Predicting sizes of hexagonal and gyroid metal nanostructures from liquid crystal templating

[thumbnail of AMS Nov 15 - Asghar_ACSNano_2015.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Asghar, K. A., Rowlands, D. A., Elliott, J. M. orcid id iconORCID: https://orcid.org/0000-0001-7469-4154 and Squires, A. M. (2015) Predicting sizes of hexagonal and gyroid metal nanostructures from liquid crystal templating. ACS Nano, 9 (11). pp. 10970-10978. ISSN 1936-086X doi: 10.1021/acsnano.5b04176

Abstract/Summary

We describe a method to predict and control the lattice parameters of hexagonal and gyroid mesoporous materials formed by liquid crystal templating. In the first part, we describe a geometric model with which the lattice parameters of different liquid crystal mesophases can be predicted as a function of their water/surfactant/oil volume fractions, based on certain geometric parameters relating to the constituent surfactant molecules. We demonstrate the application of this model to the lamellar (LR), hexagonal (H1), and gyroid bicontinuous cubic (V1) mesophases formed by the binary Brij-56 (C16EO10)/water system and the ternary Brij-56/hexadecane/water system. In this way, we demonstrate predictable and independent control over the size of the cylinders (with hexadecane) and their spacing (with water). In the second part, we produce mesoporous platinum using as templates hexagonal and gyroid phases with different compositions and show that in each case the symmetry and lattice parameter of the metal nanostructure faithfully replicate those of the liquid crystal template, which is itself in agreement with the model. This demonstrates a rational control over the geometry, size, and spacing of pores in a mesoporous metal.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/46789
Identification Number/DOI 10.1021/acsnano.5b04176
Refereed Yes
Divisions Interdisciplinary centres and themes > Chemical Analysis Facility (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher American Chemical Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar