
Multicamera trajectory analysis for 
semantic behaviour characterisation 
Conference or Workshop Item 

Accepted Version 

Patino, L. ORCID: https://orcid.org/0000-0002-6716-0629 and 
Ferryman, J. (2014) Multicamera trajectory analysis for 
semantic behaviour characterisation. In: 11th IEEE 
International Conference on Advanced Video- and Signal-
based Surveillance (AVSS2014), August 26-29, 2014, Seoul, 
Korea, pp. 1-6. Available at 
https://centaur.reading.ac.uk/47389/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http:// ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6918696 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Multicamera trajectory analysis for semantic behaviour characterisation

Luis Patino and James Ferryman
University of Reading, Computational Vision Group

P.O. Box 225, Whiteknights, Reading RG6 6AY, United Kingdom
{j.l.patinovilchis, j.m.ferryman}@reading.ac.uk

Abstract

In this paper we propose an innovative approach for
behaviour recognition, from a multicamera environment,
based on translating video activity into semantics. First,
we fuse tracks from individual cameras through clustering
employing soft computing techniques. Then, we introduce
a higher-level module able to translate fused tracks into se-
mantic information. With our proposed approach, we ad-
dress the challenge set in PETS 2014 [1] on recognising
behaviours of interest around a parked vehicle, namely the
abnormal behaviour of someone walking around the vehi-
cle.

1. Introduction
In recent years, behaviour understanding from multicam-

era analysis has acquired a significant importance due to the
increasing use of cameras and particularly networks of cam-
eras in our daily lives. Ambient intelligence cameras [2],
traffic cameras and indoors or public space monitoring cam-
eras [10] are just some examples. Understanding human
activities is important for a series of reasons including 1)
security reasons, where the essential task is to detect threats
on the camera video streams and to send appropriate alarms;
2) management reasons, such as vehicle traffic control or
people flow control in transport systems; 3) health reasons,
such as building the personal daily living activity profile on
people suffering from Alzheimers. Multi-camera analysis
has the inherent advantage of larger and/or more-detailed
coverage of the monitored space but at the same time brings
the challenge to fuse the multi-camera information to build
an unified view of the human activities across the network
of cameras. Furthermore, once a unified activity representa-
tion is obtained, it still remains to characterise it, or extract
the interesting behaviour patterns such that the vision sys-
tem can indeed identify the ongoing human activities in the
monitored space. In this paper we have addressed these two
challenges. We propose to fuse individual people detections
from a network of cameras to obtain a unified trajectory of

the mobile inside the monitored space. In a second step, we
analyse the trajectory to understand the mobile behaviour
and express it in semantic terms. Important behaviours of
interest can then be detected and extracted from a seman-
tical analysis. We have applied our approach on the PETS
2014 [1] dataset and addressed the recognition of the ab-
normal behaviour of someone walking around the vehicle.
Our current results are encouraging as all instances in the
dataset are detected with a very few number of false posi-
tives. The remainder of the paper is organised as follows.
Section 2 presents the related work from the literature. The
overview of our system is given in Section 3. The fusion
of tracks from individual cameras is explained in Section
4; and Section 5 describes how unified trajectories are pro-
cessed. The semantic activity extraction and analysis is ex-
plained in Section 6. Our results on the PETS2014 dataset
are given in Section 7. Our conclusions and future work are
summarised in Section 8.

2. Related work
Learning behaviour based on trajectory analysis is now

a well established area in video understanding. This type of
analysis is most popular mainly due to its effectiveness in
detecting normal/abnormal behaviours; for instance, on ab-
normal trajectory detection on roads [18, 17] or pedestrian
trajectory characterisation [3]. Hidden Markov Models
(HMM) have also been employed to detect different states
of pre-defined normal behaviour [4]. However, most of the
work done in behaviour understanding is mainly done on a
single camera view.

Behaviour analysis in a multicamera environment is of
deep interest because of the increased global view of the
space under monitoring as a single camera can only have a
limited view. Multicamera analysis brings the advantage to
better study the global activity and the longer ’history’ of
single activities but at the same time faces as the first chal-
lenge the correct multi-object correspondence across cam-
eras.

There are two different approaches to analyse and under-
stand multicamera information: These are either centralised



or distributed. The former is probably the most widespread
approach consisting to infer the multicamera topology cor-
respondance and achieve tracking on the ground plane. A
variety of techniques have been considered on this aspect,
for instance, Kim and Davis [13] proposed a multi-view
multi-hypothesis approach. Fleuret et al. [8] proposed an
algorithm combining a probabilistic occupancy map. Du
and Piater [5] presented an approach to perform ground-
plane single target tracking fusing multiple camera infor-
mation with sequential belief propagation. Yao and Odobez
[20] present an approach to automatically detect and track
a variable number of people in a multi-camera environment
with partial field of view overlap using Bayesian tracking.
S. Khan and M. Shah [12] calculate the ‘edges’ of a camera
view as seen in other cameras. These methods are however
very dependent on the overlap between cameras to solve the
multicamera correspondence problem, which actually still
remains an open problem.

When the camera views are disjointed or there is almost
no overlap, the second approach employed to analyse and
understand multicamera information is then distributed, in
which tracking is conducted independently at each cam-
era, and then results from the different cameras are fused
and combined at a higher level. In this case it is often the
appearance model which is set in correspondance between
camera views. Once the correspondence is established, tra-
jectories from different camera views can be fused and anal-
ysed globally. Numerous works have adressed this problem
[7, 11, 19].However, matching appearance models between
cameras is also difficult because the appearance of objects
may vary between cameras as objects may be observed with
a different pose, with different resolutions, or are subject to
different illumination or occlusion conditions.

In this paper we propose an innovative way for behaviour
recognition employing distributed tracking. First, we fuse
tracks from disjoint cameras through clustering employing
soft computing techniques. Then, we have the addition of
a higher-level module able to translate fused tracks into se-
mantic information. With our proposed approach, we ad-
dress the challenge set in PETS 2014 [1] on recognising
behaviours of interest around a parked vehicle, namely the
abnormal behaviour of someone walking around the vehi-
cle.

3. System description
Behaviour characterisation is based on the analysis of

trajectories from detected mobile objects; with Low-level
tracking information transformed into high-level semantic
descriptions. This paper is however not addressing the mul-
ticamera tracking challenge. Instead, we employ the track-
ing results available with the PETS2014 dataset [1]. The
hypothesis is thus that an online module has already per-
formed the tracking process. As observed in Figure 1, we

assume a distributed multicamera tracking system, which is
the case for the data available in PETS 2014. The first step
in our system is thus the fusion of trajectories from different
camera views. In a second step fused trajectories are anal-
ysed globally to extract points of interest and then employed
to achieve activity zone learning. As previously mentioned,
we achieve complex activity/behaviour recognition by first
learning activity zones where mobiles evolve in the scene.
In a fourth step the mobile movement is characterised as
a pattern of visited activity zones. Employing the inherent
soft relation properties, the reported activities are labeled
with understandable semantics. In the final step behaviour
recognition is achieved by the analysis of the reported se-
mantics.

Figure 1. Processing chain for the proposed approach

4. Trajectory Fusion
In this work we understand behavioural activity as the

coherent spatio-temporal trajectory interaction across cam-
eras. We propose in this work to group trajectories from all
cameras in order to form those coherent clusters of activity.
We propose for this task a soft computing clustering algo-
rithm. The motivation is that soft computing provides un-
certain information processing capability; set a framework
to work with symbolic/linguistic terms and thus allows pro-
ducing natural language-like interpretable results. This is
a key feature in our approach as behaviour recognition is
based on the mobile semantic term analysis.

4.1. Fuzzy relation clustering

A fuzzy set is a set of ordered pairs such that A =
{(x, µA (x)) | xϵX}. Given two fuzzy sets, A and B, it is
possible to calculate their union or intersection with typical
T-norm and T-conorm operators such that,

µA
∩

B (x) = T (µ (A) , µB (x)) = min (µA (x) , µB (x))



µA
∪

B (x) = S (µ (A) , µB (x)) = max (µA (x) , µB (x))

Any relation between two sets X and Y is known as a
binary relation R:

R = {((x, y) , µR (x, y)) | (x, y) ϵX × Y }
and the strength of the relation is given by µR (x, y)
Let’s consider now two different binary relations, R1 and

R2, linking three different fuzzy sets X, Y, and Z :

• R1 = x is relevant to y

• R2 = y is relevant to z

It is then possible to find to which extent x is relevant to z
by employing the extention principle (noted R = R1oR2):

µR=R1◦R2 (x, z) = max
y

min [µR1 (x, y) , µR2 (y, z)]

It is interesting to verify whether the resulting relation is
symmetric, R (x, y) = R (y, x) , reflexive R (x, x) = 1,
which make of R a compatibility relation and occurs in
most cases when establishing a relationship between bi-
nary sets. Because R was calculated employing the ex-
tention principle, R is also a transitive relation. R (x, y)
is a transitive relation if ∃ z ∈ X, z ∈ Y/R (x, y) ⩾
max

z
min [R (x, z) , R (z, y)]

R can be made furthermore closure transitive following
the next steps

Step1. R′ = R ∪ (R ◦R)
Step2. If R′ ̸= R, makeR = R′ and go to step1
Step3. R = R′ Stop.

(1)

R is the transitive closure where

R ◦R (x, y) = max
z

min (R (x, z) , R (z, y)) (2)

R is now a transitive similarity relation with R indicating
the strength of the similarity. If we define a discrimination
level α in the closed interval [0,1], an α−cut can be defined
such that

Rα (x, y) = 1 ⇔ R (x, y) ⩾ α (3)

From the classification point of view, Rα induces a
new partition πα with a new set of clusters πα ={
CLα

1 , · · · , CLα
k , · · · , CLα

|πα|

}
such that cluster CLk

α is
made of all initial elements x, y, z which up to the alpha
level fullfill the final similarity relation in equation 2. It
should be noted that this relation clustering was first pro-
posed by Patino et al. [15] but employed solely for the
learning of activity zones.

4.2. Relation setup for clustering

We now set out to establish the appropriate relations be-
tween detected mobiles across cameras reflecting spatio-
temporal similarities in order to obtain coherent groups of
trajectories reflecting a unified activity.

With this aim, we define the following relations:

R1ij : mobile object O(i) end position is close to mobile
object O(j) start position

R2ij : mobile object O(i) end speed is close to mobile
object O(j) start speed

R3ij : mobile object O(i) temporal end is close to mobile
object O(j) start

R4ij : mobile object O(i) end direction is close to mobile
object O(j) start direction

R5ij : mobile object O(i) does not overlap temporally
with mobile object O(j)

All relations can be aggregated employing a soft com-
puting aggregation operator such as

R = R = R1t ∩ R2t ∩ R3t ∩ R4t ∩ R5t =
max (0, R1t +R2t +R3t +R4t +R5t − 4) and made
transitive with equation 1. Clusters of activity are obtained
after applying an α − cut discrimination level as indicated
in Equation 3.

5. Trajectory Processing
In our work, the mobile behaviour is characterised as

a pattern of visited activity zones. We understand activity
zones as those important areas on the observed scene where
mobiles interact with other mobiles or perform behavioural
changes. Such behavioural changes include: ‘stop walk-
ing to meet someone’, ‘change direction while walking’,
‘speed up walking’ or simply ‘stand waiting’. Also this in-
formation can be extracted from the analysis of the mobile
speed profile. Once trajectories across cameras have been
fused and unified, the first task is thus to analyse the mobile
speed profile and obtain those speed changing points and
those direction changing points (indicattors of behavioural
changes). The second task is then to cluster these key points
to build the final activity zones. There are thus two parallel
processes: The first is to analyse the mobile speed profile
and obtain those speed changing points. The second is to
analyse the mobile direction profile and obtain those direc-
tion changing points.

Let us consider the dataset O = {trj} , j = 1 . . . N
made up of N trajectories. Each trajectory is defined as
the set of points [xj(t), yj(t)] corresponding to their po-



sition on the ground on the t-th frame. The instantaneous
speed for that mobile at point [xj(t), yj(t)] is then v (t) =(
ẋ (t)

2
+ ẏ (t)

2
) 1

2

, and the direction θ that the mobile takes
at that point is θ (t) = arctangent (ẏ (t) /ẋ (t)).

Each of these two time series is analysed in the frame
of a multiresolution analysis [14] with a Daubichis Haar
smoothing function, ρ2s (t) = ρ (2st), to be dilated at
different scales s. In this frame, the approximation A of
v (t) by ρ is such that As−1 (v) =

∫
v (t) ρ

(
2s−1t− b

)
dt

is a broader approximation of Asv and correspondly for
As−1 (θ) and Asθ. The analysis is performed through six
dyadic scales. Speed changing points and direction chang-
ing points correspond to those important discontinuities
which remain present across scales.

A clustering algorithm is then applied to the speed and
direction key points, employing a fast partitioning algorithm
such as the well-known Leader algorithm [9, 6]), allowing
us to quickly create an initial set of zones Zn. Then, the par-
tition is corrected employing again the same generic fuzzy
relation clustering described in section 4.1 with an appro-
priate set of relationships: R1ij : Zone Zni overlaps Zone
Znj , R2ij : zone Zni and zone Znj are destination zones
for mobiles departing from any same activity zone Znk,
R3ij : zone Zni and zone Znj are origin zones for mobiles
arriving to the the same activity zone Znk, R4ij : zone Zni

and zone Znj have about the same number of detected mo-
biles stopping at the zone, R5ij : zone Zni and zone Znj

have about the same mobile interaction time. Note that this
is the same online procedure as employed by Patino et al.
[16]. However, unlike [16], we also analyse the direction
profile in order to extract as well the information on sudden
direction changes or trajectories constantly changing direc-
tion.

6. Activity Extraction
Let us assume, we have in total q = 1, ..., Q

user-defined zones Zctxq (also named contextual zones),
and k = 1, ...,K learned zones. If πα =
{AZnα

1 , · · · , AZnα
k , · · · , AZnK} is the partition for the

α level, and AZnα
k is one learned zone from the induced

partition; the different kinds of behaviours that can now be
identified for the α level are thus:

• Mobile from Zone Zctxq to Zone Zctxq′

• Mobile from Zone Zctxq to Zone AZk
α

• Mobile from Zone AZnα
k to Zone Zctxq

• Mobile from Zone AZnα
k to Zone AZnα

k′

• Mobile at Zone Zctxq

• Mobile at Zone AZnα
k

We attribute discovered zones a semantic label, which
allows description of the discovered zone in terms of user-
defined zones when available. To this end we consider two

new soft-computing relations: The comparison of areas be-
tween discovered and user-defined areas, and the distance
relationships between discovered and user-defined areas.

The activity is then characterised as the ordered sequence
of simple behaviours generated as the mobile visits different
learned or user-defined zones. The recognition of displace-
ments of interest (walking around the veicle in this case)
comes down to the semantic interpretation of zone-based
delivered events.

7. Experimental results

We have addressed the challenge set in PETS2014 [1]
regarding the behaviour recognition of someone walking
around a parked vehicle. We have thus processed all se-
quences marked in the dataset description as containing
at least one instance of someone walking around the ve-
hicle. The total number of sequences procesed from the
PETS2014 dataset amounts then to seven. Each sequence
is composed of four different recordings corresponding to
four non-overlapping cameras, mounted on the vehicle it-
self, and covering the space around. Figure 2 shows an ex-
ample (sequence 06 01) of the person walking around the
vehicle and being detected and tracked separatly on each of
the four onboard cameras.

Each dataset was processed independently meaning that
no accumulation of evidence was necessary for the be-
haviour recognition of the person walking around the ve-
hicle. Our fusion of tracks within the same camera across
cameras works successfully. Figure 3 shows, as an exam-
ple, how the proposed algorithm succeds at fusing the tracks
from across cameras into a coherent single activity. Re-
mark that although the clustered activity contains only a few
tracks across cameras, our fusion algorithm has to extract
the activity clusters from about 300 to 600 tracks contained
in each sequence with all four cameras taken into account.
To achieve the semantic activity extraction, we employ 4
user-defined areas: truck, pedestrian way-out, service and
smoking areas. (seen in Figure 2). When a unified trajec-
tory is analysed, the extracted activity is then reported in
terms of these user-defined areas. Figure 3 shows as well
the semantic being obtained for the fused trajectory from
the person walking around vehicle shown in Figure 2.

Some other examples of the walking around vehicle be-
haviour as reported by our system in other sequences are:

* From just north of zone Truck to just east of zone
Truck; Then to just north-east of zone Truck; staying in just
north-east of zone Truck; Then to 14.4 metres away north-
east of zone Bus Shelter

* From 14.2 meters away north of zone Coffee to just
south-east of zone Truck; Then to just north of zone Truck;
staying in just north of zone Truck; Then to just east of zone
Truck; Then to just north-east of zone Truck



Some examples of other general activities detected by
our system are for instance:

* From 15.5 meters away north-west of zone Coffee to
11.6 meters away east of zone Truck; Then to 9 meters away
east of zone Truck; staying in 9 meters away east of zone
Truck

The recognition of the behaviour of interest (walking
around truck) comes down to the interpretation of seman-
tic delivered events. As such, all learned zones tagged as
just-east, just-west, just-north, just-south are interpreted as
arriving at/exiting the vehicle/area or interest. For example,
the event From just west of zone Truck; staying in just west
of zone Truck; Then to just south-west of zone Truck; Then
to just east of zone Truck; staying in just east of zone Truck
gives a clear indication of the person walking around vehi-
cle. The key words ‘From just * Truck’ and ‘to just * Truck’
provides us enough information to detect the targeted be-
haviour, where * is one of the directional tags attributed by
our system.

Applying this semantic event recognition we obtain the
results shown in Table 1. On the seven analysed sequences,
we detected 23 events corresponding to a person walking
around the vehicle. From them, our visual inspection on the
video indicates that 19 of them correspond correctly to the
behaviour (TP=19) and four of them are wrong (FP=4).

False positives that we obtained can be explained as fol-
lows. In two cases (sequence 06 04, merged MobileID=3
and MobileID=2), the detected mobiles walked close to the
vehicle and seen from two cameras. The semantic given
was [From just south-east of zone Truck to just south of
zone Truck] but the visual inspection indicates the inten-
tion was not to walk two sides of the truck although in our
engine we allow such interpretation for the case one per-
son walks partially one side and then another one. The re-
maining false positives occurs because of a tracking error.
Indeed a false object detection identifies the truck plastic
cover at one side, occasionally as one person moving along
the vehicle. Tracking errors of this type, or some others
like mobiles associated as a group in one view, then tracked
separatly in another view, or broken tracks in a single view
occur frequently in the dataset but our algorithm still copes
with these problems particularly fusing broken tracks in a
single view and establishing coherent associations across
cameras. In general, it can be established from our results
that the targeted behaviour is successfully recognised de-
spite obtaining some false positives.

.

8. Conclusions
We have presented in this paper a new approach for be-

haviour recognition, from a multicamera environment. The
novelty lies on the fact that we translate video activity into
semantics and we analyse these to interpret and detect be-

Figure 3. Unified trajectory containing those separate tracks from
Figure 2. For simplicity, the trajectory is represented as straight
lines between start and end points of the individual contained
tracks. Corresponding to each mobile displacement it is shown the
semantic description automatically generated by our algorithm.

Sequence MobileID Event start time Event end time Visual validation
10 03 1 14:53:20.836 14:53:34.307 TP
10 03 3 14:52:52.4333 14:53:10.625 TP
10 03 4 14:53:00.925 14:53:06.525 TP
06 01 14 13:43:46.779 13:45:14.039 TP
06 01 11 13:44:58.9263 13:45:39.439 TP
06 01 7 13:44:37.7263 13:44:49.279 TP
06 01 12 13:43:18.211 13:44:56.611 TP
06 01 13 13:44:59.0597 13:45:02.2597 TP
06 01 21 13:45:50.961 13:45:55.961 TP
10 04 5 14:54:44.056 14:54:47.675 TP
10 04 1 14:54:15.885 14:54:15.885 FP
10 05 5 14:56:23.223 14:56:24.823 TP
10 05 7 14:55:58.873 14:56:03.373 TP
10 05 4 14:55:52.333 14:56:07.354 FP
14 01 3 16:30:52.809 16:31:07.687 TP
14 07 12 16:52:53.967 16:52:59.517 TP
14 07 7 16:52:25.111 16:52:25.911 TP
06 04 7 14:03:00.34 14:03:15.9853 TP
06 04 3 14:03:29.64 14:03:35.5187 FP
06 04 10 14:02:38.17 14:03:33.52 TP
06 04 8 14:03:12.5187 14:03:37.02 TP
06 04 2 14:03:01.09 14:03:46.9853 FP
06 04 9 14:03:33.02 14:03:42.109 TP

Table 1. Walking around vehicle-recognised behaviour in the
PETS 2014 dataset.

haviours of interest. We have set up a set of soft com-
puting relationships and clustering algorithm to fuse tracks
from non-overlapping cameras. Then, we have in addition
a higher-level module able to translate fused tracks into se-
mantic information perform the recognition of behavious of
interest. Our results obtained in the PETS 2014 dataset for
the targeted behaviour (walking around vehicle) are encour-
aging. We have succeeded to coherently fuse tracks within
a single camera view, and also across cameras. We have de-
tected all dataset instances and the number of false positives
is low. However, to enhance the system we will work to set
more strict constraints in the activity semantic interpretation
and lower the number of false positives.



Figure 2. Walking around vehicle PETS2014 sequence 06 01. Top panel: Object detection on each individual on-board camera. Bottom
panel: Distributed object tracking. Green lines represent the object trajectory on each camera. Red point indicates start of the trajectory;
blue point indicates end of the trajectory. User zones of interest are indicated with numbers: 1) Bus shelter, 2) Truck, 3) Pedestrian way
and 4) Coffee zone.
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