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On small bases for which 1 has countably many

expansions
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bSchool of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

Abstract

Let q ∈ (1, 2). A q-expansion of a number x in [0, 1
q−1

] is a sequence (δi)
∞
i=1 ∈ {0, 1}N satisfying

x =

∞∑
i=1

δi
qi
.

Let Bℵ0 denote the set of q for which there exists x with a countable number of q-expansions, and

let B1,ℵ0 denote the set of q for which 1 has a countable number of q-expansions. In [21] it was

shown that minBℵ0 = minB1,ℵ0 = 1+
√
5

2
, and in [1] it was shown that Bℵ0 ∩ ( 1+

√
5

2
, q1] = {q1}, where

q1(≈ 1.64541) is the positive root of x6 − x4 − x3 − 2x2 − x− 1 = 0. In this paper we show that the

second smallest point of B1,ℵ0 is q3(≈ 1.68042), the positive root of x5−x4−x3−x+1 = 0. Enroute

to proving this result we show that Bℵ0 ∩ (q1, q3] = {q2, q3}, where q2(≈ 1.65462) is the positive root

of x6 − 2x4 − x3 − 1 = 0.

Key Words: beta-expansion, non-integer base, countable expansions

AMS Subject Classifications: 11A63, 37A45

1 Introduction

Let q ∈ (1, 2) and Iq := [0, 1
q−1 ]. For each x ∈ Iq there exists a sequence (δi)

∞
i=1 ∈ {0, 1}N such that

x =

∞∑
i=1

δi
qi
.

The sequence (δi)
∞
i=1 is called a q-expansion for x. Without confusion, we simplify (δi)

∞
i=1 as (δi). It is

straightforward to show that a real number x has a q-expansion if and only if x ∈ Iq.

We now introduce some notation. The so-called coding map is defined to be Π : {0, 1}N → Iq where

Π((δi)) =

∞∑
i=1

δi
qi
. (1)

∗Corresponding author. E-mail:jianlu1979@163.com
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Throughout we let (ε1...εn)k denote the k fold concatenation of (ε1...εn) ∈ {0, 1}n, and similarly let

(ε1...εn)∞ denote the infinite concatenations of (ε1...εn). Given x ∈ Iq, let Σq(x) denote the set of all

q-expansions of x, that is

Σq(x) =
{

(δi) ∈ {0, 1}N : Π((δi)) = x
}
.

The cardinality of the set Σq(x) plays an important role in the investigation of representations of real

numbers in non-integer bases. It was shown in [11] that if q ∈ (1, 1+
√
5

2 ) then for each x ∈ (0, 1
q−1 )

there are 2ℵ0 different q-expansions. Sidorov showed in [18, 19] that if q ∈ (1, 2) then Lebesgue almost

every x ∈ (0, 1
q−1 ) has 2ℵ0 different q-expansions. Points belonging to Iq with a unique q-expansion

were investigated in [7, 15] for q ∈ ( 1+
√
5

2 , 2). Some results concerning x ∈ Iq having a fixed number of

q-expansions were established in [1, 3, 8, 9, 10, 20, 22].

Let m ∈ N ∪ {ℵ0} and define

Bm :=

{
q ∈

[
1 +
√

5

2
, 2

)
: there exits x ∈ Iq satisfying #Σq(x) = m

}
.

Here and hereafter #A denotes the cardinality of a set A. The following results are known to hold:

• minBℵ0 = 1+
√
5

2 [10].

• minB2 = q̌ ≈ 1.71064 (the positive root of x4 − 2x2 − x− 1 = 0) [20].

• minBk = qf ≈ 1.75488, k ≥ 3 (the positive root of x3 − 2x2 − 1 = 0) [3].

• B2 ∩ (q̌, qf ] = {qf} [3].

• The smallest element of Bℵ0 strictly greater than 1+
√
5

2 is q1(≈ 1.64541) (the positive root of

x6 − x4 − x3 − 2x2 − x− 1 = 0) [1].

Understanding the q-expansions of 1 is a classical problem, see [15, 16, 17] and the references therein.

The motivation of this paper is to provide a clearer understanding of what values #Σq(x) can take. Let

B1,m :=

{
q ∈

[
1 +
√

5

2
, 2

)
: #Σq(1) = m

}
.

It was shown in [16] that minB1,1 ≈ 1.78723 (the Komornik-Loreti constant). In [10] it was proved that

minB1,ℵ0 = 1+
√
5

2 . For any n ∈ (N \ {1}) ∪ {ℵ0}, Erdös and Joó [12, 13] constructed a continuum of real

numbers q ∈ [q0, 2) (q0 > 1.99803) for which the number 1 has precisely n q-expansions.

Motivated by the results listed above, a natural question arises: what is the second smallest point of

B1,ℵ0? In this paper we will answer this question.

Throughout this paper we let q1, q2, q3 be as follows: q1 ≈ 1.64541, q2 ≈ 1.65462 and q3 ≈ 1.68042,

which are the positive roots of x6−x4−x3−2x2−x−1 = 0, x6−2x4−x3−1 = 0 and x5−x4−x3−x+1 = 0,

respectively. Our main result is the following.

Theorem 1.1. The smallest element of B1,ℵ0 strictly greater than 1+
√
5

2 is q3.
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Enroute to proving this result we show the following.

Theorem 1.2. Bℵ0 ∩ ( 1+
√
5

2 , q3] = {q1, q2, q3}.

We remark that Bℵ0 ∩ ( 1+
√
5

2 , q1] = {q1} is known [1]. The following corollary is an immediate conse-

quence of Theorem 1.1, minB2 ≈ 1.71064 [21], minBk ≈ 1.75488 for k ≥ 3 [3], B2 ∩ (q̌, qf ] = {qf} [3],

and minB1,1 ≈ 1.78723 [16].

Corollary 1.3. If q ∈ (1, q3) \ { 1+
√
5

2 }. Then 1 has 2ℵ0 different q-expansions.

This paper is arranged as follows. Some definitions and results from [1] will be recalled in Section 2.

Some results from this paper will be extended to our setting. In Section 3 we prove Theorem 1.2. The

final section is devoted to the proof of Theorem 1.1.

2 Preliminaries

In this section we shall recall some definitions and results from [1]. An interpretation of q-expansions

from the perspective of dynamical systems was given in [1], see also [4, 5, 6]. Let Tq,0(x) = qx if x ∈

[0, 1
q2−q ], and let Tq,1(x) = qx− 1 if x ∈ [ 1q ,

1
q−1 ]. We see that if x ∈ Lq := [0, 1q ) or x ∈ Rq := ( 1

q2−q ,
1
q−1 ]

then only one Tq,i can be applied. However when x ∈ Sq := [ 1q ,
1

q2−q ], which is usually referred to as

the switch region, we have a choice between Tq,0 and Tq,1. An element of
⋃∞
n=0{Tq,0, Tq,1}n is denoted

by a, here {Tq,0, Tq,1}0 denotes the identity map. Moreover, if a = a1...an we shall use a(x) to denote

an(· · · (a1(x)) · · · ). Given x ∈ Iq we call a finite sequence of transformations a = a1...an minimal for x

if a(x) ∈ Sq and a|i(x) /∈ Sq for all i < n. Here a|i = a1...ai. We call a(x) a branching point of x if

a(x) ∈ Sq.

Define

Ωq(x) := {(ai)∞i=1 ∈ {Tq,0, Tq,1}N : an(· · · (a1(x)) · · · ) ∈ Iq for all n ∈ N}.

The set Ωq(x) is significant because #Σq(x) = #Ωq(x), where our bijection is given by mapping (δi) to

(Tq,δi), see [2].

Construction of the branching tree The branching tree was constructed in [1] to study Bℵ0 . We

now provide details of its construction. Suppose x ∈ Iq and Ωq(x) (or Σq(x) ) is infinite. There exists a

unique minimal a ∈
⋃∞
n=0{Tq,0, Tq,1}n such that a(x) ∈ Sq. Then there are two possibilities.

Case 1: There exists a unique i ∈ {0, 1} such that Ωq(Tq,i(a(x))) is finite and Ωq(Tq,1−i(a(x))) is infi-

nite. In this case, we draw a horizontal line of finite length that then bifurcates with an upper and lower

branch. The lower branch corresponds to Tq,i(a(x)) and stops bifurcating, the upper branch corresponds

to Tq,1−i(a(x)) and goes on bifurcating.

Case 2: Both Ωq(Tq,0(a(x))) and Ωq(Tq,1(a(x))) are infinite. In this case, we draw a horizontal line

of finite length that then bifurcates with an upper and lower branch. The lower branch corresponds to

Tq,0(a(x)), the upper branch corresponds to Tq,1(a(x)). Both of them go on bifurcating.
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If Ωq(Tq,i(a(x))) is infinite, as in Case 1 or Case 2, then there exists a unique minimal a′ ∈
⋃∞
n=0{Tq,0, Tq,1}n

such that point a′(Tq,i(a(x))) goes to Case 1 or Case 2 again. This procedure continues indefinitely. The

infinite tree we construct by repeating this process is known as the infinite branching tree corresponding

to x. Fig.1 illustrates the bifurcating procedure.

Figure 1: The flow chart of the bifurcating procedure corresponding to x ∈ Iq

A point x for which Σq(x) is infinite is said to be a q null infinite point if for each branching point of

x, a(x) never goes to Case 2. It is easy to check that if x is a q null infinite point then #Σq(x) = ℵ0.

The q null infinite points have a critical role in the proofs of the main results of [1].

Lemma A [1, Proposition 2.7] q ∈ Bℵ0 if and only if Iq contains a q null infinite point

Given minB2 = q̌ ≈ 1.71064, minBk = qf ≈ 1.75488 for k ≥ 3, and B2 ∩ (q̌, qf ] = {qf} we have that

if q ∈ ( 1+
√
5

2 , qf ) \ {q̌} and x is a q null infinite point, then for each branching point of x, a(x), we have

#Ωq(Tq,i(a(x))) = ℵ0 and #Ωq(Tq,1−i(a(x))) = 1. Which implies the following inclusion{
a(x) : a(x) ∈ Sq,a ∈

∞⋃
n=0

{Tq,0, Tq,1}n
}
⊆

1⋃
i=0

T−1q,i (Uq) ∩ Sq. (2)

Here Uq denotes the set of x ∈ Iq having a unique q-expansion.

Unfortunately, it is difficult to deal with the set Sq. However, by some deductions we can restrict

ourselves to a smaller set Jq := [ q+q
2

q4−1 ,
1+q3

q4−1 ] ⊆ Sq. Jq = Sq if and only if q = qf .

Lemma B [1, Lemma 3.1] Let q ∈ [ 1+
√
5

2 , qf ). Suppose x ∈ Iq satisfies #Σq(x) > 1, then there exists

a finite sequence of transformations a such that a(x) ∈ Jq. Here qf (≈ 1.75488) is the positive root of

x3 − 2x2 − 1 = 0.

Proposition 2.2 is devoted to characterizing the set
⋃1
i=0 T

−1
q,i (Uq)∩ Jq when q ∈ [q1, q3]. To prove this

proposition we need Lemma C and Lemma 2.1.
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Lemma C [14, Theorem 2] Let q ∈ ( 1+
√
5

2 , qf ). Then

Uq =

{
Π(0k(10)∞), Π(1k(10)∞), 0,

1

q − 1

}
.

Where k ≥ 0.

Set

yj = Π(01j(10)∞) and zj = Π(10j(01)∞)

for j ≥ 1. Here and hereafter we let (Sq \ Jq)L = [ 1q ,
q+q2

q4−1 ) and (Sq \ Jq)R = ( 1+q3

q4−1 ,
1

q2−q ].

Lemma 2.1. Let q ∈ [q1, q3]. Then the following hold:

(i) yj ∈ Jq if and only if zj ∈ Jq, and yj ∈ (Sq \ Jq)R if and only if zj ∈ (Sq \ Jq)L.

(ii) Tmq,0(Tq,1(yj)) ∈ Jq if and only if Tmq,1(Tq,0(zj)) ∈ Jq, and Tmq,0(Tq,1(yj)) ∈ (Sq \ Jq)R if and only if

Tmq,1(Tq,0(zj)) ∈ (Sq \ Jq)L;

(iii) Tmq,0(Tq,1(yj)) = yk if and only if Tmq,1(Tq,0(zj)) = zk, and Tmq,0(Tq,1(yj)) = zk if and only if

Tmq,1(Tq,0(zj)) = yk. Here j ≥ 1 and k ≥ 1.

Proof. Direct computation shows the following equations hold.

yj −
1 + q3

q4 − 1
= −zj +

q + q2

q4 − 1
, yj −

q + q2

q4 − 1
=

1 + q3

q4 − 1
− zj ,

1

q2 − q
− yj = zj −

1

q
, (3)

Tmq,0(Tq,1(yj))−
1 + q3

q4 − 1
= −Tmq,1(Tq,0(zj)) +

q + q2

q4 − 1
, (4)

Tmq,0(Tq,1(yj))−
q + q2

q4 − 1
=

1 + q3

q4 − 1
− Tmq,1(Tq,0(zj)),

1

q2 − q
− Tmq,0(Tq,1(yj)) = Tmq,1(Tq,0(zj))−

1

q
. (5)

(i) is implied by equation (3), and (ii) is implied by equations (4) and (5).

Simplifying Tmq,0(Tq,1(yj)) = yk and Tmq,1(Tq,0(zj)) = zk, we see that they are both equivalent to

(1 + 2q−1 − q − q−1−j − q−2−m − q−1−m + q−2−k−m)(q2 − 1)−1 = 0.

Similarly, simplifying Tmq,0(Tq,1(yj)) = zk and Tmq,1(Tq,0(zj)) = yk, we see that they are both equivalent

to

(−1− 2q−1 + q + q−1−j − q−2−m + q−2−k−m + q−m)(q2 − 1)−1 = 0.

Thus we obtain (iii).

Proposition 2.2. Let q ∈ [q1, q3]. Then we have

1⋃
i=0

T−1q,i (Uq) ∩ Jq = {yj , zj , 1 ≤ j ≤ 3} =
{

Π(01j(10)∞),Π(10j(01)∞), 1 ≤ j ≤ 3
}
,

1⋃
i=0

T−1q,i (Uq) ∩ (Sq \ Jq)R = {yj , j ≥ 4, 1/(q2 − q)} =
{

Π(01j(10)∞), j ≥ 4, 1/(q2 − q)
}
,

1⋃
i=0

T−1q,i (Uq) ∩ (Sq \ Jq)L = {zj , j ≥ 4, 1/q} =
{

Π(10j(01)∞), j ≥ 4, 1/q
}
.
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Proof. It follows from Lemma C that

1⋃
i=0

T−1q,i (Uq) =

{
Π(0j(10)∞),Π(01j−1(10)∞),Π(10j−1(10)∞),Π(1j(10)∞), 0,

1

q2 − q
,

1

q
,

1

q − 1

}
.

Here j ≥ 1. Then by some straightforward computation we have

1⋃
i=0

T−1q,i (Uq) ∩ Sq =

{
yj , zj , j ≥ 1,

1

q2 − q
,

1

q

}
. (6)

Next, we prove that

yj −
1 + q3

q4 − 1

 ≤ 0 when j < 4

> 0 when j ≥ 4
(7)

when q ∈ [q1, q3]. It suffices to show that

q−1 + q + q2 − q3 − q−1−j − q1−j
 ≤ 0 when j < 4

> 0 when j ≥ 4.
(8)

By noting that

yj −
1 + q3

q4 − 1
= (q−1 + q + q2 − q3 − q−1−j − q1−j)(q4 − 1)−1,

we see that (8) is equivalent to

ln
(q2 + 1)

−q4 + q3 + q2 + 1
(ln q)−1

 ≥ j when j < 4

< j when j ≥ 4.
(9)

The inequalities in (9) are true when q ∈ [q1, q3], since ln (q2+1)
−q4+q3+q2+1 (ln q)−1 is strictly increasing on the

interval [q1, q4], and ln
(q24+1)

−q44+q34+q24+1
(ln q4)−1 = 4 and ln

(q21+1)

−q41+q31+q21+1
(ln q1)−1 = 3. Here q4(≈ 1.69784) is

the positive root of x7−x5−x4−2x3−2x2−x−1 = 0. A direct computation shows that yj ∈ [ q+q
2

q4−1 ,
1

q2−q ]

for all j ≥ 1. This statement combined with (7) shows that yj ∈ Jq if 1 ≤ j ≤ 3 and yj ∈ (Sq \ Jq)R if

j ≥ 4. Using (i) of Lemma 2.1, we also have zj ∈ Jq if 1 ≤ j ≤ 3 and zj ∈ (Sq \ Jq)L if j ≥ 4. Our proof

now follows from (6).

3 Proof of Theorem 1.2

In this section we shall give a algorithm to find all elements of the set Bℵ0 ∩ [q1, q3]. Recall that

minB2 = q̌ ≈ 1.71064.

Theorem 3.1. Let q ∈ [q1, qf ) \ {q̌} and suppose
1⋃
i=0

T−1q,i (Uq) ∩ Jq is a finite set. Then q ∈ Bℵ0 if and

only if there exists w ∈
1⋃
i=0

T−1q,i (Uq) ∩ Jq satisfying the following two properties.

