Search from over 60,000 research works

Advanced Search

Rayleigh scattering by hexagonal ice crystals and the interpretation of dual-polarisation radar measurements

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Westbrook, C. D. orcid id iconORCID: https://orcid.org/0000-0002-2889-8815 (2014) Rayleigh scattering by hexagonal ice crystals and the interpretation of dual-polarisation radar measurements. Quarterly Journal of the Royal Meteorological Society, 140 (683). pp. 2090-2096. ISSN 1477-870X doi: 10.1002/qj.2262

Abstract/Summary

Dual-polarisation radar measurements provide valuable information about the shapes and orientations of atmospheric ice particles. For quantitative interpretation of these data in the Rayleigh regime, common practice is to approximate the true ice crystal shape with that of a spheroid. Calculations using the discrete dipole approximation for a wide range of crystal aspect ratios demonstrate that approximating hexagonal plates as spheroids leads to significant errors in the predicted differential reflectivity, by as much as 1.5 dB. An empirical modification of the shape factors in Gans's spheroid theory was made using the numerical data. The resulting simple expressions, like Gans's theory, can be applied to crystals in any desired orientation, illuminated by an arbitrarily polarised wave, but are much more accurate for hexagonal particles. Calculations of the scattering from more complex branched and dendritic crystals indicate that these may be accurately modelled using the new expression, but with a reduced permittivity dependent on the volume of ice relative to an enclosing hexagonal prism.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/40877
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Uncontrolled Keywords microwave scattering;ice crystal;dual polarisation
Publisher Royal Meteorological Society
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar