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Abstract We use sunspot-group observations from the Royal Greenwich Observatory
(RGO) to investigate the effects of intercalibrating data from observers with different vi-
sual acuities. The tests are made by counting the number of groups [RB] above a variable
cut-off threshold of observed total whole spot area (uncorrected for foreshortening) to sim-
ulate what a lower-acuity observer would have seen. The synthesised annual means of RB

are then re-scaled to the full observed RGO group number [RA] using a variety of regression
techniques. It is found that a very high correlation between RA and RB (rAB > 0.98) does
not prevent large errors in the intercalibration (for example sunspot-maximum values can be
over 30 % too large even for such levels of rAB). In generating the backbone sunspot num-
ber [RBB], Svalgaard and Schatten (Solar Phys., 2016) force regression fits to pass through
the scatter-plot origin, which generates unreliable fits (the residuals do not form a normal
distribution) and causes sunspot-cycle amplitudes to be exaggerated in the intercalibrated
data. It is demonstrated that the use of Quantile–Quantile (“Q–Q”) plots to test for a normal
distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least-
squares linear fits, not forced to pass through the origin, are sometimes reliable (although the
optimum method used is shown to be different when matching peak and average sunspot-
group numbers). However, other fits are only reliable if non-linear regression is used. From
these results it is entirely possible that the inflation of solar-cycle amplitudes in the backbone
group sunspot number as one goes back in time, relative to related solar–terrestrial param-
eters, is entirely caused by the use of inappropriate and non-robust regression techniques to
calibrate the sunspot data.

Keywords Sunspot number · Historic reconstructions · Calibration · Regression techniques

Sunspot Number Recalibration
Guest Editors: F. Clette, E.W. Cliver, L. Lefèvre, J.M. Vaquero, and L. Svalgaard

B M. Lockwood
m.lockwood@reading.ac.uk

1 Department of Meteorology, University of Reading, Reading, UK

2 University of Oulu, Oulu, Finland

http://crossmark.crossref.org/dialog/?doi=10.1007/s11207-015-0829-2&domain=pdf
mailto:m.lockwood@reading.ac.uk


M. Lockwood et al.

1. Introduction

Articles 1 and 2 of this series (Lockwood et al., 2016a, 2016b) provide evidence that the new
“backbone” group sunspot number [RBB] proposed by Svalgaard and Schatten (2016) over-
estimates sunspot numbers as late as Solar Cycle 17 and that this overestimation increases as
one goes back in time. There is also some evidence that most of the overestimation grows in
discrete steps, which could imply a systematic problem with the ordinary linear-regression
techniques used by Svalgaard and Schatten to “daisy-chain” the calibration from modern
values back to historic ones. This daisy-chaining is unavoidable in this context unless a
method is used to calibrate historic (pre-photographic) data with modern data without re-
lating both to data taken during the interim. (Note that one such a method, which avoids
both regressions and daisy-chaining, has recently been developed by Usoskin et al. (2016).)
As discussed in Articles 1 and 2, the regressions used are of particular concern because the
daisy-chaining means that both random and systematic errors are amplified as one goes back
in time.

As one reads the article by Svalgaard and Schatten (2016), one statement stands out and
raises immediate concerns in this context: “Experience shows that the regression line al-
most always very nearly goes through the origin, so we force it to do so . . . ” To understand
the implications of this, consider two observers A and B, recording annual mean sunspot-
group numbers RA and RB, respectively. If observer B has lower visual acuity than A, then
RB ≤ RA. This may be caused by B having a lower resolution and/or less well-focused tele-
scope, or one that gives higher scattered-light levels. It may also be caused by the keenness
of observer B’s eyesight and how conservative he/she was in making the subjective decisions
to define spots and/or spot groups from what he/she saw. In addition, the local atmospheric
conditions may also have hindered observer B (greater aerosol concentrations, more mists
or thin cloud). Forcing the fits through the origin means that RA = 0 when RB = 0 and vice
versa. When the higher-acuity observer A sees no spot groups, the lower-acuity observer B
should not detect any either and so both RA and RB should indeed both be zero in this case.
However, there will, in general, have been times when observer A could detect groups but
observer B could not and so RA > 0 when RB = 0. Thus any linear-regression fit used to
scale RB to RA should not, in general, pass through zero as Svalgaard and Schatten (2016)
forced all of their fits to do. There is no advantage gained by forcing the fits through the
origin (if anything fits are easier to make without this restriction) but, as discussed in this
article, it introduces the potential for serious error.

Figure 1a is a schematic that illustrates what effects this would have by plotting the vari-
ation of RB with RA. The dot–dash line is the ideal case when observers A and B have the
same visual acuity and are following the same rules to define spots and groups of spots so
RB = RA. The solid line in (a) is when observer B has lower acuity and so RA > RB but
the variation of RB with RA remains linear. As discussed above, in general RA > 0 when
RB = 0. The dashed line is the best-fit linear regression that is forced to pass through the ori-
gin. The horizontal lines demonstrate how scaling off a value for RA from measured values
of RB using this regression fit will cause an underestimate of RA at lower-than-average val-
ues but an overestimate at higher-than-average values. Hence the amplitude of solar cycles
is falsely amplified by the assumption that RA = 0 when RB = 0 and forcing the fits through
the origin of the regression plot. Given the high correlations and the similar appearance of
the various regression lines, it would be easy to dismiss this effect as small; however, we
here use the distributions of whole spot group areas from the Royal Greenwich Observatory
(RGO) group area data (Willis et al., 2013a, 2013b) to show that it can be a highly signifi-
cant effect, especially when one considers that the effect will be compounded by successive
intercalibrations in the daisy chain.
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Figure 1 Schematics illustrating the importance of the intercept and linearity when using a linear regression
fit to intercalibrate sunspot group numbers seen by an observer B [RB] to evaluate what observer A would
have seen [RA] when observer B has lower visual acuity. See text for details.

Other concerns are that the errors in the data do not meet the requirements set by the
assumptions of ordinary least-squares (OLS) fitting algorithms, and this possibility should
always be tested for using the fit residuals. Failure of these tests means an inappropriate
fitting procedure has been used or the noise in the data is distorting the fit. In addition,
OLS can be applied by minimising the perpendiculars to the best-fit line or by minimising
the verticals to the fit line. It can be argued that this choice should depend on the relative
magnitudes of the errors in the fitted parameters. Another possibility that we consider here
is that the effect of reduced acuity of observer B may vary with the level of solar activity
leading to non-linearity in the relationship between RA and RB (see Usoskin et al., 2016
for evidence of this effect). We here also investigate the effects of using the linear ordinary
least-squares fits used by Svalgaard and Schatten (2016) under such circumstances.

Figure 1b illustrates the effects of using a linear fit if observer B’s lower acuity has more
effect at low sunspot numbers than at high ones, giving a non-linear (quadratic) relationship.
In this case, a linear regression with non-zero intercept causes inflation of both the highest
and the lowest values but lowers those around the average. Figure 1c shows the effects of
both using a linear fit and making it pass through the origin, as employed by Svalgaard and
Schatten (2016): in this case the effects are as in Figure 1a but the non-linearity makes them
more pronounced.

Non-linearity between the two variables is just one of the main pitfalls in OLS regression.
These can arise because the data violate one of the four basic assumptions that are inherent
in the technique and that justify the use of linear regression for purposes of inference or
prediction. The other pitfalls are a lack of statistical independence of the errors in the data;
heteroscedasticity in the errors (they vary systematically with the fit parameters); and cases
for which the errors are not normally distributed (about zero). In particular, one or more
large-error datapoints can exert undue “leverage” on the regression fit. If one or more of
these assumptions is violated (i.e. if there is a nonlinear relationship between the variables
or if their errors exhibit correlation, heteroscedasticity, or a non-Gaussian distribution) then
the forecasts, confidence intervals, and scientific insights yielded by a regression model may
be seriously biased or misleading. If the fit is correct, then the fit residuals will reflect the
errors in the data and so we can apply tests to the residuals to check that none of the assump-
tions has been invalidated. Non-linearity is often evident as a systematic pattern when one
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plots the fit residuals against either of the regressed variables. For regression of time-series
data, lack of independence of the errors is seen as high persistence of the fit residual time
series. Lack of homoscedasticity is apparent from scatter plots because the scatter increases
systematically with the variables. A normal distribution of fit residuals can be readily tested
for using a Quantile–Quantile (“Q–Q”) plot (e.g. Wilk and Gnanadesikan, 1968). This is a
graphical technique for determining if two datasets come from populations with a common
distribution; hence by making one of the datasets normally distributed we can test the other
to see if it also has a normal distribution. Erroneous outliers and lack of linearity can also be
identified from such Q–Q plots. If outliers are at large or small values they can have a very
large influence on a linear regression fit – such points can be identified because they have a
large Cook’s-D (leverage) factor (Cook, 1977) and should be removed and the data re-fitted.
There is no one standard approach to regression that can be applied and implicitly trusted.
There are many options that must be investigated, and the above tests must be applied to
ensure that the best option is used and that the results are statistically robust. In addition to
OLS, we here employ non-linear regression (using second-order and third-order polynomi-
als), Median Least Squares (MLS) and Bayesian Least Squares (BLS). The MLS and BLS
procedures were discussed by Lockwood et al. (2006).

The results presented in this article show that linear regression fits in the context of
intercalibrating sunspot-group numbers can violate the inherent assumptions and lead to
some very large errors, even though the correlation coefficients are high. In Section 2, we
present one example in which intercalibration over two full sunspot cycles (1953 – 1975)
can produce an inflation of sunspot peak values of over 30 % even when the correlation
between RA and RB exceeds 0.98. This is a significant error. To put it into some context,
Svalgaard (2011) pointed out a probable discontinuity in sunspot numbers around 1945 that
has been termed the “Waldmeier discontinuity”. Svalgaard quantified it as a 20 % change but
Lockwood, Owens, and Barnard (2014) and Lockwood et al. (2016a) find it is 11.9 ± 0.6 %
and Lockwood, Owens, and Barnard (2016) find it to be 10 %. (The latter estimate is lower
because it is the only one not to assume proportionality.) Hence 30 % is a very significant
number for one intercalibration, let alone when it is combined with the effect of others in a
series of intercalibrations. In Section 3 we present a second example interval (1923 – 1945,
when solar activity was lower) to see if it reveals the same effects.

Lastly, we note that we here employ annual means to be consistent with Svalgaard and
Schatten (2016). We do not test for any effects of this in the present article but it does
cause additional concerns when the data are sparse. This is because observers A and B may
have been taking measurements on different days and, because of factors such as regular
annual variations in cloud obscuration, their data could even mainly come from different
phases of the year. This may therefore not be a random error, which would again invalidate
the assumptions of ordinary least-squares regression. Usoskin et al. (2016) show this effect
can be highly significant for sparse data and Willis, Wild, and Warburton (2016) show it
even needs to be considered when using the earliest (before 1885) data from the Royal
Observatory, Greenwich.

In the present article, we make use of the photo-heliographic measurements from the
Royal Observatory, Greenwich and the Greenwich Royal Observatory (here collectively
referred to as the “RGO” data). We employ the version of the RGO data made available
by the Space Physics website (solarscience.msfc.nasa.gov/greenwhch.shtml) of the Mar-
shall Space Flight Center (MSFC) which has been compiled, maintained and corrected by
D. Hathaway. These data were downloaded in June 2015. As noted by Willis et al. (2013b),
there are some small differences between these MSFC data and versions of the RGO data
stored elsewhere (notably those in the National Geophysical Data Center, NGDC, Boulder).

http://solarscience.msfc.nasa.gov/greenwhch.shtml
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We here use only data for 1923 – 1976 for which these differences are minimal. The use of
this interval also avoids all times when the calibration of the RGO data has been questioned
(Cliver and Ling, 2016; Willis, Wild, and Warburton, 2016).

2. Study of 1953 – 1975

2.1. Distribution of Sunspot Group Areas

Figure 2 shows the distribution of whole spot areas [A] in each defined sunspot group from
the RGO data (Willis et al., 2013a) in the interval 1953 – 1975. A is uncorrected for fore-
shortening and so is the area that the observer actually sees on the solar disc. The right-hand
plot is a detail of the left-hand plot and shows the peak of the distribution. The large number
of small-area groups mainly arises from near the solar limb where the foreshortening effect
is large. These areas are those recorded by the RGO observers, who are here collectively
termed “Observer A”. To simulate what a lower-acuity Observer “B” would have seen, we
here assume that he/she would only detect groups for which the observed area [A] exceeded
a threshold [Ath]. The number of groups seen on each day by the RGO observers and by the
virtual observer B [RA and RB respectively] were counted. Annual means of both RA and
RB were then evaluated to be compatible with the procedure used to generate the backbone
data series [RBB]. This was repeated for a wide range of Ath thresholds.

2.2. Variations of RA and RB and Fits of RB to RA

Figure 3 shows the variations of observed RA (black line) and synthesised RB (dashed line)
sunspot-group numbers for this interval, for an example value of Ath of 150 × 10−6ASH

(where ASH is the area of a solar hemisphere). The coloured lines are the best fits of RB to
RA using various regression procedures detailed in Table 1. The fits for MLS and BLS (fit
6 and fit 7, respectively) are not shown because the results are almost identical to those for
fit 2 because the scatter in the data is low. The fit for the third-order polynomial (fit 8) is
not shown because the Q–Q plot reveals it to be less robust than that for the second-order
polynomial (see below). Note that the larger of the two peaks in Figure 3 is overestimated

Figure 2 Distribution of
uncorrected whole-spot sunspot
group areas [A] measured by
RGO observers over the interval
1953 – 1975 for bin widths
dA = (5 × 10−6)ASH, where
ASH is the area of a solar
hemisphere. The distribution on
the right is a detail of that on the
left showing the peak near A = 0
more clearly. Note that A is
uncorrected for foreshortening
effect near the solar limb and so
is the area actually seen by the
observer.
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Figure 3 Time series of
observed and fitted
sunspot-group numbers for the
interval 1953 – 1975. The black
line is the number of groups
[NA] detected by the RGO
observers, who are here termed
observer A. The dashed line is
the number [NB] that would have
been detected by lower-acuity
observer B if he/she could only
detect groups with uncorrected
(for foreshortening) whole spot
area A > Ath = 150 × 10−6ASH
where ASH is the area of a solar
hemisphere. The coloured lines
show the results of different fits
of NB to NA described in the text
(see Table 1).

Table 1 Fit procedures employed.

Fit Line colour
in figures

Fit type Assumed
variation

Parameter minimised Treatment of intercept

1 Blue OLS linear r.m.s. of perpendiculars Not forced through origin

2 Green OLS linear r.m.s. of verticals Not forced through origin

3 Red OLS linear r.m.s. of perpendiculars Forced through origin

4 Orange OLS linear r.m.s. of verticals Forced through origin

5 Brown Polynomial 2nd-order
polynomial

r.m.s. perpendiculars Not forced through origin

6 – MLS linear r.m.s. perpendiculars Not forced through origin

7 – BLS linear r.m.s. perpendiculars Not forced through origin

8 Cyan Polynomial 3rd-order
polynomial

r.m.s. perpendiculars Not forced through origin

by most of the fits, but particularly by fits 3 and 4, which force the regression line to pass
through the origin. These fits also underestimate the sunspot-minimum values, as was pre-
dicted by Figure 1. However, the linear fits that are free to determine the intercept also
overestimate the largest values (albeit to a smaller degree).

The scatter plot of annual means of RB as a function of RA (for this Ath of 150 ×
10−6ASH) is shown in Figure 4 along with the best-fit regression lines used to derive the
variations shown in Figure 3. Figure 5 presents the Q–Q plots of the ordered normalised fit
residuals against predictions for a normal distribution for the OLS fits 1 – 5 and 8. For valid
OLS fits, the residuals should be normally distributed, which would make all points lie on
the diagonal line in the Q–Q plot. (If the points were to lie on a straight line but the slope
was not unity, it would mean that one or both regressed parameters have a distribution with
a different kurtosis (sharpness of peak) compared to a Gaussian; if the points were to form
a characteristic S-shape about the origin it would mean that there is a skewness in one or
both distributions; if the variation were to be complex it would mean that there are a major
deviations from the assumptions of the regression.) Figure 5 shows that none of fits 1 – 4
pass this test and so these fits are unreliable and should not be used. The fits that have forced
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Figure 4 Scatter plot of RB as a
function of RA (black points) for
1953 – 1975 and the same area
threshold Ath = 150 × 10−6ASH
as used in Figure 3. The coloured
lines are the best-fit regression
lines (shown using the same
colour scheme as Figure 3 and
given in Table 1).

Figure 5 Q–Q plots of ordered
normalised fit residuals against
predictions for a normal
distribution for fits 1 – 5 and 8 for
1953 – 1975. For valid OLS fits
the residuals must be normally
distributed which would make all
points lie on the diagonal line. In
(e) for fit 5, the open triangles
show the results for all
datapoints, whereas the solid
circles are after removal of the
largest outlier.
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the regression line through the origin (fits 3 and 4) are particularly poor. However, fits 1 and
2 are also not ideal, in neither the Q–Q plots shown in Figure 5 (particularly the tails of the
distributions) nor in the magnitude of the largest fitted values in Figure 3. The Q–Q plot for
the second-order polynomial (fit 5, Figure 5e) is closest to ideal (especially when the worst
outlier is omitted; see below), but the tails of the distribution become non-Gaussian again
when a third-order polynomial was used (fit 8, Figure 5f).

Fits using median least squares (MLS, fit 6) and Bayesian least squares (BLS, fit 6)
were also made but were no better than the comparable OLS fit (fit 1). We also attempted
successive removal of the largest outliers to try to make the fits converge to a stable result,
but again no improvement was made for all these linear fits. This left just one assumption to
test, namely that the variation of RB with RA is linear. A least-squares fit of a second-order
polynomial fit was carried out (fit 5): this is shown by the brown lines in Figures 3 and 4.
This appears to remove the problem of the exaggerated peak values. Note that for this fit
one outlier data point has been removed (see below). In addition, a third-order polynomial
fit was carried out (fit 8): the Q–Q plot for this fit is shown by the cyan points in Figure 5f
and it can be seen that this fit generates some non-Gaussian tails to the distribution.

In Figure 5e, the open triangles show the results for the second-order polynomial fit to
all datapoints and the point in the upper tail of the distribution is seen to be non-Gaussian.
This arises from the outlier data point that can be seen in Figure 3 at RA ≈ 9.3, RB ≈ 3.2.
The solid circles are for the fit after this outlier has been removed and the remaining points
can now be seen to give an almost perfect Gaussian distribution of residuals, and so the fit
is robust. The brown lines in Figures 3 and 4 show the results of this fit with the outlier
removed. The largest outlier was also removed or all other fits but fit 5 was the only one for
which the Q–Q plot was significantly improved. Note that for the test done here, the fits are
never used outside the range of values that were used to make the fit. However, this would
not necessarily be true of an intercalibration between two daisy-chained data segments and
very large errors could occur if there is non-linearity and one is extrapolating to values
outside the range used for calibration fitting.

2.3. Effect of the Threshold Ath

The results in the last section were all for a single example value of the observable area
threshold for observer B: Ath = 150×10−6ASH. To study the effect of various levels of visual
acuity of observer B, we here vary Ath between 0 (for which RB = RA) and 650 × 10−6ASH

in steps of 5 × 10−6ASH for the same dataset (1953 – 1975). For each Ath we compute: the
correlation coefficient rAB between RB and RA; the percentage by which the fitted peak value
in the interval is greater than the corresponding peak of RA [�peak] and the percentage by
which the average of the fitted value in the interval is greater than the average of RA [�mean].
The results are shown here for fits 1, 2, 3, 4 and 5 in Figure 6. The top panel shows that the
correlation remains extremely high (rAB > 0.97) even for very large Ath of 650 × 10−6ASH.
However, these high correlations do not prevent considerable errors in the fitted mean and
peak values arising from the regression procedure. The fits that force the regression through
the origin give very large errors (fit 3 overestimating the peak value by 15 % and fit 4 by
30 % at Ath = (450 × 10−6)ASH, for which rAB still exceeds 0.98. Hence high correlation
is certainly no guarantee of reliable regression fits. The mean values tend to be decreased
because of the fall in the low values expected from Figure 1; however, for very large Ath, fit
3 yields increases in both mean and peak values. Fit 2 does not change the mean values at
all but it does inflate the peak values as much as does fit 1. The only fit not to do this is the
non-linear fit 5 which does slightly decrease the peak values, particularly at the larger Ath.
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Figure 6 The effect of varying
the threshold Ath for the
1953 – 1975 data subset. (Top)
rAB, the correlation between RB
and RA; (middle) �mean, the
percentage by which the average
of the fitted value in the interval
is greater than the average of RA
and (bottom) �peak, the
percentage by which the fitted
peak value in the interval is
greater than the peak of RA.
Coloured lines are as in Figures 3
and 4 and as given by Table 1.

Hence of all the fits, for this calibration interval, the non-linear fit 5 performs best, but it is
still not ideal. Looking at Figure 4 we see that the non-linearity is very subtle indeed and
not at all obvious from the scatter plot, but our tests show it is an important factor in this
case.

3. Study of 1923 – 1945

It is found that the effects, in general, depend on both the length of the regression interval and
which interval is chosen. There are too many combinations of possibilities to attempt a para-
metric study, but we here chose a second interval of length two solar cycles (1923 – 1945)
which illustrates somewhat different behaviour from the last section. Figure 7 corresponds
to Figure 2. It shows the form of the distribution of observed areas [A] is the same for the
two intervals, but the numbers in each bin are lower for 1923 – 1945 because solar activity
is lower. Figures 8, 9, and 10 show, respectively, the time series and fits, the scatter plots
with regression lines and the Q–Q plots for this interval, in the same formats as Figures 3,
4, and 5, respectively. The difference between the fits is almost undetectable in Figure 9 but
Figure 10 shows that the Q–Q plots still violate the required normal distribution of residuals
for the fits that force the regression through the origin (fits 3 and 4). For this interval the
regressions that are not forced through the origin (fits 1 and 2) give good alignment along
the diagonal line and hence are robust fits with a normal distribution in the fit residuals. In
this case the polynomial fits also produce very good normal distributions on the Q–Q plot
because the best-fit higher-order coefficients of the polynomial are very close to zero and
the best fit is essentially linear.



M. Lockwood et al.

Figure 7 Distribution of
uncorrected whole spot sunspot
group areas [A] measured by
RGO observers over the interval
1923 – 1945 for bin widths
dA = (5 × 10−6)ASH where
ASH is the area of a solar
hemisphere. The distribution on
the right is a detail of that on the
left showing the peak near A = 0
more clearly. Note that A is
uncorrected for foreshortening
effect near the solar limb and so
is the area actually seen by the
observer.

Figure 8 Time series of
observed and fitted group sunspot
numbers for the interval
1923 – 1945. The black line is the
number of groups [NA] detected
by the RGO observers, who are
here termed observer A. The
dashed line is the number [NB]
that would have been detected by
lower-acuity observer B if he/she
could only detect groups with
uncorrected (for foreshortening)
whole spot area
A > Ath = 150 × 10−6ASH
where ASH is the area of a solar
hemisphere. The coloured lines
show the results of different fits
of NB to NA described in the text
(see Table 1).

Figure 9 Scatter plot of RB as a
function of RA (black points) for
1923 – 1945 and the same area
threshold Ath = 150 × 10−6ASH
as used in Figure 8. The coloured
lines are the best-fit regression
lines (shown using the same
colour scheme as Figure 8 and
given in Table 1).
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Figure 10 Q–Q plots of ordered
normalised fit residuals against
predictions for a normal
distribution for fits 1 – 5 and 8 for
1923 – 1945. For valid OLS fits,
the residuals must be normally
distributed, which would make
all points lie on the diagonal line.
In this case there are no clear
outliers that require removal.

Figure 11 corresponds to Figure 6: there are some similarities but there are also signifi-
cant differences. For this 1923 – 1945 example, fit 2 is the closest that we have obtained to
being ideal, there is no change in the mean value at any Ath (as for the previous example) and
the percentage changes in the peak value are much smaller than we have obtained before.
Remember that fit 2 assumes that observer A’s data are correct and all of the uncertainty
is in observer B’s data (because it minimises the r.m.s. of the verticals in the scatter plot).
This is perhaps what we would have expected given the uncertainties in the lower-acuity
data should be larger than those in the higher-acuity data. However, fit 1 also performs quite
well with relatively small errors in the mean values and almost none in the peaks. Again this
appears to be consistent with expectations as this fit minimises the perpendiculars, which
should be a better thing to do when the uncertainties in RA and RB are comparable and this
is more likely to be the case when solar activity is high. The non-linear fit again gives almost
no error in mean values but persistently tends to underestimate the peak values in this case.

4. Discussion and Conclusions

Our tests of regression procedures, comparing the original RGO sunspot-group area data
with a deliberately degraded version of the same data, show that there is no one definitive
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Figure 11 The effect of varying
the threshold Ath for the
1923 – 1945 data subset. (Top)
rAB, the correlation between RB
and RA; (middle) �mean, the
percentage by which the average
of the fitted value in the interval
is greater than the average of RA
and (bottom) �peak, the
percentage by which the fitted
peak value in the interval is
greater than the peak of RA.
Coloured lines are as in previous
figures and as given by Table 1.

method that ensures the regressions derived are robust and accurate. Certainly correlation
coefficient is not a valuable indicator and very high correlations are necessary but very far
from sufficient.

The one definitive statement that we can make is that forcing fits through the origin is
a major mistake. It causes solar-cycle amplitudes to be inflated so that peak values in the
lower-acuity data are too high and both minimum and mean values are too low. This is
the method used by Svalgaard and Schatten (2016), and our findings show that it will have
contributed to a false upward drift in their backbone group number reconstruction [RBB]
values as one goes back in time. At the time of writing we do not have the original data to
check the effect on both the regressions used to intercalibrate backbones and any regressions
used to combine data into backbones. Both will be subject to this effect. Hence we cannot
tell whether or not this explains all of the differences between, for example, the long term
changes in RBB and the terrestrial data (ionospheric, geomagnetic, and auroral) discussed
in Articles 1 and 2. However, it will have contributed to these differences. Note that all of
the above also applies to any technique based on the ratio RA/RB as that also forces the fit
through the origin.

Lastly it is not clear which procedure should be used to daisy-chain the calibrations. Or-
dinary least-squares fits work well only when the Q–Q plots show a good normal distribution
of residuals. Even then, minimising the verticals gives the best answer for the mean values
but minimising the perpendiculars gives the best answer for the peak values. The failures in
the Q–Q plots appear to be mainly because the dependence is not linear and a non-linear fit
then works well. We used a second-order polynomial and the fitted R2

B term is found to be
relatively small (meaning it is a near-linear fit) and hence this seems to have been adequate,
at least for the cases we studied. However, we note that this should not be used for values
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that are outside the range seen during the intercalibration interval because the dependence
of the extrapolation on the polynomial used is then extremely large.
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