(i)There exist a finite sequence of transformations b ∈
⋃∞
n=0{Tq,0, Tq,1}n such that

b(w) = w.
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(ii) Let b be as above. Define

B(w) := {b|i : b|i(w) ∈ Sq, 1 ≤ i ≤ |b|}.

Then B(w) ⊂
1⋃
i=0

T−1q,i (Uq) ∩ Sq. Here |b| denotes the length of b.

Proof. We begin with the rightwards implication. Suppose q ∈ Bℵ0 . By Lemma A, there exists x ∈

(0, 1
q−1 ) such that x is a q null infinite point. Furthermore, we may assume x ∈

⋃1
i=0 T

−1
q,i (Uq) ∩ Jq by

Lemma B and equation (2). Repeatedly applying Lemma B and equation (2), there exist a1, ...,am ∈⋃∞
n=0{Tq,0, Tq1}n satisfying

ai(ai−1(...(a1(x))...)) ∈
1⋃
i=0

T−1q,i (Uq) ∩ Jq

for each 1 ≤ i ≤ m. Note that the set
⋃1
i=0 T

−1
q,i (Uq) ∩ Jq is finite. Therefore by the pigeonhole principle

for m sufficiently large, there must exist i, j ∈ N with 1 ≤ i < j ≤ m such that

aj(aj−1(...(a1(x))...)) = ai(ai−1(...(a1(x))...)). (10)

Set b = ai+1 · · ·aj , â = a1 · · ·ai and suppose â(x) = w, here w ∈
1⋃
i=0

T−1q,i (Uq) ∩ Jq. Then equation (10)

implies that

b(w) = w.

Since x is a q null infinite point so are all its branching points. Thus we have the second property.

To complete our if and only if it suffices to remark that (i) and (ii) imply that w is a q null infinite

point. So q ∈ Bℵ0 .

Now we search for all points belonging to Bℵ0 ∩ [q1, q3] by applying Theorem 3.1. Suppose x is a q null

infinite point and x ∈ Jq. First we point out that

1⋃
i=0

T−1q,i (Uq) ∩ Jq = {yj = Π(01j(10)∞), zj = Π(10j(01)∞), 1 ≤ j ≤ 3}

when q ∈ [q1, q3] by Proposition 2.2. By Theorem 3.1, we only need to consider the behavior of elements

of
1⋃
i=0

T−1q,i (Uq)∩ Jq under maps belonging to
⋃∞
n=0{Tq,0, Tq,1}n. Without loss of generality we only need

to consider the points yj , for 1 ≤ j ≤ 3 . We establish the following lemma.

Lemma 3.2. (i)If q ∈ [q1, q3] and y1 is a q null infinite point, then

Tq,1(y1) ∈ Lq, T jq,0(Tq,1(y1)) ∈ Lq, j = 1, 2, T 3
q,0(Tq,1(y1)) ∈

1⋃
i=0

T−1q,i (Uq) ∩ Jq (11)

(ii) If q ∈ [q1, q
′) then y2 is not a q null infinite point. If q ∈ [q′, q3] and y2 is a q null infinite point, then

Tq,1(y2) ∈ Lq, Tq,0(Tq,1(y2)) ∈ Lq, T 2
q,0(Tq,1(y2)) ∈

1⋃
i=0

T−1q,i (Uq) ∩ Jq. (12)

7



Here q′(≈ 1.66184) is the positive root of x5 − x3 − x2 − 2x− 2 = 0.

(iii)If q = q1 and y3 is a q null infinite point, then

Tq,1(y3) ∈ Lq, Tq,0(Tq,1(y3)) ∈
1⋃
i=0

T−1q,i (Uq) ∩ Jq. (13)

If q ∈ (q1, q3] and y3 is a q null infinite point, then q must be q3 or q′′(≈ 1.67365), the positive root of

x5 − 2x4 + x3 − x2 + x− 1 = 0.

Proof. Direct computation yields (i). We prove (ii) now. A simple computation yields

Tq,1(y2) ∈ Lq, Tq,0(Tq,1(y2)) ∈ Lq, T 2
q,0(Tq,1(y2)) ∈


[
q+q2

q4−1 ,
1+q3

q4−1

]
if q ∈ [q′, q3](

1+q3

q4−1 ,
1

q2−q

]
if q ∈ [q1, q

′).

Here q′(≈ 1.66184) is the positive root of x5 − x3 − x2 − 2x − 2 = 0. Thus we obtain (12). We now

assume y2 is q null infinite for some q ∈ [q1, q
′) and derive a contradiction. If y2 is a q null infinite point

for some q ∈ [q1, q
′) then T 2

q,0(Tq,1(y2)) ∈
1⋃
i=0

T−1q,i (Uq) ∩ (Sq \ Jq)R and it can be shown that

Tq,0(Tq,1(T 2
q,0(Tq,1(y2)))) ∈

1⋃
i=0

T−1q,i (Uq) ∩ Jq.

Therefore by Proposition 2.2 there exists s ∈
1⋃
i=0

T−1q,i (Uq) ∩ (Sq \ Jq)R = {yk, k ≥ 4, 1/(q2 − q)} and

u ∈
1⋃
i=0

T−1q,i (Uq) ∩ Jq such that

T 2
q,0(Tq,1(y2)) = s and Tq,0(Tq,1(T 2

q,0(Tq,1(y2)))) = u. (14)

We will show that this is not possible. That is y2 is not a q null infinite point when q ∈ [q1, q
′). In fact,

T 2
q,0(Tq,1(y2)) = s

means that

q5 − q4 − 2q3 + 2q + 1 = q−k.

That is

k =
− ln(q5 − q4 − 2q3 + 2q + 1)

ln q
.

The function − ln(q5 − q4 − 2q3 + 2q + 1)(ln q)−1 is strictly decreasing on the interval [q1, q
′). Table 1

therefore implies that the only possible value of k that may occur within the interval [q1, q
′) is k = 4. It

is not possible that s = 1/(q2 − q), since lim
k→∞

yk = 1/(q2 − q) and − ln(q5 − q4 − 2q3 + 2q + 1)(ln q)−1

is monotonic. Table 1 includes the values of q for which Tq,0(Tq,1(T 2
q,0(Tq,1(y2)))) ∈

1⋃
i=0

T−1q,i (Uq) ∩ Jq.

Inspecting Table 1 shows that there are no values of q for which both equations in (14) hold. Therefore

we may conclude (ii).
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Table 1: the values of q for y2

k q Polynomials

T 2
q,0(Tq,1(y2)) = yk 4 1.65027 x4 − x3 − x2 − x+ 1

5 1.63923 x6 − 2x4 − 2x3 + x+ 1

Tq,0(Tq,1(T 2
q,0(Tq,1(y2)))) = yk 1 1.65637 x5 − 2x3 − x2 − x− 1

2 1.64308 x5 − x4 − x3 − 1

3 1.63420 x7 − 2x5 − x4 − x2 − x− 1

Tq,0(Tq,1(T 2
q,0(Tq,1(y2)))) = zk 1 1.64114 x2 − x− 1

2 1.65363 x5 − 2x3 − x2 + 1

3 1.66065 x5 − x4 − x3 + 1

It remains to prove (iii). By direct computation, we have

Tq,1(y3) ∈ Lq, Tq,0(Tq,1(y3)) ∈


[
q+q2

q4−1 ,
1+q3

q4−1

]
if q = q1[

1
q ,

q+q2

q4−1

)
if q ∈ (q1, q3]

and we obtain (13). Furthermore if y3 is a q null infinite point for some q ∈ (q1, q3] then it is straightfor-

ward to show that

Tq,1(Tq,0(Tq,0(Tq,1(y3)))) ∈
1⋃
i=0

T−1q,i (Uq) ∩ Jq.

Moreover, there must exist s ∈
1⋃
i=0

T−1q,i (Uq) ∩ (Sq \ Jq)L = {zk, k ≥ 4, 1/q} and u ∈
1⋃
i=0

T−1q,i (Uq)
⋂
Jq

such that

Tq,0(Tq,1(y3)) = s and Tq,1(Tq,0(Tq,0(Tq,1(y3)))) = u. (15)

The equation Tq,0(Tq,1(y3)) = s means that

k =
− ln(1− q−1 + q2 + q3 − q4)

ln q
.

The function − ln(1− q−1 + q2 + q3 − q4)(ln q)−1 is strictly increasing on the interval (q1, q3) and

lim
q→q3

− ln(1− q−1 + q2 + q3 − q4)(ln q)−1 = +∞. (16)

Table 2 records the first few solutions of − ln(1 − q−1 + q2 + q3 − q4)(ln q)−1 = k. It is easy to show

that the case where s = 1/q is only possible when q = q3. In Table 2, we also list the q’s for which

Tq,1(Tq,0(Tq,0(Tq,1(y3)))) = u holds. By inspecting Table 2 and using the fact − ln(1 − q−1 + q2 + q3 −

q4)(ln q)−1 is increasing with q, we see that the only values of q for which both equations in (15) hold

simultaneously are q ≈ 1.67365 and when q = q3.

Table 3 lists the values of q for which equations (11-13, 15) hold true independently. In fact, it follows

from Lemma 3.2 and the symmetric property of yk and zk shown in Lemma 2.1 that equations in (11-13,

15) give all the possible values of q such that q ∈ Bℵ0 ∩ [q1, q3].
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Table 2: the values of q for y3

k q Polynomials

Tq,0(Tq,1(y3)) = zk 4 1.66041 x6 − x5 − x3 − x2 − 1

5 1.66883 x8 − x6 − x5 − 2x4 − x3 − x2 − x− 1

6 1.67365 x5 − 2x4 + x3 − x2 + x− 1

7 1.67644 x10 − x8 − x7 − 2x6 − x5 − x4 − x3 − x2 − x− 1

Tq,0(Tq,1(y3)) = q−1 1.68042 x5 − x4 − x3 − x+ 1

Tq,1(Tq,0(Tq,0(Tq,1(y3)))) = yk 1 1.68042 x5 − x4 − x3 − x+ 1

2 1.65963 x7 − 2x5 − x4 − x3 + x+ 1

3 1.64541 x6 − x4 − x3 − 2x2 − x− 1

Tq,1(Tq,0(Tq,0(Tq,1(y3)))) = zk 1 1.65462 x6 − 2x4 − x3 − 1

2 1.67365 x5 − 2x4 + x3 − x2 + x− 1

3 1.68400 x8 − 2x6 − x5 − x2 − x− 1

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. By applying Theorem 3.1 and Lemma 3.2, we can find all points belonging to

Bℵ0 ∩ [q1, q3] in Table 3. One can see from Table 3 that

Tq,0(Tq,1(y3)) = z3, Tq,1(Tq,0(z3)) = y3, Tq,1(Tq,0(Tq,0(Tq,1(y3)))) = y3,

when q1(≈ 1.64541), which is the positive root of x6 − x4 − x3 − 2x2 − x− 1 = 0,

T 3
q,0(Tq,1(y1)) = z1, T

3
q,1(Tq,0(z1)) = y1, T

3
q,0(T 4

q,1(Tq,0(z1))) = z1,

when q2(≈ 1.65462), which is the positive root of x6 − 2x4 − x3 − 1 = 0, and

T 3
q,0(Tq,1(y1)) = y1,

when q3(≈ 1.68042), which is the positive root of x5−x4−x3−x+ 1 = 0. So, the conditions in Theorem

3.1 are satisfied when q = q1, q2, q3, respectively. That is qj ∈ Bℵ0 for each 1 ≤ j ≤ 3.

Finally, it is easy to check that q /∈ Bℵ0 if q takes the values listed in Table 3, except when q = qj , 1 ≤

j ≤ 3. For example, we have

T 3
q,0(Tq,1(y1)) = y2

when q(≈ 1.65963) is the positive root of x5 − x4 − x3 − x + 1 = 0. However, there exists no point in
1⋃
i=0

T−1q,i (Uq)
⋂
Jq such that condition (i) of Theorem 3.1 holds for this value of q. The other values of q

are dealt with similarly. 2

4 Proof of Theorem 1.1

To prove Theorem 1.1 it suffices to prove 1 has ℵ0 q-expansions when q = q3 and 1 a continuum of

q-expansions when q = q1 and q = q2. We only prove the case of q = q1, the case of q = q2 can be verified

in a similar way.
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Table 3: the values of q for yk and zk, 1 ≤ k ≤ 3

k q Polynomials

T 3
q,0(Tq,1(y1)) = yk (or T 3

q,1(Tq,0(z1)) = zk) 1 1.68042 x5 − x4 − x3 − x+ 1

2 1.65963 x7 − 2x5 − x4 − x3 + x+ 1

3 1.64541 x6 − x4 − x3 − 2x2 − x− 1

T 3
q,0(Tq,1(y1)) = zk (or T 3

q,1(Tq,0(z1)) = yk) 1 1.65462 x6 − 2x4 − x3 − 1

2 1.67365 x5 − 2x4 + x3 − x2 + x− 1

3 1.68400 x8 − 2x6 − x5 − x2 − x− 1

T 2
q,0(Tq,1(y2)) = yk (or T 2

q,1(Tq,0(z2)) = zk) 1 1.72208 x4 − x3 − x2 − x+ 1

2 1.68929 x6 − 2x4 − 2x3 + x+ 1

3 1.6663 x6 − x5 − x4 − x3 + x2 + 1

T 2
q,0(Tq,1(y2)) = zk (or T 2

q,1(Tq,0(z2)) = yk) 1 1.67602 x5 − 2x3 − x2 − 1

2 1.7049 x5 − x4 − x3 − 1

3 1.72004 x7 − 2x5 − x4 − x2 − x− 1

Tq,0(Tq,1(y3)) = zk (or Tq,1(Tq,0(z3)) = yk) 3 1.64541 x6 − x4 − x3 − 2x2 − x− 1

Tq,0(Tq,1(y3)) = z6, Tq,1(Tq,0(z6)) = z2

(or Tq,1(Tq,0(z3)) = y6, Tq,0(Tq,1(y6)) = y2) 1.67365 x5 − 2x4 + x3 − x2 + x− 1

Tq,0(Tq,1(y3)) = 1/q, Tq,1(Tq,0(1/q)) = y1

(or Tq,1(Tq,0(z3)) = 1/(q2 − q) , Tq,0(Tq,1(1/(q2 − q))) = z1) 1.68042 x5 − x4 − x3 − x+ 1

Theorem 4.1. If q3(≈ 1.68042) is the positive root of x5 − x4 − x3 − x + 1 = 0. Then 1 is a q3 null

infinite point and therefore has ℵ0 q3-expansions.

Proof. It is straightforward to show that for all k ≥ 0

(T 3
q3,0 ◦ Tq3,1)k(Tq3,1(1)) ∈ Sq3 .

Moreover these are the only a ∈
⋃∞
n=0{Tq3,0, Tq3,1}n such that a(1) ∈ Sq3 . This is sufficient to imply that

1 is a q3 null infinite point . Namely that for each k ≥ 0 we have

Tq3,0

(
(T 3
q3,0 ◦ Tq3,1)k(Tq3,1(1))

)
= Π(1(10)∞).

Therefore

Σq3(1) =
{

1(103)k01(10)∞, 1(103)∞
}
.

Figure 2 demonstrates the construction of Σq3(1).

Theorem 4.2. Let q1(≈ 1.64541) be the positive solution of the equation x6− x4− x3− 2x2− x− 1 = 0.

Then 1 has 2ℵ0 q1-expansions.

Proof. We proceed via a proof by contradiction. We assume that 1 has ℵ0 q1-expansions and obtain a

contradiction. It is a simple calculation to show that

w := (T 5
q1,0 ◦ T

2
q1,1)(1) ∈ Sq1 .
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Figure 2: The construction of Σq3(1)

Therefore w has either ℵ0 q1-expansions or 2ℵ0 q1-expansions. Since we have assumed 1 has ℵ0 q1-

expansions, w must also have ℵ0 q1-expansions. Therefore w can be mapped to a q1 null infinite point,

and by Lemma C it can be mapped to a point with a periodic q1-expansion. The above implies that 1

has a q1 expansion that begins (1100000(δi)
∞
i=1) where (δi)

∞
i=1 is eventually periodic. This is obviously

equivalent to

1 =
1

q1
+

1

q21
+

1

q71

∞∑
i=1

δi
qi1
. (17)

Since (δi)
∞
i=1 is eventually periodic we may use properties of geometric series to deduce that (17) is

equivalent to

1 =
1

q1
+

1

q21
+
f(q1)

g(q1)
(18)

where f(x), g(x) ∈ Z[x]. Equation (18) is just an algebraic relation and so must also be satisfied by the

conjugates of q1, that is the other roots of x6− x4− x3− 2x2− x− 1 = 0. We now show that this cannot

be the case for a particular choice of conjugate, namely q∗1 ≈ −1.20458. Equation (18) is equivalent to

equation (17), so (17) must also hold with q1 replaced by q∗1 . We observe the following

1 =
1

q∗1
+

1

(q∗1)2
+

1

(q∗1)7

∞∑
i=1

δi
(q∗1)i

≤ 1

q∗1
+

1

(q∗1)2
+

1

(q∗1)7
q∗1

(q∗1)2 − 1

< 1.

Where the final strict inequality follows from a simple calculation. Thus we have our desired contradiction.

The proof that q2 /∈ B1,ℵ0 is done analogously. In this case we similarly use a conjugate of q2, namely

the number q∗2 ≈ −1.26493.
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