
Scalability of efficient parallel K-Means 
Conference or Workshop Item 

Published Version 

Pettinger, David and Di Fatta, Giuseppe (2009) Scalability of 
efficient parallel K-Means. In: 5th IEEE International 
Conference on E-Science Workshops, 2009, 9-11 Dec. 2009, 
Oxford, United Kingdom, pp. 96-101. doi: 
https://doi.org/10.1109/ESCIW.2009.5407991 Available at 
https://centaur.reading.ac.uk/4499/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1109/ESCIW.2009.5407991 
To link to this article DOI: http://dx.doi.org/10.1109/ESCIW.2009.5407991 

Publisher statement: "©2009 IEEE. Personal use of this material is permitted. 
However, permission to reprint/republish this material for advertising or 
promotional purposes or for creating new collective works for resale or 
redistribution to servers or lists, or to reuse any copyrighted component of this 
work in other works must be obtained from the IEEE." 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Scalability of Efficient Parallel K-Means

David Pettinger and Giuseppe Di Fatta
School of Systems Engineering

The University of Reading
Whiteknights, Reading, Berkshire, RG6 6AY, UK
{D.G.Pettinger,G.DiFatta}@reading.ac.uk

Abstract

Clustering is defined as the grouping of similar items in
a set, and is an important process within the field of data
mining. As the amount of data for various applications
continues to increase, in terms of its size and dimension-
ality, it is necessary to have efficient clustering methods. A
popular clustering algorithm is K-Means, which adopts a
greedy approach to produce a set of K-clusters with asso-
ciated centres of mass, and uses a squared error distortion
measure to determine convergence. Methods for improving
the efficiency of K-Means have been largely explored in two
main directions. The amount of computation can be signif-
icantly reduced by adopting a more efficient data structure,
notably a multi-dimensional binary search tree (KD-Tree)
to store either centroids or data points. A second direction
is parallel processing, where data and computation loads
are distributed over many processing nodes. However, lit-
tle work has been done to provide a parallel formulation of
the efficient sequential techniques based on KD-Trees. Such
approaches are expected to have an irregular distribution of
computation load and can suffer from load imbalance. This
issue has so far limited the adoption of these efficient K-
Means techniques in parallel computational environments.
In this work, we provide a parallel formulation for the KD-
Tree based K-Means algorithm and address its load balanc-
ing issues.

1. Introduction

Clustering [1] is a key process in the field of data mi-
ning, alongside classification, regression, association rule
learning and others. Unlike classification, which arranges
the data into predefined groups, clustering does not use pre-
defined groups. The aim of clustering is to ascertain the
most appropriate groupings of the input data. Furthermore,
compared to classification, clustering is an unsupervised
task, requiring no overseer, or overseeing process. Clus-

tering works on the principle that in a given dataset, certain
points can be considered similar, but different from other
collections of points. Clustering can be defined by a need to
minimise the intra-cluster distances, whilst simultaneously
maximising inter-cluster distances.

One of the more popular methods of partitional cluster-
ing is K-Means. The K-Means algorithm is an iterative
refinement process, where at each iteration the clustering
assignments are updated, consequently changing the defi-
nition of the clusters. K-Means is a type of mean-squared
error clustering, which uses a distortion measure to deter-
mine a convergence to a final result, and is classified as
a variance-based clustering algorithm. The function of K-
Means is to determine a set of K points, called centres or
centroids, so as to minimise the mean squared distance from
each data point to its nearest centre [10]. Naive K-means,
often referred to as a ‘brute force’ approach, performs a
‘nearest neighbour’ query for each of the data points that
are contained within the entire dataset.

A way to improve K-Means is to use multi-dimensional
binary search trees (KD-Trees) [11], which allow very ef-
ficient nearest neighbour searches. KD-Trees have shown
an average running time of O(log n) for nearest neighbour
queries [4]. A KD-tree is a binary tree, where each node
is associated with a disjoint subset of the data. A KD-Tree
node may also contain summary information about the data
it represents. The KD-tree can be used to store either the
centroid centres or the input data vectors to improve the
nearest neighbour search, which is at the core of the K-
Means algorithm. The definitions of the centroids change
at each iteration. If the KD-Tree is used to store the cen-
troids, a new KD-Tree has to be computed at each iteration.
For this reason it is more efficient to use the KD-Tree to
store the input data vectors. In this case the tree is only
computed once, during a pre-processing phase. KD-Trees
have been adopted to improve the efficiency of the sequen-
tial K-Means algorithm in several works [9, 12, 14].

While a parallel formulation of the original K-Means al-
gorithm [7] has been largely studied and adopted, no work
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has been done to provide an efficient parallel formulation
of the sequential techniques based on KD-Trees. The main
reason is that such approaches tend to have an irregular dis-
tribution of the computation load and would suffer from
load imbalance. This issue has so far limited the adoption
of the efficient sequential techniques in parallel computa-
tional environments. In this work, we provide a parallel
formulation for the efficient K-Means algorithm based on
KD-Trees and address its load balancing issues. Our ex-
perimental analysis shows that it is convenient to adopt the
most efficient techniques for small and medium parallel en-
vironments (up to 64 computing elements). Load imbalance
makes the adoption of these techniques in large scale sys-
tems particularly challenging.

The rest of the paper is organised as follows. Section 2
recalls the basic K-Means algorithm and introduces the no-
tation adopted in the paper. Section 3 presents KD-Trees
and their use for speeding up nearest neighbour queries in
K-Means. In section 4 we introduce a parallel formula-
tion of the efficient K-Means algorithm based on KD-Trees.
Section 5 provides an experimental analysis of the proposed
approach. Finally section 6 provides conclusive remarks
and future research directions.

2 K-Means

Given a set of n data vectors in a d dimensional space and
a parameter K which defines the number of desired clus-
ters, K-Means determines a set of K vectors {mk}, called
centers or centroids to minimise the mean squared distance
from each data point to its nearest centre. This measure is
often called the square-error distortion.

A centroid is defined as a point at the geometric centre
of a polygon. This polygon can be regular, or irregularly
shaped. In the case that the polygon is irregularly shaped,
the centroid is derived and weighted to approximate a ‘cen-
tre of mass’. The centroid of the cluster k can then be de-
fined as:

mk =
(

1
nk

) nk∑
i=1

x
(k)
i , (1)

where nk is the number of data points in the cluster k,
and x

(k)
i is a data point in the cluster k. The error for each

cluster is the sum of a norm, e.g. the squared Euclidean
distance, between each input pattern and its associated cen-
troid.

The overall error is given by the sum of the squared er-
rors for each cluster:

E =
K∑

k=1

nk∑
i=1

∣∣∣x(k)
i −mk

∣∣∣2 . (2)

Difficulties in square-error and other partition-based
clustering methods are that there are no computationally
feasible methods for guaranteeing that a given clustering
minimises the total square-error. Based on this, the number
of possible assignments, even for small numbers of patterns
and clusters, quickly becomes enormously large. There-
fore many clustering algorithms use iterative ‘hill climbing’
methods that can terminate when a specific condition is met
[6]. These conditions include, and usually are:

• when no improvement can be made to the assignments,

• when the change in total squared error drops below a
certain threshold, and

• when a predetermined number of iterations have been
completed.

The K-Means algorithm works by first sampling K cen-
tres at random from the data points. At each iteration, data
points are assigned to the closest centre and centers are fi-
nally updated according to (1). Although the centres can be
chosen arbitrarily, the algorithm itself is fully deterministic,
based on the starting centres.

K-Means performs a ‘nearest neighbour’ query for each
of the data points of the input data set. This requires (n ·K)
distance computations at each iteration.

Several issues affect the effectiveness of the algorithm.
The algorithm converges to a local minimum, not neces-
sarily the global one. The quality of the clustering and the
number of iterations depend on the initial choice of cen-
troids. A poor initial choice will have an impact on both
performance and distortion measure. Instead of several runs
with random choices, Bradley and Fayyad [4] postulate a
variant algorithm that uses several preliminary K-Means
passes to provide the initial points for the next run of the
algorithm. This adds computational overhead to the overall
running, however it provides a better reduced error.

Moreover, the assumption that the number of clusters K
is known a priori is not true in most explorative data mining
applications. Solutions to an appropriate choice of K go
from ‘trial and error’ strategies to more complex techniques
based on Information Theory [13] and heuristic approaches
with repeated K-Means runs with varying number of cen-
troids [6].

For these reasons and for the interactive nature of data
mining applications, several runs are often carried out with a
different number of centroids and/or different initial choice.
Thus, it is important to identify appropriate techniques in
order to improve the efficiency of the core iteration step.

3 Improving K-Means with KD-Trees

A KD-tree [3] is a multi-dimensional binary search tree
commonly adopted for organising spatial data. It is useful
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in several problems like graph partitioning, n-body simula-
tions and database applications.

KD-Trees can be used to perform an efficient search of
the nearest neighbour for classification. In the case of K-
Means algorithm, the KD-Tree is used to optimise the iden-
tification of the closest centroid for each pattern. The basic
idea is to group patterns with similar coordinates to perform
group assignment, whenever possible, without the explicit
distance computations for each of the patterns.

During a pre-processing step the input patterns are or-
ganised in a KD-tree. At each K-Means iteration the tree is
traversed and the patterns are assigned to their closest cen-
troid. Construction and traversal of the tree are described in
the next two sections.

3.1 Tree Construction

Each node of the tree is associated with a set of pat-
terns. The root node of the tree is associated with all in-
put patterns. The data set is partitioned in approximately
two equal sized sets, which are assigned to the left and right
child nodes. The partitioning process is repeated until the
full tree is built and each leaf node is associated to a sin-
gle data pattern. A minimum leaf size can also be defined.
This leads to an incomplete tree, where leaf nodes contain a
minimum number of patterns greater than 1.

The partitioning operation is performed by selecting a
dimension and a pivot value. Data points are assigned to
the left child if the coordinate in that dimension is smaller
than the pivot value, otherwise to the right child. The di-
mension for partitioning can be selected with a round robin
policy during a depth first construction of the tree. This
way the same dimension is used to split the data sets of in-
ternal nodes which are at the same tree level. An alternative
method is to select the dimension with the widest range of
values at each node.

The pivot value can be the median or the mid point. The
median guarantees equal sized partitions with some compu-
tational cost. The computation of the mid point is faster but
may lead to imbalanced trees.

In all our tests we have adopted a minimum leaf size of
50, the dimension with widest range and the median value.

KD-Tree nodes contain summary information which is
exploited for bulk assignment operations during the traver-
sal of the tree at each iteration. The information associ-
ated to each KD-Tree node is computed during the pre-
processing step and includes:

• The set of patterns,

• Two boundary vectors (the range of values on each di-
mension),

• The dimension used for partitioning the data,

• The pivot value used for partitioning the data,

• The vector sum of the patterns
∑

i xi,

• The scalar sum of squared normalised values∑
i

∑d
j ‖ xi,j ‖2,

• The vector sum of the normalised patterns
∑

i ‖ xi ‖.

3.2 Traversal of the Tree

At each K-Means iteration the KD-Tree is visited to per-
form the closest centroid search for the input patterns. After
all patterns have been assigned to their closest centroid, the
centroids can be updated.

The traversal follows a depth first search (DFS) strategy.
During the traversal a list of centroids (candidates) is prop-
agated from the parent node to the child nodes. The list
contains the centroids that might be closest to any of the
patterns in the node. The root of the tree is associated to all
patterns and the list of candidates is initialised with all cen-
troids. At each node the list of candidates is filtered from
any centroid that cannot be the closest centroid for any of
the patterns in the data set of the node. Alternative geomet-
ric constraints can be used to provide such guarantees.

If during the traversal the list of candidates reduces to
a single centroid, then the patterns can be assigned to it
without an explicit computation of the distances between
the patterns and the centroids. In this case the traversal of
the subtree rooted at the node can be avoided (backtrack).

If the visit reaches a leaf node, the explicit distance com-
putations must be performed. However, the distances are
computed only between any pattern in the node and any cen-
troid in the list of candidates. In this case, the performance
gain depends on how many centroids have been filtered out
from the list.

In both cases, early backtrack and leaf node visit, there
is a potential reduction of the number of distance computa-
tions performed by the original K-Means algorithm.

The total number of distance operations can be signifi-
cantly reduced at the cost of the preprocessing overhead for
constructing the KD-Tree and of few extra distance compu-
tations during each iteration for the filtering of the centroids
during the visit of the KD-Tree. The extra distance compu-
tations at each node depend on the number of centroids and
not on the number of data points.

In general, the performance gain is more effective for
data set with low inter-cluster similarity. Many centroids
can be discarded from the search for the nearest neighbour
when the groups of patterns are well separated and distant
from each other.

Different variants have been proposed to filter the cen-
troids at each KD-Tree node. They share the same general
approach and differ in the criteria which guarantee that a
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centroid cannot be chosen as the closest one to any of the
patterns in a KD-Tree node and, thus, can be removed from
the list to be propagated in the subtree.

In all these works it has been shown that K-Means based
on KD-trees can be more efficient in orders of magnitude
than the original K-Means algorithm. The most general ap-
proach is described in [14]. In a preliminary analysis we
have carried out, this approach has shown comparable or
better performance than others [9, 12]. In all our tests we
have adopted this approach.

4 Parallel K-Means

Parallel computing has been extensively proposed for in-
creasing the efficiency of clustering algorithms [5, 6, 7]. In
particular [7] proposes a straightforward implementation of
the original K-Means algorithm for distributed memory sys-
tems, which is based on a master-slave approach and static
data partitioning. The input patterns are partitioned in equal
sized sets and distributed to the processes. Initial centroids
are generated at the master and broadcasted to the other pro-
cesses. Each node performs a K-Means iteration on the
local data partition. At the end of each iteration a global
reduction operation generates the updated centroid vectors
and the next iteration can start. The computation terminates
similarly to the sequential method as discussed in section
2. In an homogeneous environment this approach guaran-
tees a perfectly balanced load among the processes. In the
following we refer to this approach as pKMeans.

Little or no work has been done to provide an efficient
parallel formulation of the sequential algorithms based on
KD-Trees. These parallel algorithms are expected to suffer
from load imbalance in contrast to the perfectly balanced
approach in [7].

The parallel algorithm for K-Means based on KD-Tree
follows an approach similar to [7]. The main difference is
that a KD-Tree is constructed in a preprocessing step and is
adopted in the core computation of each iteration to reduce
the number of distance computations.

The efficiency of filtering the centroids at each KD-Tree
node depends on the similarity (spatial aggregation) of the
patterns within each local partition. If random data parti-
tions are generated, as in [7], the filtering step would be-
come less effective. And this effect would become more
evident for larger number of processes. Appropriate data
partitions can be generated by exploiting the KD-Tree. The
master node builds an initial KD-Tree up to the level log(p),
where p is the number of processes. This generates p KD-
Tree leaves with data partitions with a good spatial aggre-
gation to be distributed to the processes. Each process inde-
pendently builds a KD-Tree for the local data partition. The
local tree is used to accelerate the computations in each lo-
cal K-Means iteration. At the end of each iteration a global

reduction phase is performed to update the centroids, simi-
larly to [7].

The algorithm describe above guarantees equal sized
data sets in each processing node. However, the compu-
tation is not expected to be balanced. The effectiveness of
filtering centroids in KD-nodes depends on the inter-cluster
similarity of the data in each local partition. In general we
can expect different number of distance computations will
be performed by the processes at each iteration. This ap-
proach adopts a static partition of the data and is indicated
as pKDKM1.

A second approach attempts to mitigate the potential
load imbalance by adopting a parameter L0 (L0 > log(p))
for the level at which the initial KD-Tree is constructed.
This generates more KD-Tree leaves than the number of
processing elements. In this case each process receives
m = 2L0/p (m > 1) initial partitions and, thus, builds
multiple local KD-Trees. The aim of this approach is to av-
erage the load at each process over many local KD-Trees.
The partitions are still generated statically during the pre-
processing step at the master node and we will refer to this
approach as pKDKM2.

5. Experimental Analysis

In order to test the effectiveness of the two parallel ap-
proaches (pKDKM1 and pKDKM2) for KD-Tree K-
Means we compare them with the original parallel K-Means
algorithm (pKMeans) [7].

We have generated an artificial data set with 500000 pat-
terns in a 20 dimensional space with a mixed Gaussian dis-
tribution as described in the following. First we have gene-
rated 50 pattern prototypes in the multi-dimensional space.
This corresponds to the number of clusters K . For each
cluster we have generated 10000 patterns with a Gaussian
distribution around the prototype and with a random stan-
dard deviation in the range [0.0, 0.1]. In order to create
a more realistically skewed data distribution, we did not
generate the prototypes uniformly in the multi-dimensional
space. We have distributed 25 prototypes uniformly in the
whole domain and 25 prototypes were restricted to a subdo-
main. This generated a higher density of prototypes in the
subdomain. The skewed distribution of data patterns in the
domain emphasizes the load imbalance problem. The pa-
rameters were chosen in order to generate a dataset which
contains some well separated clusters and some not well
separated clusters.

We have applied Multi-Dimensional Scaling [8] to the
set of prototypes and to a sample of the patterns to visualize
them in 2-dimensional maps. Figure 1(a) shows the 50 pro-
totypes and the higher density area is clearly visible in the
center of the map. Figure 1(b) shows a 2D map of a sample
of the generated patterns.
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(a) prototypes

(b) patterns

Figure 1. 2D representation of the multi-
dimensional prototypes (a) and patterns (b)

The software has been developed in Java and adopts MPJ
Express [2], a Java binding for the MPI standard. The ex-
perimental tests were carried out in a IBM Bladecenter JS21
cluster (2.5GHz dual-core PowerPC 970MP) connected via
a Myrinet network running Linux (2.6.16.60-0.42.5-ppc64)
and J2RE 1.5.0 (IBM J9 2.3).

Figure 2 shows the relative speedup of the three paral-
lel algorithms and the running time of pKMeans. For
a small number of processes (up to 32) the algorithms
pKMeans and pKDKM1 have similar performance and
pKDKM2 is slightly outperforming them. For 64 pro-
cesses the algorithm pKDKM1 is showing worse perfor-
mance than the other two, which have comparable speedup.
For 128 processes both the approaches based on KD-Trees
are now showing worse performance than the original K-
Means algorithm. The worse performance of the KD-Tree
based algorithms for larger computational environment can
be explained by the load imbalance. It is evident that the
pKDKM2 has reduced the problem, but has not com-
pletely solved it.

To analyse the performance of the algorithms in more
detail, we show the contributions to the overall running
time of the different parallel costs. We have accumulated
the time spent by each process, respectively, in compu-
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Figure 2. Speedup and running time

tation, communication and idle periods. Figure 3 shows
the components of the overall parallel cost respectively for
pKMeans, pKDKM1 and pKDKM2. The charts show
that both KD-Tree based approaches have always higher
idle time than the simple pKMeans. The advantage of
using a more complex data structure is neutralised by the
inefficient load balance. As expected, the communication
time of the three methods are very similar. The computa-
tion time in both approaches based on KD-Trees tends to
slightly increase with the number of processes. This effect
is due to the extra computation introduced by the filtering
criteria. In a larger environment the master node generates
a deeper initial tree. The resulting local subtrees are smaller
and rooted deeper in the initial tree. This makes the filtering
criteria less effective by introducing additional distance cal-
culations for redundant filtering. The effect is more evident
in pKDKM2 where the initial tree is always constructed
at a deeper level than in pKDKM1 (L0 > log(p)).

6. Conclusions

We have presented a parallel formulation of the K-Means
algorithm based on an efficient data structure, namely multi-
dimensional binary search trees. While the sequential al-
gorithms benefits from the additional complexity, the same
is not true in general for the parallel approaches. Our ex-
perimental analysis shows that it is convenient to adopt
the most efficient techniques for small and medium paral-
lel environments (up to 64 computing elements). The cost
of load imbalance still makes the adoption of these tech-
niques unsuitable for large scale systems, where the simple
parallel implementation of the K-Means algorithm will al-
ways provide a perfect load balance. However, this is valid
only for dedicated homogeneous environments. We intend
to test dynamic load balancing policies which could make
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the efficient techniques suitable also for large scale and he-
terogeneous environments. A further interesting direction
of research is the optimisation of the communications re-
quirements. At the moment, the global reduction operation
hinders the adoption of any of these parallel K-Means al-
gorithms in distributed environments, where high network
latency would make the communication cost dominate the
computation.
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