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MODEL ENDGAME ANALYSIS 

G.McC. Haworth, R.B. Andrist 
guy_haworth@hotmail.com; rba_schach@gmx.ch 

Abstract A reference model of Fallible Endgame Play has been implemented and exer-
cised with the chess engine WILHELM. Various experiments have demonstrated 
the value of the model and the robustness of decisions based on it. Experimen-
tal results have also been compared with the theoretical predictions of a 
Markov model of the endgame and found to be in close agreement. 

Keywords: chess, endgame, experiment, fallibility, Markov, model, theory 

1. Introduction 

In Haworth (2003), a reference model of fallible endgame play was de-
fined in terms of a spectrum of Reference Endgame Players (REPs) Rc. The 
REPs are defined as choosing their moves stochastically, using only succes-
sor positions’ values and depths from an endgame table (EGT). Exploring 
here the parameters of the model and various opponent-sensitive uses of the 
REPs including choice of move, we report on: 
a) the robustness of decisions based on the model,  
  given that various parameters of the model may be changed, 
b) the apparent competence of reference player R20 in an R20 - R∞ match,  
c) the distribution of game lengths in that match versus Markov theory,  
d) the probability of beating a 50-move draw claim versus Markov theory, 
e) the apparent competence of carbon and silicon players over the board. 

In Section 2, we revisit the basic concepts and theory of the REP model, 
while in Section 3, we describe the REP implementation in WILHELM (An-
drist, 2003). In Sections 4 to 7, we focus on the five topics above. Section 8 
summarises and notes some questions arising from this work. 
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2. The Reference Endgame Player Model 

A nominated endgame, e.g., chess’ KQKR, is considered to be a system 
with a finite set of states {si} numbered from 0 to ns-1.1 Each state s(val, d) 
is an equivalence class of positions of the same theoretical value val and 
depth d. Higher-numbered states are assumed to be less attractive to the side 
to move, which is taken to be White. Thus, for KQKR with the DTC2 metric, 
we have maxDTCs (1-0) nw =31, (0-1) nB = 3, and ns = 37 states in total: 

– si, i = 0: a 1-0 win, i.e., for White, not requiring a winner’s move3,  
– si, 1 ≤ i ≤ 31: 1-0 wins of depth i, 
– si, i = 32: theoretical draw, either in the endgame or a subgame, 
– si, 33 ≤ i ≤ 35: 0-1 wins, i.e., for Black, of depth 36-i 
– si, i = 36: a 0-1 win not requiring a winner’s move. 

The REP Rc in position P chooses stochastically from moves which each 
have a probability proportional to a Preference4, Sc(vals, ds), where s is the 
move’s destination state with theoretical value vals and win/loss depth ds. 
Each move-choice by Rc is independent of previous move-choices.  

We require that {Rc} is a spectrum of players, ranging linearly from the 
metric-infallible player R∞ via the random player R0 to the anti-infallible 
player R-∞. To ensure this, the function Sc(val, d) is required to meet some 
natural criteria, as described more fully and formally in Haworth (2003) and 
in Appendix B. 

Here, we choose, as an Sc(val, d) function meeting those criteria: 

Sc(win, d) ≡ (d + κ)-c with κ > 0 to ensure that Sc is finite, 
Sc(draw) ≡ Sc(win, n1) ≡ Sc(loss, n2) with n1 > nW and n2 > nB, 
Sc(loss, d) ≡ λ⋅(d + κ)c, λ being defined by n1 and n2 above. 

This ensures, as required, that R0 prefers no move to any other, that Rc 
with c > 0 prefers better moves to worse moves, and that as c→∞, the Rc in-
crease in competence and tend to infallibility in terms of the chosen metric. 

Although the Rc have no game-specific knowledge, the general REP 
model allows moves to be given a prior, ancillary, weighting vm based on 
such considerations (Jansen, 1992). Thus, vm = 0, as used in this paper, pre-
vents a move being chosen and vm > 1 makes it more likely to be chosen.  

The probability Tc(i) of moving to state si is therefore: 

Tc(i) ≡ Sc(si)⋅∑moves_to_state_i vm / ∑all_moves vm⋅Sc(smove) 

 
1 For convenience, Appendix A summarises the key acronyms, notation, and terms. 
2 DTC ≡ DTC(onversion) ≡ Depth to Conversion, i.e., to mate and/or change of material. 
3 i.e., mate, achieved conversion to won subgame, or loser forced to convert on next move. 
4 For convenience and clarity, the Preference Function Sc(vals, ds) may be signified by the 

more compact notations Sc(val, d) or merely Sc(s) if the context allows. 
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3. Implementing the REP Model 

The second author has implemented in WILHELM (Andrist, 2003) a sub-
set of the REP model which is sufficient to provide the results of this paper. 

Ancillary weightings vm are restricted to 1 and 0. vm = 0 is, if relevant, 
applied to all moves to a state s rather than to specific moves: it can be used 
to exclude moves losing theoretical value, and/or to emulate a search horizon 
of H moves, within which a player will win or not lose if possible. 

WILHELM offers five agents based on the REP model: these are, as de-
fined below, the Player, Analyser, Predator, Emulator, and Predictor. A 
predefined number of games may be played between any two of WILHELM, 
Player, Predator, Emulator and an infallible player with endgame data. 
WILHELM also supports the creation of Markov matrices, see Section 5. 

3.1 The Player 

The Player is an REP Rc of competence c, and therefore chooses its 
moves stochastically using a validated (pseudo-)random number generator in 
conjunction with the function Sc(val, d) defined earlier. 

3.2 The Analyser 

Let us imagine that an unknown fallible opponent is actually going to 
play as an Rc with probability p(d)⋅δx that c ∈ (x, x + δx):  ∫ p(x)dx = 1. 

The Analyser attempts to identify the actual, underlying c of the Rc which 
it observes. For computational reasons, the Analyser must assume that c is a 
value from a finite set {cj} and that c = cj with initial probability pc0,j.  

Here, the cj are regularly spaced in [cmin, cmax] as follows: 

cmin = c1, cj = c1 + (j-1)⋅cδ and cmax = c1 + (n-1)⋅cδ, i.e. c = cmin(cδ)cmax. 

The notation c = cmin(cδ)cmax is used to denote this set of possible values 
c. The initial probabilities pc0,j may be 1/n, the usual ‘know nothing’ uniform 
distribution, or may be based on previous experience or hypothesis. They are 
modified, given a move to state snext, by Bayesian inference: 

Tj(next) = Prob[move to state snext | c = cj], and 
pci+1,j = pci,j⋅Tj(next) / ∑k [pci,k⋅Tk(next)]. 

Thus, the new Expected[c] = ∑j pci+1,j⋅cj.  

In Subsection 4.1, we investigate what values should be chosen for the 
parameters cmin, cδ and cmax so that the errors of discrete approximation are 
acceptably small. 
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3.3 The Predator 

On the basis of what the Predator has learned from the Analyser about its 
opponent, it chooses its move to best challenge the opponent, i.e., to opti-
mise the expected value and depth of the position after a sequence of moves. 
As winning attacker, it seeks to minimise expected depth; as losing defender, 
it seeks to maximise expected depth. In a draw situation, it seeks to finesse a 
win. 

Different moves by the Predator create different sets of move-choices for 
the fallible opponent. These in turn lead to different expectations of theoreti-
cal value and depth after the opponent’s moves. 

The predator implementation in WILHELM chooses its move on the basis 
of only a 2-ply search. It may be that deeper searches will be worthwhile, 
particularly in the draw situation. 

3.4 The Emulator 

The Emulator Ec is conceived as a practice opponent with a ‘designer’ 
level of competence tailorable to the requirements of the practising player. 
An REP Rc will exhibit an apparent competence c' varying, perhaps widely, 
above and below c because it chooses its moves stochastically. In contrast, 
the Emulator Ec chooses a move which exhibits to an Analyser an apparent 
competence c" as close to c as possible. 

The reference Analyser is defined as initially assuming the Emulator is 
an Rx, x = 0(1)2c, where x = xj with initial probability 1/(2c+1). 

The Emulator Ec therefore opposes a practising player with a more con-
sistent competence c than would Rc, albeit with some loss of variety in its 
choice of moves. The value c can be chosen to provide a suitable challenge 
in the practice session.  

The practising player may also have their apparent competence assessed 
by the Analyser. 

3.5 The Predictor 

The Predictor is advised of the apparent competence c of the opponent. It 
then predicts how long it will take to win, or what its chances are of turning 
a draw into a win, using data from an Analyser and from a Markov model of 
the endgame. This model is defined in Section 5. 
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4. Robustness of the Model 

The two famous Browne-BELLE KQKR exhibition games have already 
been studied using the REP model (Haworth, 2003). Browne’s apparent 
competence c was assessed by an Analyser, and BELLE’s moves as Black 
were compared with the decisions of a Predator using the Analyser’s output. 

In that analysis, the following six choices were made: 
– cmin = 0, cδ = 1, cmax = 50; all cj were deemed equally likely, 
– κ = 0+ (i.e., arbitrarily small, effectively zero) and metric = DTC. 

The following question therefore arises: to what extent are the conclu-
sions of the Analyser and the choices made by the Predator affected by these 
six choices? Our first studies addressed this question. 

4.1 The Effect of Numerical Approximation 

Browne-BELLE game 1 was first reanalysed, this time with κ = 1, and: 
cmin = 0, cmax = 50 and cδ in turn set to 0.01, 0.1, 1, 2, 5 and 10. 
Figure 1 takes the Analyser with cδ = 0.01 as a benchmark, and shows 

how the choice of cδ affected the Analyser’s inferences during play. 
It may be shown the Analyser’s Bayesian calculation is a discrete ap-

proximation to a calculable integral: the theory of integration therefore guar-
antees that this calculation will converge as cδ → 0. We judge that the error 
is ignorable with cδ = 1 and that no smaller cδ is needed. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.    Differences in c-estimation, relative to the cδ = 0.01 estimate. 
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Figure 2.   Differences in c-estimation, relative to the cmax = 100 estimate. 

 
The analysis of the game was then repeated with: 

cδ = 1, cmin = 0 and cmax in turn set to 100, 90, 80, 70, 60, 50, 40 and 30. 

Again, intuitively, we would expect the error introduced by a finite cmax 
to reduce as cmax→∞. Figure 2 shows that this is indeed the case and that, 
with Browne’s apparent c ≈ 20, cmax = 50 is conservative enough. However, 
it may need to be larger for easier endgames. 

We assume that our opponent has positive apparent competence c and 
that the Analyser is correct in taking cmin = 0 as a lower bound on c. 

4.2 The Effect of κ 

Given the requirements on Sc(val, d), it may be shown5 that, as κ in-
creases, Rc progressively loses its ability to differentiate between better and 
worse moves, that Rc’s expectation of state and theoretical value do not im-
prove and that Rc → R0. Thus, for a given set of observations, if the Analyser 
assumes a greater κ, it will infer an increasing apparent competence c. 

In this paper, we choose a fixed κ = 1 throughout, as it were, recognising 
the next move in the line contemplated. We have not tested the effect of dif-
ferent κ on a Predator’s choices of move, but assume it is not great. There 
seems little reason to choose one value of κ over another. 

 
5 The proof is by elementary algebra and in the style of Theorem 3 (Haworth, 2003). 
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4.3 The Effect of the Initial Probability Assumption 

The usual, neutral, initial stance is a know nothing one, assuming that c is 
uniformly distributed in a conservatively-wide interval [cmin, cmax]. However, 
it is clear that had BELLE been using the REP model, it could have started 
game two with its perception of Browne as learned from game one, just as 
Browne started that game with his revised perception of KQKR. Also, one 
might have a perception of the competence c likely to be demonstrated by 
the opponent with the given endgame force – and choose this to be the mid-
point of a [cmin, cmax] range with a normal distribution. 

Bayesian theory, see Subsection 3.2, shows that the initial, assumed non-
zero probabilities continue to appear explicitly in the calculation of subse-
quent, inferred probabilities. We therefore conclude that initial probabilities 
have some effect on the inferred probabilities. 

4.4 The Effect of the Chosen Metric 

The metric Depth to Conversion (DTC) was chosen because conversion 
is an obvious intermediate goal in most positions. The adoption of DTC is 
however a chessic decision. 

Our analysis of the Browne-BELLE games shows that the Predator would 
never have made a DTC-suboptimal move-choice for Black. It is reasonable 
to assume that, had DTM(ate) been the chosen metric, it would never have 
chosen a DTM-suboptimal move. 

However, different metrics occasionally define different subsets of 
moves as metric-optimal. Where this occurs, the Predator might well choose 
a different move in its tracking of the Browne-BELLE games. 

5. A Markov Model of the Endgame 

Let us assume that the Preference Function Sc(val, d) is fixed, e.g., as the 
function defined here with κ = 1. 

Given a position P in state si, we can calculate the probability of Rc 
choosing move m to some position P' in state sj. We may therefore calculate 
the probability, Tc(j) of moving from position P to state sj. Averaging this 
across the endgame over all such positions P in state si, we may derive the 
probability mi,j of a state transition si → sj assuming initial state si. 

The {mi,j} define a Markov matrix Mc = [mi,j] for player Rc. This matrix, 
and the predictions which may be derived from it, provide a characterisation 
of the endgame as a whole. 

Let us assume that the initial position is 1-0, in state si, and that Rc does 
not concede the win. From the matrix, we may derive predictions such as: 
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– the probability of Rc winning on or before move m, 
– the expected number of moves required for Rc to achieve the win. 
  this is Li in the solution of (I – Mc)⋅L = U6, q.v. (Haworth, 2003).  
 These theoretical predictions have been computed and are compared with 
the results of the extensive experiment described in the next section. 

6. An Experiment with R20 

Echoing Browne-BELLE, a model KQKR match was staged between the 
fallible attacker R20 and the infallible defender R∞. It was assumed that R20 
would not concede the win but eventually secure it as theory predicts. The 
game-specific repetition and 50-move drawing rules were assumed not to be 
in force. Table 1 summarises the results of this experiment. 

1,000 games were played from each of the two maxDTC KQKR posi-
tions used in the Browne-BELLE match. Games ended when conversion was 
achieved by White. The purpose of the experiment was to observe: 
– the distribution of the c inferred by an Analyser7 at the end of each game 
  with the assumed probability of ci set to 1/51 at start of each game, 
– the distribution of the lengths of the games, and 
– the trend in the Analyser’s inferred c, ignoring game-starts after the first. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1.    Statistical Analysis of the 2,000-game experiment. 
 
 

 
6 I is the Identity matrix; U is a vector where each element is the unit ‘1’. 
7 using cmin = 0, cδ = 1 and cmax = 50 as found adequate in Section 4.1. 

KQKR:  R20 - R∞ Position 1 Position 2 Overall

Min., end-of-game apparent c 15.06 14.73 14.73
Max., end-of-game apparent c 35.66 40.71 40.71
Mean, end-of-game apparent c 21.318 21.620 21.469
St. Dev., end-of-game apparent c 3.345 3.695 3.524
St. Dev of the Mean apparent c 0.106 0.117 0.079
|Mean c  - 20|/Stdev_mean 12.43 13.85 18.59
Min. moves, m , to conversion 37 37 37
Maximum moves, m 395 325 395
Mean moves, m 96.88 94.31 95.60
St. Dev., m 102.951 102.273 102.587
St. Dev., mean of m 3.256 3.234 2.294
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6.1 R20’s Apparent c after One Game 

Figure 3 shows the distribution of the apparent c as inferred at the end of 
each, single game: the mean c is 21.50 ± 0.088. This rather surprised us, be-
ing more distant from the actual c = 20 than expected. The reason is that the 
mean of {end-of-game estimated c} is not statistically the best way to esti-
mate the underlying c, a task we revisit in Subsection 6.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.    Distribution of apparent c as inferred after one game. 

6.2 Game-Length Statistics 

Starting from the two positions with (maximum) DTC depth 31, and 
taken over the 2,000 games, the mean number of moves required for conver-
sion is 95.60 ± 2.29. Figure 4 shows the distribution of the experiment’s 
game lengths in comparison with the predictions of the Markov model. 

Figure 5 shows the Markov-model predictions for the expected number 
of moves to conversion, for c = 20, 21, and 22 and starting at any depth. 
Note that it shows that the main barriers to progress seem to be between 
depths 17 and 26 rather than at the greatest depths.  

From depth 31, the moves predicted are 97.20 for c = 20, 83.70 for c = 21 
and 74.16 for c = 22. The experimental results are therefore in close agree-
ment with these predictions, indicating a c of ~20.1. 

 
8 Mean end-of-game apparent c is still 21.04 when the Analyser’ cmax is 30 rather than 50. 
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Figure 4.    Distribution of game lengths in the Rc-R∞ KQKR match. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.    Expected[moves to conversion in an Rc-R∞ KQKR game]. 
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Figure 6 gives these probabilities for c = 20, 21, and 22 and for all initial 
depths. For c = 20 and initial depth 31, this is 12.67%, a figure reached after 
55 moves in the 2,000 game experiment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.    Probability[Rc wins an Rc-R∞ KQKR game in 50 moves]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Analyser error in c-estimate versus number of games analysed. 
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6.4 Analysing Rc’s competence c 

The mean of the 2,000 end-of-game apparent c values is not actually the 
best estimate of Rc’s underlying c. 

The reason is that the 2,000 games may be seen as some 191,200 inde-
pendent move-choices by the Rc. There is no need to associate the know 
nothing uniform distribution probabilities with the possible cj more than 
once. In fact, to do so is to interrupt the Bayesian inference processor of the 
Analyser and to negate what the Analyser has learned from previous games 
about the non-uniform distribution of probabilities of the candidate cj. 

Figure 7 shows the Analyser’s perception of c approaching the correct 
value of 20 as it works through the 2,000 games. Even starting with an esti-
mate of c = 25, it is accurate to 0.1 after examining 6,000 moves.  

7. Apparent Competence of Players 

The apparent competence of both carbon and silicon players has been 
calculated for some published games. The initial assumptions differed 
slightly from those of Haworth (2003): here, WILHELM was set to analyse 
with candidate c = 0 (0.01) 50 and κ = 1 and the results are listed in Table 2, 
showing depth conceded by both sides, net progress and apparent c. 

Some background to the games may help put the figures in context. The 
two Browne-BELLE games (Fenner, 1979; Haworth, 2003; Jansen, 1992a; 
Levy and Newborn, 1991) are the famous demonstration that the ‘easy’ 
KQKR endgame is not so easy to win. Gelfand-Svidler was a tie-breaker 
rapid-play game played under extreme time pressure. Pinter-Bronstein has 
been extensively analysed by Roycroft (1988). Timman consulted exten-
sively in a prior adjournment (Breuker et al, 1992). FRITZ (Heise, 2002) 
played itself with only 3-to-4-man EGTs in an Intel-AMD duel. Lengyel lost 
the draw three times before our analysis begins (Levy, 1972a,b, 1992). 

 
 
 
 
 
 
 
 
 
 
 
Table 2.    Apparent Competence of Players. 

 #m depth
# Profile White Black Res. Year Wh. Bl. gain Wh. Bl.

1 KQKR Browne BELLE 1 = 1978 45 27 0 18 19.5 ∞
2 KQKR Browne BELLE 2 1-0 1978 50 19 0 31 18.4 ∞
3 KRKQ Gelfand Svidler = 2001 50 37 79 8 3.5 4.1
4 KNKBB Pinter Bronstein = 1977 50 60 95 14 5.9 15.4
5 KBBKN Popovich Korchnoi = 1984 31 74 45 1 8.1 6.6
6 KBBKN Timman Speelman 1-0 1992 25 36 44 33 15.0 7.6
7 KNKBB FRITZ FRITZ = 2002 49 169 210 8 2.9 3.2
8 KQKQN Lengyel Levy 0-1 1972 14 7 16 5 4.2 2.8

depth lost Final c
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Even after noting that the values c are not necessarily the player’s true 
equivalent c, and are meaningful only in relative rather than absolute terms, 
the performances of Browne and Timman stand out. FRITZ trades major 
depth with its clone-opponent and clearly misses the withheld perfect infor-
mation. The time constraints of Rapid Play, and even third-phase 30'/game 
play in classical chess, mitigate against quality endgame play – arguably a 
loss to the world of chess. 

8. Summary 

We have examined the utility of a reference model of Fallible Endgame 
Play by both experiment and theory, using both a comprehensive REP im-
plementation in WILHELM and Markov methods. Various demonstrations 
have shown opportunities for exploiting the model, and the robustness of 
decisions based on it. Experimental results have also been compared with the 
Markov predictions, with which they agree closely. 

Experiments which remain to be carried out include: 

– infallible White attacking fallible Black in a drawn position 
  e.g., in KBBKN, KNNKP, KNPKN, KQNKQ, KQPKP, or KRBKR, 
– infallible Black pressing for a draw in a lost position 
  this requires additional EGT data on draws forced in d moves, 
– a more insightful Predator searching more than 2p plies ahead, and 
– use of the Emulator as a training partner for human players.  

The REP model may be extended to other games where EGTs may be 
computed – to convergent games such as Chinese Chess, 8×8 checkers, In-
ternational Draughts, and in principle if not in practice, to divergent place-
ment games such as Hex and Othello. 

If a search method can propose what it considers the best few moves in a 
position, each evaluated on an identical basis and therefore comparable, the 
concept of a stochastic player may be applied more generally than to just 
endgames for which perfect information is available. 
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Appendix A: Acronyms, Notation and Terms 

Analyser  an agent identifying a fallible opponent as an Rc player   
c    the competence index of an REP 
cδ    the difference between adjacent ci assumed by the Analyser 
cmax   the maximum c assumed possible by the Analyser 
cmin   the minimum c assumed possible by the Analyser 
d    the depth (of win or loss) of a position in the chosen metric, e.g. DTC 
DTC   Depth to Conversion, i.e. to change of material and/or mate 
DTM   Depth to Mate 
Emulator  an agent, Ec, choosing moves to best exhibit apparent competence c 
Horizon  a search limit, within which Rc will win or not lose if possible 
κ    κ > 0 ensures that (d + κ)-c is finite 
λ    a scaling factor, matching the probability of loss to that of a draw 
Li    expected length of win (to conversion in winner’s moves) from depth i 
maxDTC  maximum DTC (depths) 
Mc    a Markov matrix [mi,j] 
mi,j    the probability, averaged over the endgame, that Rc in state si moves to sj 
metric   a measure of the depth of a position, usually in winner’s moves 
n    the number of different ci assumed by an Analyser 
n1    n1 > nW, ensures that draws are less preferable than wins 
n2    n2 > nB, ensures that draws are more preferable than losses 
nB    the number of ‘Black win’ states  
nW    the number of ‘White win’ states 
ns    the number of states for a chosen endgame and depth metric 
p(x)⋅δx  the probability that Rc’s c ∈ [x, x + δx] 
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pc0,j   the a priori (before a move) probability that the unknown c is cj 
pci,j   the probability, inferred after the ith move, that the unknown c is cj 
Player   an Rc, choosing its moves stochastically with Preference Function Sc 
Predator  an agent, choosing the best move possible on the basis of an opponent-model 
Predictor  an agent predicting the longer term prospects of a result from Markov theory 
REP   Reference Endgame Player 
R0    the REP which prefers no move to any other 
Rc    an REP of competence c 
R∞    the player which plays metric-optimal moves infallibly 
s    endgame state 
si    (endgame) state i 
Sc(vals, ds) the Preference Function for REP Rc, a function of destination value and depth 
Sc(val, d)  a convenient contraction of Sc(vals, ds) 
Sc(s)   a more convenient contraction of Sc(vals, ds) 
Tc(i)   the probability that Rc moves to state i, si 
val    the theoretical value of a position, i.e., win, draw or loss 
vm    a weighting that may be given to a move on chessic grounds 

Appendix B: Preference Functions 

We require that the set {Rc} is in fact a linear, ordered spectrum of Rc players such that: 

- for R0, all moves are equally likely, 
- ‘R∞’ ≡ limc→∞ Rc exists and is the infallible player choosing metric-optimal moves, 
- ‘R-∞’ ≡ limc→-∞ Rc exists and is the anti-infallible player choosing anti-optimal moves, 
- c2 > c1 ⇒ Rc2’s expectations of successor state, i.e. E[s], are no worse than Rc1’s, 
- c2 > c1 ⇒ Rc2’s expectations of theoretical value, i.e. E[vals], are no worse than Rc1’s. 
 
The following requirements on Sc(val, d) ≡ Sc(s) are natural ones and sufficient to ensure 
the above, as proved in Haworth (2003): 

- Sc(s) is finite and positive: no move has zero or infinite preference for finite c,9 
- S0(s) is a constant, 
- for some n1 > nW and n2 > nB, Sc(draw) = Sc(win, n1) = Sc(loss, n2), 
- Fj(c) ≡ Sc(si+1)/ Sc(si) decreases as c increases: lim c→∞ Fj(c) = 0 and lim c→-∞ 1/Fj(c) = 0, 
- for c ≠ 0, sign(c)⋅Sc(sj) decreases (↓) as j increases (↑), 
- for c > (<) 0, Wc(d) = Sc(win, d)/ Sc(win, d+1) ↓ (↑) as d ↑ and limd→∞ Wc(d) = 1, 
- for c > (<) 0, Lc(d) = Sc(loss, d+1)/ Sc(loss, d) ↓ (↑) as d ↑ and limd→∞ Lc(d) = 1. 
 
The net effect is that: 

- the spectrum of Rc is centred as required on the random player, R0, 
- the Rc with c > 0 prefer better moves to worse moves, 
- the Rc demonstrate increasing apparent skill as c → ∞, 
- Rc can be arbitrarily close to being the metric-infallible player for finite c 
- as d→∞, Rc discriminates less between a win (or loss) of depth d and one of depth d+1. 

 
9 Hence the requirement that κ > 0, to accommodate the case of d = 0 in (d + κ)-c. 


