Repulsion-induced surface-migration, by ballistics and bounce

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Guo, S. Y., Jenkins, S. J., Ji, W., Ning, Z., Polanyi, J. C., Sacchi, M. and Wang, C.-G. (2015) Repulsion-induced surface-migration, by ballistics and bounce. Journal of Physical Chemistry Letters, 6 (20). pp. 4093-4098. ISSN 1948-7185 doi: 10.1021/acs.jpclett.5b01829

Abstract/Summary

The motion of adsorbate molecules across surfaces is fundamental to self-assembly, material growth, and heterogeneous catalysis. Recent Scanning Tunneling Microscopy studies have demonstrated the electron-induced long-range surface-migration of ethylene, benzene, and related molecules, moving tens of Angstroms across Si(100). We present a model of the previously unexplained long-range recoil of chemisorbed ethylene across the surface of silicon. The molecular dynamics reveal two key elements for directed long-range migration: first ‘ballistic’ motion that causes the molecule to leave the ab initio slab of the surface traveling 3–8 Å above it out of range of its roughness, and thereafter skipping-stone ‘bounces’ that transport it further to the observed long distances. Using a previously tested Impulsive Two-State model, we predict comparable long-range recoil of atomic chlorine following electron-induced dissociation of chlorophenyl chemisorbed at Cu(110)

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/43594
Identification Number/DOI 10.1021/acs.jpclett.5b01829
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher American Chemical Society
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar