Sec. 5.2, we obtain

∆

(

∂Ii

∂t

)

L

=

∫ zTi

zB

ρǫi

[

η̂ici −
di

1 + γ
η̃li

](

∂h̄

∂t

)

c

dz +

∫ zTi

zB

ǫiρdiη̃li

(

∂s̄

∂t

)

c

dz

(5.28)

for a correction to the forcing term. Note that in order to obtain this final

result, (∂hi/∂t)c is expressed in an analogous manner to Eq. 5.11a. Here,

some coefficients are introduced by

di =
g

ρLv

∫ zTi

max(z,zci)

1

1 + δ̂q̄
exp

[

−

∫ z′

zB

(ǫi + c0)dz′′

]

dz′, (5.29a)

ci =
1

ρ

∫ zTi

z

ρdi

η̃li

η̂i

∂

∂z

(

γ

1 + γ

)

dz′. (5.29b)

These two definitions may be considered as generalizations of Eqs. B20 and

B19 of AS, respectively, specifically formulated for the entraining plumes.
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Here, we note that

ã2,li = −Lvρdi,

where ã2,li is obtained from Eq. 4.25b by setting ϕi = li. Furthermore, we

recall that
(

∂h̄

∂t

)

c

=
1

ρ

∑

j

MjBηj

[

δj(h
D
j − h̄) +

∂h̄

∂z

]

,

(

∂s̄

∂t

)

c

=
1

ρ

∑

j

MjBηj

[

δj(s
D
j − s̄) +

∂s̄

∂z

]

as particular cases of Eq. 3.5a. Substituting these relations into Eq. 5.28

enables us to then determine the corrections to the interaction matrix asso-

ciated with the precipitation.

The corresponding correction to the large-scale forcing term, ∆(∂Ii/∂t)L,L,

can also be evaluated by following the method shown by Eqs. 5.11b and 5.14c

in Sec. 5.2.

After putting all of these calculations together, the final result is:

Kij =

∫ zTi

zB

ηj (−α + ǫiaiη̂i)

[

δj(s
D
vj − s̄v) +

∂s̄v

∂z

]

dz

+

∫ zTi

zB

ǫiη̂iηj

[

bi + ci −
di

1 + γ

(

η̃li

η̂i

)][

δj(h
D
j − h̄) +

∂h̄

∂z

]

dz

+

∫ zTi

zB

ǫidiη̃liηj

[

δj(s
D
j − s̄) +

∂s̄

∂z

]

dz

−

∫ zTi

zB

ǫiLvdiη̃liηj

[

δj(l
D
j − l̄) +

∂l̄

∂z

]

dz (5.30a)
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(

∂CAPEi

∂t

)

L

= ρB

[

ai,B

∂

∂t
sviB + (bi,B + ci,B)

∂

∂t
hiB − Lvdi,B

∂

∂t
liB

]

+

[
∫ zTi

zB

ρLvdiċ0dz

]

liB

+

∫ zci

zB

[

ǫiaiη̂i

(

∂ ˜̄svi

∂t

)

L

− α

(

∂s̄v

∂t

)

L

]

ρdz

+

∫ zTi

zB

ǫiη̂i

[

bi + ci −
di

1 + γ

(

η̃li

η̂i

)](

∂h̄

∂t

)

L

ρdz

+

∫ zTi

zB

ǫidiη̃li

(

∂s̄

∂t

)

L

ρdz −

∫ zTi

zB

ǫiLvdiη̃li

(

∂l̄

∂t

)

L

ρdz

+

∫ zTi

zB

ǫiLvdiη̃li

∂

∂t

(

ρσi

ǫiMi

r̃i

)

ρdz +

∫ zTi

zB

ǫiLvdiη̃li

∫ zTi

z

ċ0dz′ρdz

+ żT iGT i + żBGBi (5.30b)

where

GT i = −ρα(s̄v − svi)|z=zTi
(5.31a)

GBi = −ρB [ǫiB{ai,B∆s̃viB + (bi,B + ci,B)∆hiB − Lvdi,B∆l̃iB} − αB∆sviB

+c0Lvdi,BliB] (5.31b)

in which further coefficients have been introduced by

ai =
1

ρ

∫ zci

min(z,zci)

ρ
α

η̂i

dz′ (5.32a)

bi =
1

ρ

∫ zTi

max(z,zci)

ρ
β

η̂i

dz′ (5.32b)

6. Closures also depending on the mass-flux profile: f = f(ηi, ϕ̄, ϕi)

6.1. General Formulation

The vertical profile of the mass flux, ηi, may play an important role in

order to constrain the intensity of convection for a given component, i. For
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this reason, ηi may also be added as an additional dependence in the function

f . Thus, the most general case to be considered is to set:

Ii =

∫ zci

zB

f1(ηi, ϕi, ϕ̄)dz +

∫ zTi

zci

f2(ηi, ϕi, ϕ̄)dz. (6.1)

The original convective quasi-equilibrium hypothesis of AS is a special case

of a vertical integral with this form. In the following, we derive the closure

condition under a constraint 4.2 for such a vertical integral Ii.

The procedure remains the same as in the last section, but we have to add

a new term, (∂f1/∂ηi)(∂ηi/∂t), to the right hand side of Eq. 5.3. There is a

similar term arising from the f2 derivative and hence two additional integral

terms
∫ zci

zB

∂f1i

∂ηi

∂ηi

∂t
dz +

∫ zTi

zci

∂f2i

∂ηi

∂ηi

∂t
dz (6.2)

must be added to the expression of ∂Ii/∂t.

The tendency, ∂ηi/∂t, may be obtained directly from the definition of

Eq. 1.4 and is
∂ηi

∂t
= −żB(ǫiB − δiB)ηi. (6.3)

Thus the first integral from Eq. 6.2 can be re-written as

∫ zci

zB

∂f1i

∂ηi

∂ηi

∂t
dz = −żB(ǫiB − δiB)

∫ zTi

zB

ηi

∂fi

∂ηi

dz (6.4)

with a similar expression for the second integral. Thus, it leads to a change

of the bottom boundary contribution

∆GBi,η = −(ǫiB − δiB)

[
∫ zci

zB

ηi

∂f1i

∂ηi

dz +

∫ zTi

zci

ηi

∂f2i

∂ηi

dz

]

, (6.5)

which is to be added to the right hand side of Eq. 4.24b. This is the only mod-

ification required in order to add an ηi-dependency to the closure integral.
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Here, the subscript η is added in the definition 6.5 in order to distinguish

it from the modifications defined by Eq. 5.14d associated with forcings that

depend on ceonvective-scale variables.

A case of particular interest for this form of integral is one for which

the integrands take the form fνi = ηif̃ν(ϕi, ϕ̄) with ν = 1, 2, because this

produces a convective-profile weighting of f̃νi. The formulation development

proceeds just as in the previous section, except for the introduction of factors

ηi in the integrands and adding the new terms given by Eq. 6.5. The AS con-

vective quasi-equilibrium closure considered explicitly in the next subsection

falls into this category.

The final, and most general result of our calculations is given by bringing

together Eqs. 4.15, 4.23a, 4.23b, 4.24a, 4.24b, 5.5a, 5.5b, 5.14b, 5.14c, 5.14d,

6.5 to produce:

Kij =

∫ zci

zB

1

ρ

(

ǫiã1,ϕi
η̃ϕi

+
∂f1i

∂ϕ̄

)

ηj

[

δj(ϕ
D
j − ϕ̄) +

∂ϕ̄

∂z

]

dz

+

∫ zTi

zB

ǫiã2,ϕi
η̃ϕi

ρ
ηj

[

δj(ϕ
D
j − ϕ̄) +

∂ϕ̄

∂z

]

dz

+

∫ zTi

zci

1

ρ

∂f2i

∂ϕ̄
ηj

[

δj(ϕ
D
j − ϕ̄) +

∂ϕ̄

∂z

]

dz

+

∫ zci

zB

ǫi

ρ

[

η̃ϕi
ã1,ϕi

∂F̃ϕi

∂χ̄
+ η̂i

∫ zci

z

ǫiã1,ϕi

η̃ϕi

η̂i

∂F̃ϕi

∂χi

dz′

]

ηj

[

δj(χ
D
j − χ̄) +

∂χ̄

∂z

]

dz

+

∫ zTi

zB

ǫi

ρ

[

η̃ϕi
ã2,ϕi

∂F̃ϕi

∂χ̄
+ η̂i

∫ zTi

max(z,zci)

ǫiã2,ϕi

η̃ϕi

η̂i

∂F̃ϕi

∂χi

dz′

]

ηj

[

δj(χ
D
j − χ̄) +

∂χ̄

∂z

]

dz (6.6a)
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(

∂Ii

∂t

)

L

=

[

(ã1,ϕiB + ã2,ϕiB)
∂

∂t
− (c̃1,ϕi

+ c̃2,ϕi
)

]

ϕiB

+

∫ zci

zB

[

ǫiã1,ϕi
η̃ϕi

(

∂ ˜̄ϕi

∂t

)

L

+
∂f1i

∂ϕ̄

(

∂ϕ̄

∂t

)

L

]

dz

+

∫ zTi

zB

ǫiã2,ϕi
η̃ϕi

(

∂ ˜̄ϕi

∂t

)

L

dz +

∫ zTi

zci

∂f2i

∂ϕ̄

(

∂ϕ̄

∂t

)

L

dz

+

∫ zci

zB

ǫiã1,ϕi

η̃ϕi

η̂i

∂F̃ϕi

∂χi

[

∂χiB

∂t
+

∫ z

zB

ǫiη̂i

(

∂χ̄

∂t

)

L

dz′
]

dz

+

∫ zTi

zB

ǫiã2,ϕi

η̃ϕi

η̂i

∂F̃ϕi

∂χi

[

∂χiB

∂t
+

∫ z

zB

ǫiη̂i

(

∂χ̄

∂t

)

L

dz′
]

dz

+ żT iGT i + żBGBi (6.6b)

where

GT i = f2T i (6.7a)

GBi = −(ǫiB − δiB)

[
∫ zci

zB

ηi

∂f1i

∂ηi

dz +

∫ zTi

zci

ηi

∂f2i

∂ηi

dz

]

− (ã1,ϕiB + ã2,ϕiB)

[

ǫiB∆ϕ̃iB +

(

ρσi

Miϕi

F̂i

)

B

ϕiB

]

− ǫiB∆χiB

[

∫ zci

zB

ǫiã1,ϕi

η̃ϕi

η̂i

∂F̃ϕi

∂χi

dz +

∫ zTi

zB

ǫiã2,ϕi

η̃ϕi

η̂i

∂F̃ϕi

∂χi

dz

]

− f1Bi.

(6.7b)

6.2. The AS convective quasi-equilibrium formulation

The core of the AS convective quasi-equilibrium closure is to take the

cloud work function as the vertical-integral quantity under the general for-

mulation presented above. The cloud work function is defined by

Ai =

∫ zTi

zB

ηibidz (6.8)

in terms of the convective buoyancy, bi, for the i-th convection type de-

fined by Eq. 5.16a above. The cloud work function constitutes a measure of
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the capacity of a convective ensemble for generating convective kinetic en-

ergy, which may be called the potential energy convertibility (PEC; cf., Yano

et al. 2005).

By referring to the general formulae already obtained, the interaction

matrix, Kij, and the large-scale forcing, (∂Ai/∂t)L, are given by:

Kij =

∫ zTi

zB

ηiηj

(

−α + ǫiãi

η̂i

ηi

)[

δj(s
D
vj − s̄v) +

∂s̄v

∂z

]

dz

+

∫ zTi

zB

ǫiη̂iηj

[

b̃i + c̃i −
d̃i

1 + γ

(

η̃li

η̂i

)][

δj(h
D
j − h̄) +

∂h̄

∂z

]

dz

+

∫ zTi

zB

ǫid̃iη̃liηj

[

δj(s
D
j − s̄) +

∂s̄

∂z

]

dz

−

∫ zTi

zB

ǫiLvd̃iη̃liηj

[

δj(l
D
j − l̄) +

∂l̄

∂z

]

dz (6.9a)

(

∂Ai

∂t

)

L

= ρB

[

ãiB

∂

∂t
sviB + (b̃iB + c̃iB)

∂

∂t
hiB − Lvd̃iB

∂

∂t
liB

]

+

[
∫ zTi

zB

ρLv d̃i

(

ηi

η̃li

)

ċ0dz

]

liB

+

∫ zci

zB

[

ǫiãiη̂i

(

∂ ˜̄svi

∂t

)

L

− αηi

(

∂s̄v

∂t

)

L

]

ρdz

+

∫ zTi

zB

ǫiη̂i

[

b̃i + c̃i −
d̃i

1 + γ

(

ηi

η̂i

)](

∂h̄

∂t

)

L

ρdz

+

∫ zTi

zB

ǫid̃iηi

(

∂s̄

∂t

)

L

ρdz −

∫ zTi

zB

ǫiLvd̃iηi

(

∂l̄

∂t

)

L

ρdz

+

∫ zTi

zB

ǫiLvd̃iηi

∂

∂t

(

ρσi

ǫiMi

r̃i

)

ρdz +

∫ zTi

zB

ǫiLvd̃iηi

∫ zTi

z

ċ0dz′ρdz

+ żT iGT i + żBGBi (6.9b)
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where

GT i = −ραηi(s̄v − svi)|z=zTi
(6.10a)

GBi = −(ǫiB − δiB)Ai

− ρB[ǫiB{ãiB∆s̃viB + (b̃iB + c̃iB)∆hiB − LvdiB∆l̃iB} − αBηiB∆sviB

+ c0Lvd̃iBliB] (6.10b)

in which further coefficients have been introduced by

ãi =
1

ρ

∫ zci

min(z,zci)

ρα
ηi

η̂i

dz′ (6.11a)

b̃i =
1

ρ

∫ zci

max(z,zci)

ρβ
ηi

η̂i

dz′ (6.11b)

c̃i =
1

ρ

∫ zTi

z

ρd̃i

ηi

η̂i

∂

∂z

(

γ

1 + γ

)

dz′ (6.12a)

d̃i =
g

ρLv

∫ zTi

max(z,zci)

1

1 + δ̂q̄
exp

[

∫ z′

z

(δi − c0)dz′′

]

dz′ (6.12b)

The expressions obtained above generalize Eqs. B17 and B18 of AS in

several ways. For example, AS restricted their attention to an entraining

plume, so that η̃ϕi
= η̂i = ηi. Also note that GT i = 0 when the convection top

is defined by the level of neutral buoyancy as in AS. Moreover, according to

AS, c0 is a fixed constant, and thus ċ0 = 0, although again such contributions

are retained for generality above.

7. Summary and Discussions

7.1. Summary

The major finding of the present analysis is that, regardless of many

details of the vertical integral, a closure condition defined by a stationarity
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(or equilibrium) of a vertically-integrated quantity, as given by Eq. 2.1 or

Eq. 4.2 always reduces to a form given by Eq. 4.15, which constitutes a

generalization of the AS convective quasi-equilibrium.

However, the formulation is not quite closed yet, because we still require

expressions for żT i and żB in (∂Ii/∂t)L (Eq. 6.6b). In the case of AS, they

assume that

żT i = 0

and

żB = −
1

ρB

McB + (żB)L

where (żB)L is a large-scale tendency for zB. Note that the latter formula is

derived based on their own boundary-layer formulation. The result changes

when a different boundary-layer formulation is adopted.

As their example suggests, also in general, these two terms proportional

to żT i and żB can be partitioned into convective and large-scale terms so long

as a certain linearity is satisfied. As a result the general closure condition can

be reduced to Eq. 4.15, with now no dependence of (∂Ii/∂t)L on the mass

flux Mj , by re-defining these two terms accordingly. Comparing Eq. 4.15 to

Eq. 2.4 we see that the convective consumption term is defined by

(

∂Ii

∂t

)

c

=
∑

j

KijMjB. (7.1)

The closure condition may equally be presented in a vector-matrix form as:

KMB +

(

∂I

∂t

)

L

= 0.

In principle, the closure condition can be solved by inverting the matrix, K,
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to obtain:

MB = −K−1

(

∂I

∂t

)

L

. (7.2)

The idea of quasi-equilibrium closure, generalized here, is schematically sum-

marized in Fig. 2 of Yano and Plant (2012a).

7.2. Operational implementation issues

Although the solution 7.2 may appear straightforward, we have to take

into account technical aspects such as the positiveness of the mass flux,

MB,i ≥ 0.

In order to overcome this difficulty, a rather involved procedure for solving

Eq. 4.15 was proposed by Lord (1982), and Lord et al. (1982).

As an alternative approach, Moorthi and Suarez (1992) propose to con-

sider only the diagonal terms of K in order to simplify the procedure, and

thus the solution (7.2) is replaced by

Mi,B = −
1

Ki,i

(

∂Ii

∂t

)

L

. (7.3)

They call this procedure the relaxed Arakawa and Schubert (RAS).

7.3. Choice of I: Physical considerations

The generality of the convective quasi-equilibrium principle presented al-

lows us to examine many existing closure hypotheses, and several popular

examples have been presented. The advantages and disadvantages of existing

closure hypotheses can then be discussed and their validity may be analysed

in detail through evaluation of the various terms in the budgets, perhaps from

cloud-resolving model data. However, the presented general principle does
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not specify which variable is the most physical to be taken for the vertical

integral(s), I, in Eq. 7.2.

In order to address this last question, we propose the following dictum:

Dictum 1: Any physically-based diagnostic convective closure must have a

prognostic counterpart.

This dictum essentially says that a closure should be derived from a bud-

get equation. If not, then a given closure hypothesis must be deemed to be

unphysical. This statement is rather trivial if a closure condition is derived

based on the generalized convective quasi-equilibrium principle as presented

herein. However, in the literature, there are various closure hypotheses pro-

posed which are not necessarily consistent with the above dictum.

For example, Bougeault (1985) assumes the stationarity of the convec-

tive tendency (rather than the total tendency) for the moist static energy as

a closure condition for defining a height-independent detrainment rate (cf.,

his Eq. 8). However, this diagnostic closure that does not have a prognos-

tic counterpart (i.e., knowing the convective tendency is not enough for a

prognostic evaluation).

A stronger version of this dictum may be stated as:

Dictum 2: Any physically-based diagnostic closure condition must have a

prognostic counterpart that can be integrated in time in a self-contained man-

ner.

This dictum may much narrow down the possibilities.

Under the mass-flux formulation, the goal of the closure is to define MBi.

A first point to be emphasized is that so long as any variable controlled by

convection is chosen for the vertical integral (and assumed to be steady) a
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given closure condition can define the mass-flux magnitude (provided cer-

tain mathematical conditions, such as invertibility of a matrix are satisfied).

However, it is natural to expect that in a prognostic treatment, such a self-

contained description should produce a self-contained prognostic equation

for the mass flux or an equivalent quantity.

AS’s choice of the cloud work function as the vertically-integrated quan-

tity, Ii, based on the convective kinetic-energy budget, is consistent with the

stronger version of the dictum. Although they do not explicitly remark on

the possibility of integrating this energy-cycle system in time self-consistently,

arguably that idea was implicit. This possibility was first taken up by Ran-

dall and Pan (1993), and Pan and Randall (1998). More recently, Yano

and Plant (2012b,c), and Plant and Yano (2013) proposed a different ver-

sion, which can explain a basic life-cycle of convective systems consisting of

discharge and recharge (or trigger and suppression) as well as interactions

between shallow and deep convection.

A self-consistent closure framework can also be developed simply by writ-

ing down a prognostic equation for the convection-base mass flux, which can

essentially be derived by vertically integrating a prognostic mass-flux equa-

tion (i.e., physically a convective vertical-velocity equation). It is straight-

forward to show that in this case, the evolution of the vertically-integrated

mass flux is controlled by the vertically-integrated convective buoyancy. By

then constructing a prognostic equation for the vertical integral of convec-

tive buoyancy, we obtain a self-contained prognostic system for describing

the evolution of mass-flux amplitude. From this perspective, the stationar-

ity of the vertically-integrated convective buoyancy may be seen as a logical
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choice for an equilibrium convective closure under the mass-flux formulation.

On the other hand, the consistency of Kuo’s (1974) moisture closure with

the second, stronger dictum is not obvious. It is widely believed that atmo-

spheric moist convection is controlled by moisture, but there is no known

self-contained prognostic description under a coupling with the moisture clo-

sure. A strong objection to moisture closure from this point of view was

expressed by Emanuel et al. (1994).

Some potential issues with quasi-equilibrium closures are listed in Sec. 3.4

of Yano and Plant (2012a). Note that these issues equally apply to the

generalized formulation developed herein.

7.4. Prognostic formulations for the moisture-based closure

As just stated above, it is less obvious how to proceed to a prognostic

version of the moisture-based closure. Nevertheless, it appears to be a good

idea to maintain a certain predictability of the column-integrated moisture.

Two possibilities are considered here.

7.4.1. Kuo’s (1974) solution

In his original formulation, Kuo (1974) introduces a major provision in

making the column-integrated water-vapour tendency slightly non-stationary

by setting
∂Iq

∂t
= bq

(

∂Iq

∂t

)

L

. (7.4)

Here, bq is a small positive parameter that controls this weak unsteadiness

(0 < bq ≪ 1). After this modification, the closure changes to

MB = −
1 − bq

K

(

∂Iq

∂t

)

L

. (7.5)
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Note that under this generalization, Eq. 3.13a is re-written as
(

∂q̄

∂t

)

c

= −f̃ (z)
1 − bq

K

(

∂Iq

∂t

)

L

. (7.6)

It is often criticized that the small parameter, bq, remains arbitrary. How-

ever, the introduction of the parameter, bq, may be viewed more positively

as a simple attempt to overcome the limit of a strictly stationary closure

condition.

7.4.2. Bougeault (1985)

Bougeault (1985) proposed an alternative approach for making the moisture-

based closure prognostic. His main proposal is to modify Kuo’s (1974) closure

so that the moistening, Dc(q
D
c − q̄), by detrained air does not contribute as

part of the closure balance as in Eq. 3.13b, but simply acts to increase the

large-scale moisture. Thus,

∂q̄

∂t
= Dc(q

D
c − q̄).

By substituting this expression into the moisture budget equation in the form

2.3, we obtain

MB

∫ zT

zB

ηc

∂q̄

∂z
dz =

(

∂Iq

∂t

)

L

.

7.5. Precipitation forcing

In order to treat the non-conservative nature of convective-scale physical

variables in a general analytic manner, we have proposed to divide the non-

conservative term (forcing) into the two components (Sec. 4.3). As a result, a

part of convective-scale forcing may be externalized into a part of large-scale

forcing. Specific examples are found in Sec. 5.3, where the dilute CAPE clo-

sure is considered, and in Sec. 6.2, where the AS convective quasi-equilibrium
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closure is examined under generalizations. Our general consideration of the

precipitation formulation has led to the possibility of an externalized forcing

term, which may be called precipitation forcing.

By assuming a generality of the precipitation formula 5.23b, we find an

additional term due to r̃i 6= 0 in the forcing term: the temporal tendency,

∂r̃i/∂t, of the precipitation rate becomes a part of large-scale forcing. The

possibility merits further investigation because the order of magnitude of

precipitation forcing is comparable to that of other aspects of the standard

large-scale forcing, as is shown now.

According to Eq. 6.9b in Sec. 6.2, the precipitation forcing is defined by

Lv

∫ zTi

zB

ǫid̃iηi

∂

∂t

(

r̃i

ǫiwi

)

ρdz. (7.7)

An equivalent term can also be found in Eq. 5.30b from Sec. 5.3. Recall

that r̃i measures a convective-scale precipitation formation rate as defined

by Eq. 5.23b, and wi = Mi/ρσi is the convective vertical velocity. However,

r̃i/wi is a rather non-trivial variable to interpret, with a unit of m−1 or

gkg−1m−1 depending on the unit taken for the water mixing ratio. This

is essentially a vertical gradient of the precipitating water generation rate.

Only after multiplying by wi does the quantity reduce to a rate at which

precipitating water is being generated at a given vertical level per unit time

(with the unit of s−1 or gkg−1s−1).

The corresponding total convective precipitation is given by

P =
1

ρw

∫ zT

zB

ρa

∑

i

r̃idz (7.8)

where ρa and ρw are the air and liquid water densities. A typical tropical

precipitation rate is P ∼ 10 mmh−1 ∼ 3×10−6 ms−1. The precipitation rate
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due to the i-th convective type may be, to an order of magnitude, estimated

from Eq. 7.8 as

Pi ∼
ρa

ρw

r̃iHi

with Hi providing a vertical scale for the convection. A typical value for

r̃i/wi is then estimated as

r̃i

wi

∼
Pi

(ρa/ρw)wiH
∼

3 × 10−6 ms−1

10−3 × 1 ms−1 × 104 m
∼ 3 × 10−7 m−1.

Here, we have assumed that wi ∼ 1 ms−1 and H ∼ 104 m. A crucial assump-

tion behind this estimate is that the order of magnitude of the i-th convective

precipitation is of the same order as the total.

Next, note that the precipitation forcing given by Eq. 7.7 is controlled

by a temporal change, ∂(r̃i/wi)/∂t, of the precipitation formation measure.

In order to estimate this, we introduce a characteristic timescale, τ , for

convective precipitation formation. We consider the two possible values,

τ ∼ 1 h∼ 3 × 103 s and τ ∼ 1 day∼ 105 s. With the respective values, we

obtain the estimates:

∂

∂t

r̃i

wi

∼
r̃i/wi

τ
∼

3 × 10−7 m−1

3 × 103 s
∼ 10−10 m−1s−1

and
∂

∂t

r̃i

wi

∼
r̃i/wi

τ
∼

3 × 10−7 m−1

105 s
∼ 3 × 10−12 m−1s−1.

Additionally, we need an order of magnitude estimate for Lvd̃i defined by

Eq. 6.12b, which is given by

Lv d̃i ∼
g

ρ
Hi ∼

10 ms−2 × 104 m

1 kgm−3 ∼ 105 m5s−2kg−1

assuming c0 = 0 and δi ∼ 0 (assuming an entraining plume, this term con-

tribute only a factor of unity to the integrand).
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Finally, we obtain the order of magnitude estimate for precipitation forc-

ing as

Lv

∫

ρηid̃i

∂

∂t

(

r̃i

wi

)

dz ∼ ρLv d̃i

∂

∂t

(

r̃i

wi

)

Hi

∼ 1 kgm−3 × 105 m5s−2kg−1 × 10−10 m−1s−1 × 104 m

∼ 10−1 Jkg−1s−1 ∼ 104 Jkg−1day−1

with τ ∼ 1 h, and

Lv

∫

ρηid̃i

∂

∂t

(

r̃i

wi

)

dz ∼ ρLv d̃i

∂

∂t

(

r̃i

wi

)

Hi

∼ 1 kgm−3 × 105 m5s−2kg−1 × 3 × 10−12 m−1s−1 × 104 m

∼ 3 × 10−3 Jkg−1s−1 ∼ 300 Jkg−1day−1

with τ ∼ 1 day. These estimates are comparable to an order of magnitude

estimate for large-scale forcing F ∼ 103 Jkg−1day−1 (cf., Yano and Plant

2012b). The very last estimate can also be obtained by recalling a typical

value for CAPE ∼ 103 Jkg−1 for the tropics as well as assuming a character-

istic timescale of 1 day.

In general, when a sophisticated convective precipitation formulation is

adopted, it becomes increasingly difficult to incorporate this process as a

part of the convective response within the interaction matrix, Ki,j. It may

be more straightforward to treat it as a part of the large-scale forcing from

the point of view of studying the closure relation. Generally speaking, such

a precipitation forcing cannot be fully determined until the full convective

response is known and thus the procedure for solving the closure problem

and evaluating precipitation forcing becomes an iterative procedure.
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8. Concluding remarks

The present paper has introduced a general principle of convective quasi-

equilibrium, which also constitutes a generalized diagnostic convection-parameterization

closure. The generalization is based on a dictum that any diagnostic closure

must have a prognostic counterpart. Thus, the general closure is constructed

under a stationarity condition of the budget equation of a vertical integral of

a general function of physical variables. The formulation may also be consid-

ered as a generalization of the AS convective quasi-equilibrium hypothesis,

by taking a mathematically analogous formulation.

A very general structure is required in order to incorporate the AS quasi-

equilibrium within the same structure as other common closures such as

moisture convergence, CAPE and dilute CAPE. The final expressions de-

rived may appear rather involved but they have been obtained here in a

stepwise manner in order to make plain the origin of the various contribu-

tions to the budget. A very general structure is required in order to treat

forcing terms in anything other than a grossly simplified manner. Forcing

terms in the equations for a convective-scale variable equation have a rather

subtle role, as shown in Sec. 5.2. As stated therein, we did not even attempt

a full generalization. Further generalizations would introduce further com-

plications to the budget equations, and we did not see any immediate benefit

in doing so.

In the literature, moisture and CAPE–based closures are often taken as

major counterparts (cf., Emanuel et al. 1994). However, under the gen-

eral closure formulation presented herein, both fall into the same category

in which the closure only depends on the large-scale variables. Thus, the
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moisture-based closure may be considered as a type of convective quasi-

equilibrium condition, a perspective which is also supported by observations

(cf., John L. McBride, unpublished manuscript, ca., 1990). We also note that

Kuo’s (1974) formulation may be presented under the mass-flux formulation

in a self-consistent manner.

Section 4 presents the major alternative possibility of taking a convective-

scale variable, e.g., convective moisture, as a closure variable. An important

advantage of such a closure is that as a result, the predictability of the large-

scale variables is not lost even in a vertically integrated sense. This possibility

is worthwhile to pursue further. Here, recall that a convective-scale variable

is determined in terms of the large-scale variables, as detailed in Sec. 4.2,

as a consequence of the steady-plume hypothesis. Thus, we merely take a

convective-scale variable as a medium for controlling convection by the large-

scale variables.

Under this general perspective, the original AS quasi-equilibrium closure

is the most complex case of the categories considered: it includes both large-

scale and convective-scale variables in the closure. The advantage of this

closure is the relative ease of developing a self-contained prognostic version

(Randall and Pan 1993, Pan and Randall 1998, Yano and Plant 2012b,c,

Plant and Yano 2013). We propose the existence of a self-contained prognos-

tic version as a stronger dictum for justifying a physical basis for convection

closure. Unfortunately, none of the other closures based on quasi-equilibrium

principle in the literature has been shown to satisfy this stronger dictum.

Here, a possibility of developing another self–contained prognostic formula-

tion by considering the budget of vertically-integrated convective mass flux
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is suggested in Sec. 7.3 in discussing the dicta.

The generalized convective quasi-equilibrium principle has also suggested

that some of the convective-scale non-conservative processes may be more

conveniently considered a part of large-scale forcing. The precipitation pro-

cess is specifically identified as such an example. We expect that many other

microphysical processes, which are fairly involved in their formulations, might

also be more conveniently represented within closure budgets as being a part

of large-scale forcing. Our preliminary estimate suggests that the strength

of such precipitation forcing could be comparable to other important terms

in the “proper” large-scale forcing.

The possibilities for many other alternative closure formulations would

be needless to emphasize (cf., Yano et al. 2013). The present general for-

mulation for quasi-equilibrium hardly covers all of those, but the generality

presented under this sub-class should not be underestimated. Equivalent

studies for other closure types are awaited. Many new closures of interest

could nonetheless be constructed within the framework presnted. For exam-

ple, we raised the possibility of using a convective-scale moisture variable to

provide a closure and it would be useful to investigate numerically the bud-

gets derived for that possibility, alongside the directly equivalent budget for

the large-scale moisture. Our calculations also enable more directly compa-

rable and much more detailed numerical analyses of the budgets for CAPE,

dilute CAPE and cloud work function than have been conducted thus far.
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