Katzourakis, N. (2015) Optimal infinity-quasiconformal immersions. ESAIM Control Optimization & Calculus of Variations, 21 (2). pp. 561-582. ISSN 1262-3377 doi: 10.1051/cocv/2014038
Abstract/Summary
For a Hamiltonian K ∈ C2(RN × n) and a map u:Ω ⊆ Rn − → RN, we consider the supremal functional (1) The “Euler−Lagrange” PDE associated to (1)is the quasilinear system (2) Here KP is the derivative and [ KP ] ⊥ is the projection on its nullspace. (1)and (2)are the fundamental objects of vector-valued Calculus of Variations in L∞ and first arose in recent work of the author [N. Katzourakis, J. Differ. Eqs. 253 (2012) 2123–2139; Commun. Partial Differ. Eqs. 39 (2014) 2091–2124]. Herein we apply our results to Geometric Analysis by choosing as K the dilation function which measures the deviation of u from being conformal. Our main result is that appropriately defined minimisers of (1)solve (2). Hence, PDE methods can be used to study optimised quasiconformal maps. Nonconvexity of K and appearance of interfaces where [ KP ] ⊥ is discontinuous cause extra difficulties. When n = N, this approach has previously been followed by Capogna−Raich ? and relates to Teichmüller’s theory. In particular, we disprove a conjecture appearing therein.
Altmetric Badge
| Item Type | Article |
| URI | https://reading-clone.eprints-hosting.org/id/eprint/47110 |
| Identification Number/DOI | 10.1051/cocv/2014038 |
| Refereed | Yes |
| Divisions | Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics |
| Publisher | EDP Sciences |
| Download/View statistics | View download statistics for this item |
University Staff: Request a correction | Centaur Editors: Update this record
Download
Download