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a  b  s  t  r  a  c  t

Resistive  respiratory  loading  is  an established  stimulus  for the  induction  of  experimental  dyspnoea.  In
comparison  to  unloaded  breathing,  resistive  loaded  breathing  alters  end-tidal  CO2 (PETCO2), which  has
independent  physiological  effects  (e.g.  upon  cerebral  blood  flow).  We  investigated  the  subjective  effects
of  resistive  loaded  breathing  with  stabilized  PETCO2 (isocapnia)  during  manual  control  of  inspired  gases
on  varying  baseline  levels  of mild  hypercapnia  (increased  PETCO2). Furthermore,  to  investigate  whether
perceptual  habituation  to dyspnoea  stimuli  occurs,  the  study  was  repeated  over  four  experimental  ses-
abituation
socapnia
erception
espiratory loading

sions.  Isocapnic  hypercapnia  did  not  affect  dyspnoea  unpleasantness  during  resistive  loading.  A post  hoc
analysis  revealed  a small  increase  of respiratory  unpleasantness  during  unloaded  breathing  at  +0.6  kPa,
the level  that  reliably  induced  isocapnia.  We  did  not  observe  perceptual  habituation  over  the  four  sessions.
We  conclude  that isocapnic  respiratory  loading  allows  stable  induction  of  respiratory  unpleasantness,
making  it  a good  stimulus  for multi-session  studies  of  dyspnoea.

ublis
© 2015  The  Authors.  P

. Introduction

Dyspnoea causes tremendous suffering in millions of patients
round the world, yet remains poorly understood and is often
efractory to treatment (Parshall et al., 2012). Experimentally
nduced dyspnoea enables its investigation under carefully con-
rolled conditions without the confounds of disease or medications.
t is usually achieved by the application of controlled respiratory
hallenges to healthy research participants. For example, respira-
ory challenges may  be combined with simultaneous functional

agnetic resonance imaging (FMRI) in the brain (Herigstad et al.,
011; Pattinson and Johnson, 2014). Respiratory challenges also
ave direct physiological effects (e.g. on intrathoracic pressure
Hayen et al., 2012)) that may  be of interest to some researchers.

Resistive respiratory loading increases variability of partial pres-
ure of arterial and thus end-tidal CO2 (PETCO2) and may  increases

r decrease mean PETCO2 dependent on the individual’s response
Gorman et al., 1999; Hornstein and Ledsome, 1984; McKenzie
t al., 1997; Rohrbach et al., 2003; von Leupoldt et al., 2008). Altered
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hed  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

arterial CO2 is well known to have its own  physiological effects, e.g.
upon respiratory drive and upon the cardiovascular system (blood
pressure, heart rate). Of particular interest in neuroimaging are
the profound effects of altered PETCO2 on the blood oxygen level
dependent (BOLD) response, the source of image contrast in FMRI
(Cohen et al., 2002; Wise et al., 2004), which could confound an
FMRI study of dyspnoea.

Isocapnia is the term used to describe the maintenance of
constant PETCO2 by experimenter intervention. It can be used to
counteract stimulus-induced CO2 effects (Wise et al., 2007). Isocap-
nia is usually achieved by adding supplemental CO2 to the inspired
gas mixture (resulting in mild hypercapnia), then PETCO2 is fine-
tuned on a breath-by-breath basis by adjusting the amount of
inspired CO2 in the inspired gas mixture depending on the PETCO2
recording obtained from the previous breath. This may be done
manually or via a computer controlled system (Wise et al., 2007).

Here we  investigate whether maintaining isocapnia during
respiratory loading could be advantageous for paradigms neces-
sitating alternating on and off periods of dyspnoea, e.g. when
investigating the brain mechanisms of dyspnoea with FMRI.
Although it is well established that isocapnia would minimize
PETCO2 variability, it is unknown whether the obligatory hyper-
capnia would affect the subjective response to respiratory loading.

If mild hypercapnia increases unpleasantness, a potential benefit
might be a more clinically meaningful stimulus, that could poten-
tially allow a decrease in the intensity of applied respiratory loads
(with subsequent reduction in head motion artefact and smaller

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Schematic illustration of custom-built respiratory circuit. A facemask (7450 SeriesV2TM Mask, Hans Rudolph, USA) was connected to two sampling lines measuring
respiratory gases and respiratory pressure via polyethylene extension tubing (Vygon SA, Ecouen, France). One sampling line led to a pressure transducer (MP  45, ±50 cmH2O,
Validyne Corp., Northridge, CA, USA) connected to an amplifier (Pressure transducer indicator, PK Morgan Ltd, Kent, UK) and provided readings of current respiratory pressure
at  the mouth. Tidal CO2 and tidal oxygen were continuously sampled and analyzed using an infrared analyzer with side-stream sampling (Capnomac Ultima, Datex Ohmeda,
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elsinki, Finland). The diameter of a 5 cm long section of respiratory tubing is lin
yringe  filled with water and can be altered remotely to increase respiratory resista
nspiratory and expiratory volumes. Medical gases were fed from cylinders and ent

wings in intrathoracic pressure (Hayen et al., 2012), both con-
ributors to physiological noise). However, baseline hypercapnia

ay  have the deleterious effect of increasing dyspnoea during the
nloaded periods (i.e. at baseline).

In naïve participants, training sessions are commonly used to
amiliarize participants with respiratory stimuli (e.g. (Nishino et al.,
007; O’Donnell et al., 2013)), as the first experience of resistive

oading is well known to be associated with a heightened dys-
noea response. It is unknown whether and to what magnitude
abituation or sensitization occurs over subsequent sessions of
esistive loading. Intervention studies in dyspnoea often compare
esponses under different conditions (e.g. drug/placebo) over mul-
iple experimental sessions. Habituation (or sensitization) to the
timulus would lead to an order effect, which, if strong enough,
ight outweigh small intervention-induced differences of interest.
ence, a second aim of this study was to determine the importance
f habituation or sensitization of the perceived unpleasantness of
xperimental dyspnoea stimuli.

In this study, we tested the following hypotheses, all aimed at
etter understanding experimental dyspnoea for the purposes of
he design of FMRI experiments:

Mild baseline hypercapnia would not increase respiratory
unpleasantness significantly, compared to unloaded breathing.
Combining mild hypercapnia with resistive loading would have
an additive effect on dyspnoea unpleasantness.
There is minimal relevant habituation to dyspnoea as a result of
repeated resistive loading over four experimental sessions.

. Materials and methods

.1. Participants

Ten volunteers (aged 23 ± 6 years, 4 females) participated in this
tudy after giving written informed consent in accordance with the
xfordshire Research Ethics Committee. Participants were healthy

ight-handed non-smokers with no history of significant psycho-
ogical, neurological, pulmonary or cardiovascular disease and free
rom acute illness (e.g. acute upper respiratory tract infection). Par-

icipants abstained from heavy meals and physical activity (cycling,
xercise) for at least 1 h before each session. The study consisted
f five sessions performed on consecutive days. Participants were
ested at the same time of day in order to avoid circadian changes
th a rubber party balloon connected via non-distensible plastic tubing to a 10 ml
 turbine (VMM-400, Interface Associates, Aliso Viejo, CA, USA) was  used to record

 mixing chamber that allowed thorough mixing before inspiration.

in hormone level and cognitive performance throughout the day
(Carrier and Monk, 2000), which might affect the perception of dys-
pnoea (Hayen et al., 2013). To minimize the biasing effects of initial
first-time adaptation to a respiratory apparatus, the first session
was a training session similar in length and stimulus strength to
the subsequent experimental sessions.

2.2. Experimental paradigm

2.2.1. General
Participants were seated comfortably and were breathing

through a custom-built respiratory circuit connected to a facemask
(Hans Rudolf; Fig. 1). To this circuit, a mixture of compressed medi-
cal air (humidified) was  added, in which inspired CO2 was  adjusted
by mixing in varying amounts of a CO2-rich gas (10% CO2, 21%
O2, balance nitrogen). To reduce auditory distractions, participants
wore standard foam earplugs and headphones (Sony MV300, Sony),
through which a constant sound (‘pink noise’) was played at a vol-
ume  sufficient to mask sounds of the respiratory system (Banzett
et al., 1996). The experimental paradigm shown in Fig. 2 was run
for all experimental sessions. After a 5-min period in which partic-
ipants familiarized themselves with breathing on the respiratory
circuit, their PETCO2 baseline was determined over the following
minute. Over the next 5 min, an investigator manually adjusted the
inspired CO2 to raise PETCO2 to the desired amount above baseline.
Each participant underwent a poikilocapnia (PETCO2 allowed to
fluctuate naturally) session and three sessions in which PETCO2 was
experimentally raised by different amounts from the participant’s
natural breathing baseline. In the hypercapnia sessions, PETCO2 was
increased by +0.4 kPa, +0.6 kPa or +0.9 kPa above baseline and the
order was  randomized.

2.2.2. Resistive respiratory loading
A hydraulic system was used to decrease the diameter of a 5 cm

section of respiratory tubing that was  lined with a party balloon.
Inflating the balloon decreased the diameter of the tube, leading
to changes in respiratory resistance during inspiration and expi-
ration. The change in mouth pressure during respiratory loading
was titrated to elicit 50% unpleasantness during each individual
session in each individual participant. Loads were initially slowly

increased over 2 min  until subjective ratings indicated 50% VAS for
two successive ratings and this mouth pressure was noted as the
target level for the rest of the session. A dedicated experimenter
maintained mouth pressure constant through breath-by-breath
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Fig. 2. Timeline of experimental session. Each experimental session lasted 34 min. After an adjustment period of 5 min, baseline PETCO2 was determined. In the isocapnia
conditions, PETCO2 was  then increased according to condition (+0.4 kPa, +0.6 kPa, +0.9 kPa) and was kept stable at the target PETCO2 level. PETCO2 was allowed to freely vary
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uring  the poikilocapnia condition. Participants rated perceived respiratory unpleas
pplied during the session was determined during the first 2 min  of the first respira
t  14, 21 and 28 min.

djustment of inspiratory resistance. During the two  successive
locks of respiratory loading during that session, loading was

ncreased over 30 s till the target mouth pressure was reached.
outh pressures were then kept stable throughout the loading

locks (Fig. 2).

.2.3. Subjective ratings of respiratory unpleasantness
The perception of breathing-related unpleasantness was

ecorded at semi-randomized intervals four times a minute dur-
ng each experimental session, except for the first 11 min  of each
aradigm (the time during which familiarization with the breathing
ystem took place and PETCO2 was adjusted to experimental level).
articipants rated their breathing unpleasantness on a horizontal
isual analogue scale (VAS) stating the question ‘How unpleasant
id your breathing feel?’ with the anchors ‘not unpleasant’ on the

eft and ‘very unpleasant’ on the right. Behavioural responses were
ade via a custom-made button box. Standardized instructions

elayed the concepts of respiratory intensity and unpleasantness
efore the training session. An experimenter verbally confirmed
articipants’ understanding of the concepts of respiratory inten-
ity and unpleasantness before the training session and ensured
hat participants were able to distinguish both concepts after the
raining session. Participants were instructed to use the rating
cale so that a maximum rating would correlate with the degree
f unpleasantness that would cause them to stop the experiment
mmediately.

.2.4. Physiological monitoring
Heart rate was measured with a pulse oximeter (Capnomac

ltima, Datex Ohmeda, Helsinki, Finland). All physiological data
ere sampled at 100 Hz and were logged via a Power1401 using

pike2.7 (CED, Cambridge, UK).

.2.5. Questionnaires
Participants answered a short pre-study questionnaire imme-

iately before being connected to the respiratory circuit, which
ontained the following four questions on a horizontal VAS with
not at all’ as the left anchor and ‘very’ as the right anchor: “How
ense are you feeling? How nervous are you about this session?
ow bad do you expect this session to be? How relaxed are you

eeling right now?”. Immediately after participants were released
rom the respiratory circuit, they filled in an early version of the
ultidimensional Dyspnea Profile (MDP) that measured six sen-
ory qualities of dyspnoea, as well as overall shortness of breath
nd respiratory unpleasantness (Banzett et al., 2008). After com-
leting the questionnaire, participants were verbally asked “How
ss at semi-random intervals four times a minute. The strength of respiratory loading
ading block. Three blocks of respiratory loading of 4 min length were administered

did your breathing feel during the experiment?”. The experi-
menter recorded the answers participants gave and prompted
for additional information once participants had completed their
assessment. Participants were fully debriefed after completion of
the experiment.

2.3. Data analysis

2.3.1. Preprocessing
Respiratory data (mouth pressure and PETCO2), heart rate and

unpleasantness ratings were exported to MatLab (MathWorks Inc.,
Natick, MA,  USA) and analyzed on a breath-by-breath basis using
custom written scripts. Data were averaged over resistance and
non-resistance blocks (excluding the first 120 s of the first block and
the first 30 s of the remaining resistance blocks whilst pressure was
adjusted to target level). All statistical analyses were performed
using the SPSS statistical package version 21 (SPSS Inc., Chicago, IL).
Prior to analysis, descriptive statistics were calculated for all vari-
ables to ensure the correct choice of test. For all analyses, two-tailed
testing at p < 0.05 was  used to determine statistical significance.

2.3.2. Isocapnia
Fluctuations in PETCO2 and their reduction by the isocapnia

manipulation were assessed by computing the temporal coeffi-
cient of variation (CV) by taking the temporal standard deviation
(SD) for each breath, dividing it by the mean and multiplying it by
100 to receive a result in %. A 2 (resistance) × 4 (CO2 condition)
repeated measures ANOVA was performed to test for differences in
the coefficient of variation between CO2 conditions. Post hoc tests
were based on estimated marginal means and were corrected for
multiple comparisons with Bonferroni corrections.

2.3.3. Effects of hypercapnia on unpleasantness
A 2 (resistance) × 4 (PETCO2 condition) repeated measures

ANOVA was  performed to test for differences in unpleasantness
ratings. To establish potential effects of hypercapnia on base-
line unpleasantness for the lowest potent isocapnia manipulation
post hoc that compared non-resistance blocks during poikilocapnia
with non-resistance blocks during +0.6 kPa hypercapnia. Additional
2 × 4 repeated measures ANOVAs were performed with the means
of mouth pressure amplitude and heart rate.
2.3.4. Habituation
A 2 (resistance) × 3 (block) × 4 (session) repeated measures

ANOVA was performed to investigate potential changes in unpleas-
antness ratings within or between experimental sessions. The same
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Table 1
Participant characteristics. F = female, M = male.

Participant
number

Age (years) Sex Height (cm) Weight (kg) Fitness level Previous respiratory experience Worst previous breathlessness

1a 18 F 167 66 Casual sports None After rowing race
2  26 M 190 86 Frequent sports Mild allergy to dust mites During intense exercise in hot weather
3  23 F 158 50 Casual sports Diving After a long treadmill session
4  22 F 186 77 Frequent sports Plays wind instrument After a cross-country race
5  22 M 183 70 No sports None During the 1500 m run at school
6  21 M 162 48 No sports None None
7b 38 M 183 83 No sports Childhood asthma, diving,

respiratory apparatus
Childhood asthma

8  22 F 149 50 Casual sports None None
9  18 M 170 65 Casual sports Diving After an intense period of running
10  23 M 183 79 Casual sports None After a long treadmill session
Median 22 177 68
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a Participant did not complete +0.4 kPa hypercapnia condition.
b Participant did not complete +0.9 kPa hypercapnia condition.

est was performed to check for stability of mouth pressure ampli-
ude and heart rate over time.

MDP: One related-samples Friedman’s two-way analysis of vari-
nce by ranks was performed for each dimension of the MDP
omparing all four experimental conditions (df = 3). Due to the
xploratory nature of this analysis and its primary aim of highlight-
ng potential changes in specific dimensions in order to focus future
nalyses, no corrections for multiple comparisons were applied.

.3.5. Qualitative data
Qualitative data were entered into NVivo qualitative data anal-

sis software (QSR International Pty Ltd. Version 10, 2012). Each
tatement was coded into a node according to its meaning. Interest-
ng themes emerged from the data and are presented to supplement
uantitative data.

. Results

All ten participants tolerated CO2 loading and the addition of
espiratory loading and completed the experimental protocol. Two
articipants performed a training session and only three experi-
ental sessions (Table 1).

.1. Isocapnia

PETCO2 fluctuated between blocks with respiratory loading
nd no respiratory loading during poikilocapnia (Fig. 3). A 2
resistance) × 4 (CO2 condition) repeated measures ANOVA on
he coefficient of variability of PETCO2 showed a main effect of
O2 condition, F = (3,5) = 12.99 p < .0001. Post hoc tests determined
hat the PETCO2 coefficient of variability decreased with increased
ypercapnia (poikilocapnia and 0.4 kPa hypercapnia (p = .075),
oikilocapnia and 0.6 kPa hypercapnia (p = .019), poikilocapnia and
.9 kPa hypercapnia (p = .015)). The ANOVA showed no mean effect
or respiratory resistance, F(1,7) = 5.09 p = .059. An interaction effect
f resistance and CO2 condition showed a stronger decrease in coef-
cient of PETCO2 variability during resistance periods compared
o non-resistance periods with increased hypercapnia, F(3,5) = 5.06

 = .009 (Fig. 3). There is no significant difference in the coefficient
f variability of PETCO2 between poikilocapnia and 0.4 kPa hyper-
apnia (mean difference 2.8, p = .131), but a difference between
oikilocapnia and 0.6 kPa and 0.9 kPa hypercapnia (poikilocapnia
s. 0.6 kPa: mean difference 4.5 p = .033, poikilocapnia vs. 0.9 kPa:

ean difference 4.3 p = .029). These results suggest 0.6 kPa hyper-

apnia to be the lowest CO2 increase at which manual gas control
chieved the desired effect of significantly reducing PETCO2 vari-
bility compared to poikilocapnia (Fig. 3).
3.2. Effects of hypercapnia on respiratory unpleasantness

A 2 (resistance) × 4 (CO2 condition) repeated measures ANOVA
performed on unpleasantness ratings showed a main effect of resis-
tance, F(1,7) = 45.830 p < .0001, no main effect of CO2, F(3,5) = 1.80
p = .178, and no significant interaction F(3,5) = .632 p = .602 (Fig. 4).
The potential increase in unpleasantness caused by the lowest level
of isocapnic hypercapnia (+0.6 kPa) compared to poikilocapnia was
further investigated, as such an effect could be detrimental during
FMRI. A post hoc analysis showed increased respiratory unpleas-
antness during non-resistance periods during +0.6 kPa hypercapnia
compared to non-resistance periods at baseline PETCO2 (increase
from 12 to 21%VAS, p = .020). Results of additional physiological
recordings and a sample trace can be found in the Supplementary
Material.

3.3. Characterization of dyspnoea stimuli

The MDP  was used to measure differences in perception during
hypercapnia and poikilocapnia. Results are shown in the Supple-
mentary Material.

3.4. Habituation of respiratory unpleasantness

Fig. 5 presents average unpleasantness and mouth pressure
amplitude for each experimental block of each session.

A 2 (resistance) × 3 (block) × 4 (session) repeated measures
ANOVA on average unpleasantness showed a main effect for resis-
tance, F(1,7) = 75.53 p < .0001, no main effect of block, F(2,6) = 2.14
p = .154, and no main effect of session, F(3,5) = .127 p = .943. A sig-
nificant interaction between block and resistance was  obtained,
F(2,6) = 8.08 p = .005, which revealed a trend for unpleasantness
ratings during the third block of respiratory loading to be lower
compared to the first loading block and for unpleasantness ratings
during the third block without respiratory loading to be higher than
during the first loading-free block (Fig. 5). These results suggest
that no habituation of respiratory unpleasantness occurred within
or between sessions.

Mouth pressure, PETCO2, PETO2 and heart rate remained stable
throughout the sessions and the subjective perception of dyspnoea
measured with the MDP  after each visit remained stable over all
four study visits (see Supplementary Material).

3.5. Qualitative feedback
The continuous mild hypercapnia used in this study was applied
before ratings of respiratory unpleasantness were started, so that it
would not be perceived as a change from baseline. During debrief
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races  for all participants are plotted in grey shades.

fter all sessions, all participants stated that they were not aware
hat they had received continuous hypercapnia during some of the
essions. In a verbal interview, some participants also mentioned
hat they found it very difficult to evaluate the unpleasantness of

ild respiratory sensations in the lower third of the spectrum.
 few participants further mentioned that they were not sure
hether the change they noticed was real when it was mild or
hether they imagined a change, because they were asked to focus

n their breathing and were trying to perceive a change. With
egards to side-effects of hypercapnia, two participants reported
eeling uncomfortably hot and one participant felt claustrophobic
uring +0.9 kPa hypercapnia, one participant felt uncomfortably
ot during +0.6 kPa hypercapnia.

. Discussion
.1. Main findings

The main findings of this study are:

Fig. 4. Mouth pressure amplitude and unpleasantness averaged over a
TCO2 session. The black line represents the average of all participants. Individual

1. Mild hypercapnia did not amplify respiratory unpleasantness in
response to respiratory loading.

2. During unloaded breathing, hypercapnia of +0.6 kPa lead to a
small increase in respiratory unpleasantness from 12%VAS to
21%VAS.

3. Unpleasantness of respiratory loading did not habituate within
and between sessions.

4.2. First study of effects of hypercapnia on unpleasantness
during respiratory loading

To our knowledge, this is the first study investigating the effects
of hypercapnia on the perception of respiratory loading. Here,
we have shown that hypercapnia and respiratory loading did not
linearly increase respiratory unpleasantness, but that the same
amount of respiratory loading was  necessary to induce 50%VAS

unpleasantness during all hypercapnia conditions. Hence, adding
mild continuous hypercapnia to respiratory loading at the lev-
els used in this study does not provide the additional benefit
of reducing the stimulus strength necessary for the induction of

ll participants by experimental condition (error bars depict SD).
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Fig. 5. Adaptation within and between sessions. Chronological plot of unpleas-
antness ratings and mouth pressure amplitudes averaged over all participants
(mean ± standard error) during the four no resistance and the three resistance blocks
within each session (off1 = first unloaded block, on1 = first respiratory resistance
block). Data presented averaged over all poikilocapnia and hypercapnia condi-
tions (counterbalanced) sorted according to session (session 1 = first experimental
s
u

m
i
d
F

m
m
g

1

2

3

stimulus. The variability in unpleasantness scores obtained during
ession after training). * Mean of first non-resistance block is lower than subsequent
nloaded blocks at p = .05.

oderate dyspnoea unpleasantness, which could reduce phys-
ological confounds of respiratory loading during blood-flow
ependent measures such as transcranial Doppler sonography or
MRI.

Future research studies are required to carefully investigate the
echanistic underpinnings of these results, which could be a major
ilestone in understanding dyspnoea perception. Our findings sug-

est three potential hypotheses for further investigation:

. It is possible that intensity and unpleasantness of dyspnoea
behave differently with the intensity of dyspnoea increasing
more linearly (Nishino et al., 2007) than the unpleasantness, as
measured in the current study.

. Differences in linearity might be due to the different underly-
ing physiological mechanisms by which respiratory loading and
hypercapnia cause dyspnoea. It has previously been suggested
that the dyspnoea caused by mechanical respiratory loading is
mainly caused by activation of lung receptors, whilst hypercap-
nia mainly causes dyspnoea due to chemoreceptor activation
(Lansing et al., 2009). It might be possible that dyspnoea evoked
through the same physiological pathway influences sensations
in an additive way, whilst dyspnoea that is processed by differ-
ent afferent pathways is as strong as the most severe dyspnoea
perceived.

. Differences in top-down categorization of respiratory sensa-
tions have been shown to override differences in sensory input
(Petersen et al., 2014). Hence differential interoceptive cate-

gorization of inspiratory loading as a dyspnoea stimulus and
hypercapnia as ‘normal breathing’ might account for perceptual
stability during respiratory loading.
 Neurobiology 208 (2015) 21–28

4.3. Effects of hypercapnia on unpleasantness during unloaded
breathing

Hypercapnia of +0.6 kPa above resting breathing baseline was
necessary for reliable isocapnia (Fig. 3). We  observed a small
increase of respiratory unpleasantness from 12% (±10) VAS to 21%
(±20) VAS when +0.6 kPa hypercapnia was  compared with poik-
ilocapnia. Although statistically significant, this effect might be
considered small enough to be biologically unimportant. Increased
unpleasantness during unloaded breathing is not ideal for the study
of dyspnoea with FMRI, as the statistical analysis relies on the
comparison of different conditions (e.g. unloaded breathing and
respiratory loading) during the same scanning session. Increas-
ing unpleasantness during unloaded breathing would decrease the
change between the unloaded condition and respiratory loading on
a perceptual and neural level. Despite potentially small perceptual
effects, care needs to be taken to not transform isocapnic hyper-
capnia from a useful manipulation to decrease PETCO2 variability
into a dyspnoea stimulus in its own  right. The benefits of isocapnia
for the reliability of physiological recordings (e.g. FMRI signal stabil-
ity) need to be considered against potentially deleterious subjective
effects. We  conclude that perceptual ratings during unloaded respi-
ratory periods would be advisable for studies comparing dyspnoea
vs. no dyspnoea conditions (e.g. neuroimaging studies) in order to
correctly interpret differences between conditions. We  also advise
that the administration of additional CO2 for isocapnia should be
kept minimal.

4.4. Habituation of respiratory unpleasantness

4.4.1. Within-session habituation
Perceived unpleasantness remained stable over three consec-

utive 4-min administrations of respiratory loading within one
session. This is good news for the investigation of experimental
dyspnoea during FMRI, where neural changes are usually obtained
by averaging over multiple stimuli. A relatively stable stimulus is
therefore necessary to obtain comparable neural responses at the
beginning and at the end of the scan and we  have shown that respi-
ratory loading fulfils this criterion over the time course of a normal
FMRI study.

Unexpectedly, we  found that unpleasantness during unloaded
periods increased after the initial application of respiratory load-
ing in each session. This effect remained present throughout
each experimental session. During poikilocapnia, unpleasantness,
mouth pressure and PETCO2 were increased after the first respira-
tory load. Whilst isocapnia eliminated effects of respiratory loading
on mouth pressure and PETCO2, the difference in unpleasantness
remained. This consistent increase in respiratory unpleasantness
during unloaded breathing following the initial application of
respiratory loading highlights the difficulty of assessing ‘normal
breathing’ on a respiratory circuit. Unloaded breathing was rated
at 12 (±10) %VAS unpleasantness, which varied throughout the
experiment. During the post-study interview, participants stated
difficulties determining ‘normal breathing’ while they were on
the respiratory circuit and many used a strategy in which they
adjusted the rating given for the immediately previous expe-
rience by the currently perceived difference in unpleasantness.
This is in line with the peak-end effect of dyspnoea discussed by
Bogaerts and colleagues (2012), who  showed that perceptions at
the most intense point (peak) and at the end of dyspnoea appli-
cation most strongly impacted on immediate recollection of the
unloaded breathing and the qualitative interview both highlight the
benefits of measuring subjective perception of unloaded breathing
throughout the session to aid interpretation of results.
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.4.2. Habituation across sessions
There was no adaptation of respiratory unpleasantness across

essions during loaded or unloaded breathing. This makes respira-
ory loading a valuable tool for comparing dyspnoea over multiple
essions and allows its use during intervention studies, e.g. phar-
acological studies that involve administration of drug and control

n separate sessions.
Perception of respiratory unpleasantness was  stable in response

o repeated respiratory loading. Previous studies have shown
arying degrees of perceptual habituation to different respira-
ory stimuli. No habituation of dyspnoea perception in response
o hypercapnia was shown in a study by Bloch-Salisbury and
olleagues, who gave hypercapnic challenges to four mechani-
ally ventilated patients with experimentally induced continuous
ypercapnia over two weeks (Bloch-Salisbury et al., 1996). Patients
etained their original stimulus-response to the load. Whilst per-
eptual stability was also found during repeated breath holds
ithin one laboratory session (Nishino et al., 1996) and during

epeated exercise over 12 sessions in patients with chronic obstruc-
ive pulmonary disease (Carrieri-Kohlman et al., 2001), there is
vidence of perceptual habituation in response to repeated hyper-
apnic rebreathing challenges in healthy individuals (Li et al., 2006;

an  et al., 2009). It seems like habituation of dyspnoea perception
ccurs during short laboratory challenges of hypercapnia, whilst
epeated administration of hypercapnia in ventilated patients,
espiratory loading, breath holding and exercise show higher per-
eptual stability. This would need to be investigated within the
ame study in order to disentangle differences that might originate
rom differences in study context and exact sensations rated.

Understanding the mechanisms underlying the habituation of
ensory and affective responses to respiratory sensations could
xplain in which contexts and to which stimuli experiential habit-
ation occurs. To our knowledge, potential neuronal mechanisms
f habituation to respiratory unpleasantness in response to experi-
ental dyspnoea stimuli have not been investigated, but one study

as shown perceptual and neuronal habituation to short inspiratory
cclusions (12 blocks) during late compared to early experimental
eriods using electroencephalography (EEG) (von Leupoldt et al.,
011). This suggests the habituation of neural processing of respi-
atory sensations as a potential mechanism for reduced respiratory
erceptions. Additional clues might be found when investigating
he complex interplay between dyspnoea and other cognitive and
motional states. Trait anxiety has been shown to influence the rate
f perceptual habituation to dyspnoea stimuli, with higher anxiety
esulting in less experiential habituation (Li et al., 2006). A striking
dditional finding in our study was the large interindividual varia-
ion in respiratory unpleasantness. The interindividual differences
n perception of dyspnoea in the current study largely outweighed
he more subtle differences between hypercapnia conditions and

ight mask subtle habituation effects of particular groups, which
ould need to be investigated in future studies.

.5. Benefits of isocapnia when inducing experimental dyspnoea
uring FMRI

Manual gas control during unloaded breathing and during the
pplication of respiratory loading minimized intra- and interindi-
idual variation of PETCO2 (Fig. 3). This has two potential benefits
or using respiratory loading to investigate dyspnoea during FMRI.
irstly, isocapnia reduced PETCO2 fluctuations within individual
essions compared to poikilocapnia. Controlling PETCO2 in this
ay has the benefit of reducing intraindividual variations in BOLD
esponsiveness (Harris et al., 2006) and allows the dissociation of
he signal of interest from BOLD activity caused by CO2 fluctu-
tions. Secondly, isocapnia reduced PETCO2 fluctuations between
articipants. As seen in Fig. 3, application of a respiratory load of
 Neurobiology 208 (2015) 21–28 27

15 cmH2O amplitude increased variation in PETCO2 within a group
of ten participants during poikilocapnia. Previous literature shows
hypercapnia or unaltered PETCO2 in response to respiratory load-
ing at a group level (Gorman et al., 1999; Hornstein and Ledsome,
1984; Isono et al., 1990; McKenzie et al., 1997; Rohrbach et al., 2003;
von Leupoldt et al., 2008), which indicates between-subject vari-
ability in respiratory response to respiratory loads. Reducing this
variability in PETCO2 changes is beneficial for group FMRI studies.
Isocapnia can also effectively be maintained through mechanical
ventilation (Evans et al., 2002), but this method requires extensive
training during which participants learn to consciously suppress
respiration in order to allow mechanical ventilation and is hence
difficult to administer and confounded by conscious suppression of
respiration.

5. Conclusion

This study set out to test the applicability of isocapnic respi-
ratory loading to the investigation of dyspnoea during repeated
physiological measures that rely on stable PETCO2. As expected,
isocapnia reduced the considerable PETCO2 variability associated
with respiratory loading during poikilocapnia, which potentially
has considerable benefits for FMRI signal stability. However, there
was no advantage of hypercapnia on perception of respiratory
loading and a small amount of increased unpleasantness during
unloaded breathing could be deleterious if not accounted for. The
unpleasantness associated with repeated induction of dyspnoea
with respiratory loading remained stable over four sessions, indi-
cating the usability of this model for intervention studies, including
multi-session FMRI paradigms. Whilst no one model is presently
ideal for the study of breathlessness, we  conclude that a carefully
titrated combination of continuous mild hypercapnia and respira-
tory loading (stimulus to induce dyspnoea) will allow the study
of the perception of dyspnoea in healthy volunteers during multi-
session intervention studies.
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