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Abstract. Stalagmites are natural archives containing de-

tailed information on continental climate variability of the

past. Microthermometric measurements of fluid inclusion

homogenisation temperatures allow determination of stalag-

mite formation temperatures by measuring the radius of sta-

ble laser-induced vapour bubbles inside the inclusions. A re-

liable method for precisely measuring the radius of vapour

bubbles is presented. The method is applied to stalagmite

samples for which the formation temperature is known. An

assessment of the bubble radius measurement accuracy and

how this error influences the uncertainty in determining the

formation temperature is provided. We demonstrate that the

nominal homogenisation temperature of a single inclusion

can be determined with an accuracy of ±0.25 ◦C, if the

volume of the inclusion is larger than 105 µm3. With this

method, we could measure in a proof-of-principle investi-

gation that the formation temperature of 10–20 yr old in-

clusions in a stalagmite taken from the Milandre cave is

9.87± 0.80 ◦C, while the mean annual surface temperature,

that in the case of the Milandre cave correlates well with

the cave temperature, was 9.6± 0.15 ◦C, calculated from ac-

tual measurements at that time, showing a very good agree-

ment. Formation temperatures of inclusions formed during

the last 450 yr are found in a temperature range between 8.4

and 9.6 ◦C, which corresponds to the calculated average sur-

face temperature. Paleotemperatures can thus be determined

within ±1.0 ◦C.

1 Introduction

In recent years, stalagmites have gained growing interest in

palaeoclimate research since they can provide long (up to

several hundred thousand years), detailed and precisely dated

records of past climate variability. In many cases cave air

temperature is stable throughout the year and is closely re-

lated to the mean annual air temperature above the cave (Mc-

Dermott, 2004; Fairchild et al., 2006). Assuming that the sta-

lagmite formation temperature equals the cave air tempera-

ture, stalagmites can deliver well-dated and highly resolved

palaeotemperature records.

Until now, palaeoclimate information from stalagmites has

mainly been obtained from stable isotope measurements of

speleothem calcite (δ18O and δ13C), annual band thickness

and trace element contents (Fairchild and Treble, 2009).

These climate proxies can deliver qualitative records of cli-

mate variability, but a quantitative interpretation of the data

still remains difficult. Uncertainties associated with the in-

terpretation of the most widely used climate proxy, the δ18O

signal, are caused by the lack of knowledge of the exact cave

temperature. Furthermore, the δ18O signal can be influenced

by other climatic factors such as precipitation and moisture

source as well as by environmental factors in the epikarst

and the cave. Thus, an independent temperature proxy would

form the basis for a quantitative interpretation of the high-

resolution δ18O isotope records.

Several quantitative temperature proxies have been used to

determine stalagmite formation temperatures. Among these

Published by Copernicus Publications on behalf of the European Geosciences Union.



906 F. Spadin et al.: Accuracy of stalagmite formation temperatures

are “clumped isotopes” (Ghosh et al., 2006; Affek et al.,

2008), δD and δ18O signals (McGarry et al., 2004; Zhang

et al., 2008) and noble gas concentrations of speleothem fluid

inclusion water (Kluge et al., 2008; Scheidegger et al., 2010).

Recently, the fluid inclusion liquid vapour homogenisation

temperature Th has been used as an additional proxy for de-

termining cave air temperatures (Krüger et al., 2011). Fluid

inclusions in stalagmites are primary, which means that they

are formed during crystal growth and thus contain remnants

of the calcite supplying drip water (Kendall and Broughton,

1978). As stalagmites grow under atmospheric pressure con-

ditions, the density of the encapsulated water depends solely

on the stalagmite formation temperature and can thus be de-

termined from Th measurements of fluid inclusions.

However, fluid inclusions from low-temperature environ-

ments are usually in a monophase liquid state. Upon being

cooled below their formation temperature down to a tem-

perature of maximum tension, they remain in a long-lived

metastable state inhibiting a spontaneous nucleation of the

vapour phase. To overcome this metastability, we then use

ultra-short laser pulses to induce vapour bubble nucleation in

the metastable liquid, thus creating a stable two-phase inclu-

sion appropriate for subsequent measurements of the liquid

vapour homogenisation temperature Th (Krüger et al., 2007,

2011).

For a notional stalagmite fluid inclusion of infinite vol-

ume, the experimentally observed (measured) homogenisa-

tion temperature Th obs is equal to the liquid–vapour equi-

librium temperature at ambient pressure. Therefore, we call

this temperature the nominal homogenisation temperature

Th∞. It is equal to the stalagmite formation temperature Tf,

provided that the inclusion has preserved its original fluid

density. In an inclusion of finite volume, however, Th obs

may differ significantly from Th∞ due to the effect of sur-

face tension, working towards a minimisation of the liquid–

vapour interface between the bulk liquid and the vapour bub-

ble. Upon heating of the inclusion, the surface tension in-

creases with decreasing vapour bubble radius, eventually get-

ting strong enough to force the vapour bubble to collapse at

a temperature well below Th∞, even though after the collapse

the bulk liquid will be in a monophase liquid state under neg-

ative pressure (Fall et al., 2009; Marti et al., 2012). Although

Th∞ of a fluid inclusion cannot be measured directly, it can

be determined using the thermodynamic model proposed by

Marti et al. (2012). The model describes the effect of surface

tension on liquid–vapour equilibria in isochoric pure water

systems. It can be applied to approximate the p-V -T (pres-

sure, volume, temperature) properties of drip water encapsu-

lated in stalagmite fluid inclusions if the size of the vapour

bubble is known for at least two temperature values.

The aim of this study was to evaluate the accuracy of this

new temperature proxy, both for determining Th∞ of a sin-

gle fluid inclusion and for determining the formation tem-

perature of a stalagmite growth band. For these purposes, we

introduce an accurate and reliable method for measuring the

bubble radius inside the fluid inclusion. Based on the ther-

modynamic model, we will show how the accuracy of Th∞

is influenced by a measuring error in the vapour bubble ra-

dius and what error in the radius measurement is tolerable to

achieve a precision of ±0.25 ◦C in the determination of the

stalagmite formation temperature Tf. The theoretical values

are compared to experiments performed on fluid inclusions

from actively growing stalagmites from the Milandre cave in

Switzerland.

2 Theoretical background

Equation (1) sets the volume V and the formation (bulk) den-

sity %f of a fluid inclusion in relation to the radius of vapour

bubbles at a given temperature r(T ). The formation density

%f equals the saturation density of liquid water at the for-

mation temperature Tf, i.e. %f = %
s
L(Tf). Due to the low for-

mation temperature of stalagmites, the volume of the vapour

bubble is small compared to the total volume of the inclusion

and the shape of the bubble can be assumed to be spherical.

Note that Eq. (1) is only valid for an isochoric system:

%f

%s
L(T )

≈

[
1−

2σ (T )

r(T )
κL(T )

][
1−

4πr(T )3

3V
.

]
(1)

%s
L(T ) is the saturation density of liquid water, σ (T ) is the

surface tension and κL(T ) is the isothermal compressibility

of liquid water. The values of these temperature dependent

variables can be derived from the IAPWS-95 formulation

(Wagner and Pruss, 2002). In the isochoric system, the two

unknown variables %f, the bulk density that serves as a mea-

sure for Th∞ (= Tf) and V , the volume of the fluid inclu-

sion, are constant, whereas the radius r of the vapour bub-

ble that varies with temperature T is a measurable quantity.

Equation (1) is a good approximation if the density of the

liquid phase is much higher than the density of the gaseous

phase, i.e. far away from the critical point. To apply Eq. (1) to

fluid inclusions in stalagmites, we additionally must take into

account the deviation of fluid inclusions from the isochoric

system, i.e. the temperature dependent volume change of the

host calcite. Equation (1) then reads

%f

%s
L(T )

V (Th∞)

V (T )
≈

[
1−

2σ (T )

r(T )
κL(T )

][
1−

4πr(T )3

3V (T )

]
(2)

with

V (T )= V (Th∞)+α(Th∞− T ), (3)

where V (Th∞) is the volume of the inclusion at the nom-

inal homogenisation temperature and α denotes the thermal

expansion coefficient of calcite derived from an extrapolation

of experimental data of Rao et al. (1968). To solve Eq. (2) for

the two unknown parameters %f (≡ Th∞ = Tf) and V (Th∞),

we need at least two measurements of the vapour bubble ra-

dius at two different temperatures that can be chosen arbi-

trarily. Marti et al. (2012) suggested measuring the maxi-

mum bubble radius, which in a pure calcite host is reached
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at 5.1 ◦C (Marti et al., 2009), and the minimum (zero) radius

that is reached at Th obs. The second radius measurement is

trivial, yet Marti et al. (2012) pointed out that the thermody-

namic model defines Th obs only within a certain range since

the two-phase system passes through a metastable field upon

heating; in this study, we assume Th obs to coincide with the

thermodynamic instability limit of the two-phase system.

3 Experimental methods

3.1 Samples and preparation

We analysed fluid inclusions in two stalagmites from the Mi-

landre cave in Switzerland (47◦29′ N, 07◦01′ E), both with

columnar calcite fabrics. The two stalagmites, M1 and M2,

were located approximately 50 m apart and actively growing

when collected in 2007. The studied top layer sections do not

show any signs (e.g. dust layers) of discontinuities (Fig. 1). A

total of five uranium series dates for stalagmite M2 suggest a

slow and remarkably constant growth rate of between 0.013

and 0.017 mm yr−1 over the last 14 300 yr (Häuselmann et

al., 2015). The lack of uranium series dates for stalagmite M1

makes it difficult to calculate precise growth rates. However,

since the shape and calcite textures of stalagmite M1 are very

similar to those of M2 (see Fig. 1 and Fig. 2), we assume that

the growth rates of both stalagmites are very similar, also be-

cause both samples were formed under the same growth con-

ditions (drip rate, drip height, temperature, ventilation and

p(CO2)). The temperature in the Milandre cave was moni-

tored during the year 2008 using temperature loggers at the

two stalagmite sites yielding mean cave air temperatures of

9.59 ◦C (M1) and 9.56 ◦C (M2). The temperature in the cave

was found to be stable within ±0.15 ◦C throughout the year

(Schmassmann, 2010).

– Stalagmite M1 is 37 cm long and fed by a soda straw

142 cm above, with an average drip period of 5′ 45′′. It

contains numerous sealed fluid inclusions at the very

top (Fig. 2a). Only these inclusions were used for in-

vestigating the accuracy with which the homogenisation

temperature Th∞ can be determined.

– Stalagmite M2 is 27 cm long and fed by a soda straw

155 cm above with an average drip period of 6′ 30′′. In

the top part of the stalagmite several growth bands are

visible, containing large fluid inclusions (see Fig. 2b).

Fluid inclusions in the most recent growth band are

still open, i.e. they have not been sealed off by calcite

overgrowth. Figure 2b shows the four top major growth

bands with numerous fluid inclusions which were used

to determine the average cave temperature during the

last 450 yr.

We assume that the cave air temperature at the time a fluid

inclusion was sealed by calcite overgrowth determines the

density of the enclosed fluid. Therefore, the age of a single

Figure 1. Photographs (cross sections) of the stalagmites M1 and

M2 showing the locations of the U / Th dated layers.

Figure 2. (a) Top of stalagmite M1 with the (active) growth front

marked by the dotted line. The photograph was taken after the gen-

eration of the vapour bubble marked by the arrow. (b) Photograph

of the thin section of the top of stalagmite M2. The dotted lines in-

dicate the growth bands 1–4 with the fluid inclusion assemblages,

with 1 being the youngest.

fluid inclusion equals the age of the calcite host at the top end

of the fluid inclusion that lies closest to the stalagmite growth

front.

The samples were transported, stored and handled at 8–

12 ◦C, close to the present-day cave air temperature. In this

way, we avoided large internal fluid overpressure induced at

elevated temperatures, which could induce a stretching of the

inclusion. Assuming the worst case, that an inclusion formed

at 8 ◦C reaches room temperature at some point during han-

dling, would increase its internal pressure by a maximum of

only 35.7 bar.

www.clim-past.net/11/905/2015/ Clim. Past, 11, 905–913, 2015
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The stalagmites were prepared to sections of 300–400 µm

thickness using a Buehler Isomet low speed circular saw. To

avoid additional stress on the calcite host we refrained from

polishing the sample surface, and used instead immersion oil

to compensate for the rough surface for microscopic obser-

vation of the vapour bubble.

3.2 Microthermometry

For the microthermometric measurements, we used

a THMSG 600 heating–freezing stage with an accuracy of

±0.1 ◦C (Linkam) mounted on an Olympus BX51 upright

microscope. The stage was calibrated using synthetic H2O

and H2O–CO2 inclusions. The microscope was equipped

with an Olympus 100× LMPlan FI LWD objective with

a numerical aperture of 0.8 and an LWD condenser front lens

(Linkam) with a numerical aperture of about 0.4, resulting

in a theoretical resolution of 0.4 µm.

The beam of a Ti:sapphire laser system (Coherent RegA

9000) delivering amplified femtosecond laser pulses was

guided through the objective of the microscope to induce

vapour bubble nucleation in metastable monophase inclu-

sions (Krüger et al., 2007). Repeated measurements of Th obs

typically revealed a repeatability within±0.05 ◦C, indicating

that the high-intensity laser pulses do not alter the volume of

the inclusions. Only in the cases when the inclusion leaked

did we observe a slow increase of Th obs when we repeated

the measurements with a time interval of about 24 h.

3.3 Bubble radius determination

A Monte Carlo ray tracing simulation was specifically de-

veloped to model bubble imaging of optical systems with

varying objective numerical aperture, condenser numerical

aperture, image sensor pixel size and refractive index of the

host material. The simulation models a light source, which

emits a predefined number of rays according to the specified

condenser parameters. Light rays are treated as vectors, and

once an intersection point with the bubble boundary surface

(modelled as a perfect sphere) is encountered, reflective and

refractive behaviour is determined according to the Fresnel

equations using pseudo-random numbers. Once the ray has

passed the bubble, it is projected onto a screen.

The simulation allowed us to model situations when only

a limited number of rays were considered, for example, only

those that get reflected off the bubble surface. These simula-

tions provided a fundamental understanding of how an image

is formed in a microscopic system and how the image pattern

is influenced by the different classes of rays.

Contrast and resolution of bubble images depend on the

numerical aperture of the imaging optics used in the mi-

croscopy system. Highly resolving systems (objective with

NA= 1.4) image a bubble having a bright centre and a bright,

sharply defined circular rim that is best visible if the focus is

set close to the axial centre of the bubble (see Fig. 3a). This

−10 −5 0 5 10
0

0.2
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0.6

0.8

1

[um]

simulation

measurement

−10 −5 0 5 10
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a) b)

Figure 3. Comparison of two optical images of the same bubble

seen through different imaging systems and their measured and sim-

ulated profiles along the dotted line shown in the images. (a) Objec-

tive NA 1.4 and condenser NA 0.4, (b) objective NA 0.8 and con-

denser NA 0.2. The outer rim is visible in both images and profiles,

but much less pronounced in the low NA image on the right. The

optically determined radii, (a) 6.75 and (b) 6.9 µm, are highlighted

as vertical dashed lines in the profiles.

circular bright ring is less pronounced and with a blurred out-

line the lower the numerical aperture of the objective and

therefore the resolution of the microscope. This fact was

found independent of the focus position (Fig. 3b). To mea-

sure the bubble radius from such images accurately, one must

thoroughly understand the process of image formation and its

dependence on the specifications of the imaging system.

For a known imaging system, a model image (or radial

profile) of a bubble of specified size can be simulated. The

model is then fitted to the real optical images taken with this

system, allowing a precise and consistent determination of

bubble radii.

The aforementioned image simulation was verified using

a non-optical measurement. Bubbles were first created inside

a liquid, highly viscous epoxy resin using single femtosec-

ond laser pulses and then cured, thus making them invariable

in size. These epoxy bubbles were then imaged and analysed

using the routine described above. Subsequently, the epoxy

sample was cut with a microtome into 500 nm thick slices

and measured with an atomic force microscope (AFM). The

bubble radius was determined from the obtained data and

compared with the prior taken optical image measurements.

The mechanically measured radii and the optical mea-

surements turned out to deviate by no more than ±0.25 µm,

which corresponds to the lateral optical resolution of

0.24 µm achieved with the high numerical aperture objec-

tive (NA= 1.4). Said deviations also incorporated errors in-

troduced by the AFM measurement, the microtome cutting
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Figure 4. Error limit in Th∞ due to an underestimation of the ra-

dius by 0.25 µm, as a function of the bubble radius for different

Th obs of 6, 10, 16 and 20 ◦C.

and the reconstruction of the bubble, so the actual deviation

of the optical method is most likely lower. Nevertheless, we

consider this deviation to be the limit of error for our bub-

ble radius measurement. Even the blurred images taken with

a low-resolution microscope (numerical aperture of the ob-

jective NA= 0.8) did not cause larger deviations despite of-

fering significantly worse resolution, showing the robustness

of our fit routine. The fit routine only failed if the resolution

of the image was further reduced by spherical aberration or

birefringence in the calcite, or when imaging an inclusion

deep below the sample surface.

4 Results

4.1 Expected error in determination of Th∞

Figure 4 shows the error limit 1Th∞ as a function of the

bubble radius for different Th obs, calculated from the thermo-

dynamic model (Marti et al., 2012) assuming a determined

radius underestimation (error) of 0.25 µm.

It can be seen that the larger the bubble radius and the

higher Th obs (translating to larger inclusions and higher

Th∞), the smaller the influence of a radius measurement er-

ror. The influence of a radius underestimation that leads to

an overestimation of Th∞ is always larger than that of an

overestimation of the radius, leading to an underestimation

of Th∞.

To give an example: a bubble radius of 1.5 µm at 5.1 ◦C

and a Th obs of 10 ◦C was measured in a fluid inclusion. Eval-

uation with the thermodynamic model results in an inclu-

sion volume of V = 5.3× 104 µm3 and Th∞ = 11.55 ◦C. If

the bubble radius is overestimated by 0.25 µm, i.e. the bub-

ble radius measurement incorrectly yielded 1.75 µm, the Th∞

would be underestimated by 0.16 ◦C, and the calculated vol-
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Figure 5. Dependence of the inclusion volume (dashed lines) and

Th∞ (solid lines) on Th obs and robs. Grey bars indicate a radius

measurement error of ±0.25 µm.

ume would be overestimated to be 8.98× 104 µm3. An un-

derestimation of the radius by the same amount would lead to

an overestimation of Th∞ by 0.22 ◦C, and the volume would

be calculated to be 3.13× 104 µm3.

Figure 5 shows the interrelationship between the fluid in-

clusion volume and formation temperature, and the observ-

ables Th obs and robs, the bubble radius measured at 5.1 ◦C.

It is again apparent that the larger the inclusion volume, the

smaller the effect of a radius measurement error on Th∞.

This means that, since for the same Th∞ larger inclusions

result in larger bubble radii at 5.1 ◦C, only inclusions that are

larger than a certain threshold can be evaluated so that the

requested precision in Th∞ is accomplished. This threshold

depends on the microscope system and the formation tem-

perature of the inclusions.

4.2 Experimental validation on recent fluid inclusions

To validate our theoretical assumptions, we analysed recent

inclusions found in the very top layer of stalagmite M1. Since

we have a good estimate of the formation temperature based

on the actual cave temperature and the temperature record

measured above the cave (see next paragraph) and therefore

the bulk density %f of these inclusions, it is apparent from

Eq. (2) that only one radius measurement is necessary to

fully characterise the inclusions and calculate the theoretical

radius of the vapour bubble at 5.1 ◦C. The easiest way to per-

form this measurement is when the bubble vanishes (r = 0),

i.e. at the bubble collapse Th obs.

We selected a fluid inclusion of small volume from Stalag-

mite M1 (see Fig. 2a) that most likely had preserved its orig-

inal fluid density, i.e. that could resist the mechanical stress

induced by sample preparation. Assuming a growth rate of

www.clim-past.net/11/905/2015/ Clim. Past, 11, 905–913, 2015



910 F. Spadin et al.: Accuracy of stalagmite formation temperatures

Figure 6. Surface temperature reconstruction (47–48◦N; 6.5–

7.5◦E; Luterbacher et al., 2004). The grey graph shows the annual

temperatures, a 20 yr running average is plotted in black. The cur-

rent cave temperature is shown as a dashed line. The black horizon-

tal arrow denotes the estimated temporal coverage of the studied

6 mm long section of stalagmite M2 assuming an average growth

rate of 0.015 mm per year. The vertical black arrow denotes the age

of the top (date of sampling) of stalagmite M2.

Figure 7. Photomicrograph of a vapour bubble taken at 5.1 ◦C in

a fluid inclusion from M1. The solid circle indicates the measured

bubble size robs, together with its margins of error (±0.25 µm, dot-

ted lines). The circumference corresponding to the theoretical ra-

dius rcalc is shown as a white dashed circle. The right side shows

the measured radial intensity profile compared with the simulation

as well as the physical bubble boundary robs.

around 15 µm per year, which is comparable to that deter-

mined for stalagmite M2, the inclusion would have sealed

off about 10 yr before the stalagmite M1 was taken from the

cave in 2007.

Figure 6 shows the surface temperature in the vicinity (for

grid box 47–48◦N; 6.5–7.5◦E) of the Milandre cave between

1500 and 2002 (Luterbacher et al., 2004). A 20 yr running

average is believed to approximate the cave temperature,

leading to an estimated formation temperature for the recent

inclusions of M1 of 9.6± 0.15 ◦C, which agrees well with

the actual temperature of the cave (9.59± 0.15 ◦C) measured

during 2008.

Knowledge of Tf allows us to calculate a theoretical bubble

radius rcalc, but for now we ignore this knowledge and try to

calculate Tf based on measurements of robs and Th obs.

Figure 7 shows a photomicrograph of a vapour bubble

taken at 5.1 ◦C inside a fluid inclusion from stalagmite M1.

Superimposed on the original image are the measured radius

obtained from the optical bubble image with the radii corre-

sponding to an assumed error limit of±0.25 µm. For compar-

ison, the theoretical bubble radius calculated from the ther-

modynamic model by assuming a Tf of 9.6 ◦C, as derived

from Fig. 6 is shown.

The radius determined from this image by fitting a sim-

ulated profile (solid circle in Fig. 7) was 0.82± 0.25 µm,

which is 0.09 µm smaller than the theoretical radius. Together

with the measured Th obs of 6.5 ◦C, this results in Th∞ of

9.87± 0.80 ◦C, which is 0.27 ◦C higher than the estimated

formation temperature.

It is remarkable that despite the very small bubble and low-

resolution image, making it all but impossible to determine

an accurate bubble radius, our method enables us to deter-

mine temperature data that are in good agreement with es-

timations based on the air temperature measurements above

the cave, which match the actual recorded cave temperature.

This is testimony to the robustness and consistency of our

method.

4.3 Determination of paleotemperatures

After testing our method on a fluid inclusion of known for-

mation temperature, we determined the nominal homogeni-

sation temperature Th∞ of different fluid inclusion assem-

blages found within the top 6–7 mm of stalagmite M2.

Assuming an average growth rate of 0.015 mm per year

(see Sect. 3.1 for further details), the top 6–7 mm could com-

prise the last 450 yr or even less if the growth rate was

slightly higher. As mentioned earlier, this section contains

four major growth bands with numerous fluid inclusions (see

Fig. 2b). Outside the Milandre cave, the mean annual tem-

perature has varied during the last 450 yr as shown in Fig. 6

(Luterbacher et al., 2004). It can be seen that the mean annual

temperature varied around 8.4 ◦C (smoothed values) with a

strong increase during the last 50 yr to the actual value of

9.6 ◦C, which matches the actual recorded cave temperature.

If we assume that the cave climate reacts slowly to changes

in surface temperature, these data show that the cave temper-

ature varied in the same range. Figure 8 shows the calculated

Th∞ of fluid inclusions from the stalagmite M2 as a func-

tion of the inclusion volume, calculated from r (5.1 ◦C) and

Th obs measurements. Each Th∞ value represents the forma-

tion temperature of the respective inclusion at the time it was

sealed off from the environment.

5 Discussion

We aimed to determine the accuracy with which our model

allows us to determine the nominal homogenisation tem-

perature Th∞ of a single fluid inclusion. We introduced

a simulation-based measurement method of bubble radii for
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Figure 8. Results from stalagmite M2. Th∞ and inclusion volumes

are calculated from Th obs and r (5.1 ◦C) and are shown as grey dots.

The errors in Th∞ and the inclusion volume V resulting from an er-

ror in bubble radius determination of ±0.25 µm are indicated. For

the sake of legibility, not all volume error bars are shown. See Fig. 4

for a more complete illustration of the errors. The expected forma-

tion temperature of the analysed stalagmite section is indicated by

the grey bar. The dashed curve depicts the boundary below which

no bubble can be nucleated, for details refer to Sect. 5.

which we established a maximum deviation of no more than

±0.25 µm.

In Fig. 4, we showed how this radius measurement error

limit of±0.25 µm affects the precision of the calculated Th∞

for different values of Th obs. It can be seen that for inclusions

with a high Th obs and bubble radii above 1.5 µm, the resulting

error in Th∞ remains smaller than ±0.25 ◦C. It can also be

seen that, again assuming a radius measurement error limit of

±0.25 µm, even for low Th obs and radii as small as 0.75 µm,

the error in Th∞ determination is still smaller than ±1 ◦C,

a significant improvement over alternative techniques.

Figure 7 shows the above principle in an inclusion of sta-

lagmite M1, where the formation temperature and, therefore,

Th∞ is known. We compared the measured bubble radius

with the theoretical radius calculated from the known forma-

tion temperature. The image shows a bubble inside a small

inclusion of a volume of 5.0× 104 µm3. Despite the fact that

the radius of the bubble is measured to be only 0.82 µm and

a microscope with a low NA-objective (NA= 0.8) was used,

leading to a blurred image whose quality is additionally re-

duced by birefringent effects of the calcite, the measured

size of the bubble and the theoretically calculated size nicely

agree. The measured radius was apparently underestimated

by 0.09 µm, which translates into an error in the formation

temperature of +0.27 ◦C compared to the current, measured

cave temperature.

When analysing inclusions and inclusion assemblages in

stalagmites, we are faced with an additional source of error:

the inclusions may have leaked due to cracks in the host cal-

cite, incorrect storage or handling or measurement prepara-

tion steps such as sawing. We can still determine Th∞ of such

inclusions with high precision, but it may no longer equal

the formation temperature Tf. We are not aware of any mech-

anism that lowers Th∞ of an inclusion. Therefore, we as-

sume that all mechanisms altering the inclusion will result in

a Th∞ that is higher than the formation temperature Tf. The

closest approximation of the stalagmite formation tempera-

ture is derived from inclusions that display the lowest Th∞

values within individual growth bands, assuming that a num-

ber of unaltered inclusions are present in each growth band.

The temporal resolution of our technique therefore depends

on the number of inclusions found in a given growth band

since we now rely on statistics.

The outcome of such a measurement of fluid inclusions

in stalagmite M2 is shown in Fig. 8. These inclusions were

found in the growth bands 1–4 (see Fig. 2), which were

formed over a period of about 450 yr (Fig. 6), during which

the cave air temperature increased by about 1.2 ◦C to the

actual cave temperature of 9.6 ◦C. As a result, the forma-

tion temperatures of the inclusions range from 8.4 to 9.6 ◦C,

shown as a grey band in Fig. 8. The low temporal resolu-

tion of 450 yr is a result of the fact that we had to break our

samples into small pieces of maximum 7 mm in diameter due

to the limited space of the heating/freezing stage used. After

breaking the samples, we were no longer able to precisely

determine the exact position of the fluid inclusion. There-

fore, a chronological reconstruction of the temperature data

within the last 450 yr was not possible. In future, an exact

positioning of the inclusion will be possible due to our novel

freezing/heating stage which allows us to study large samples

(Krüger et al., 2014).

The data reveal that there appears to be a trend towards

lower Th∞ with increasing inclusion volume. This trend,

however, can be attributed to the surface tension: the smaller

the inclusions, the smaller the bubbles inside the inclusions,

and the larger the influence of the surface tension. For each

specific Th∞, there is an inclusion volume below which no

bubble can be induced, since the surface tension is strong

enough to prohibit bubble nucleation (Marti et al., 2012). In

Fig. 8, this threshold is shown as a dotted line. For the pre-

sented data from the Milandre cave, where Tf lies between

8.4 and 9.6 ◦C, the smallest volumes where a bubble can still

be nucleated are between about 3× 105 and 3× 104 µm3, re-

spectively. For inclusions below these sizes, it is impossible

to nucleate a bubble unless the inclusion has leaked. Thus,

since we rely on bubble radius determination in our method,

we are not able to measure Th∞ of unaltered inclusions that

are smaller in volume than this threshold.

In the case of the Milandre cave, the calculated Th∞ of

the lowest 30 % (8 out of 27) inclusions lie within the band

that depicts the possible formation temperatures; these 30 %

can be assumed not to have leaked and, thus, to show the

correct formation temperature. In fact, in older stalagmites
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(hundreds of thousand of years), where the host calcite had

time to recrystallise, there is a clear gap observable between

low Th∞ and high Th∞ of inclusions. We assume these low

Th∞ inclusions to have kept their original density and the

high Th∞ inclusions to have leaked over time (Meckler et al.,

2015).

For growth bands with few inclusions, our method can

therefore only provide an upper limit to the temperature. The

higher the number of inclusions within a growth band, the

more precise this upper limit coincides with the formation

temperature. The same is true for inclusions in less porous

hosts, as this decreases the percentage of inclusions that are

altered during preparation.

We can therefore conclude that, when measuring fluid in-

clusion assemblages in stalagmites of unknown formation

temperature, we can apply the method described in Marti

et al. (2012) to determine Th∞ of the inclusions. To de-

termine the formation temperature and, therefore, the cave

air temperature at the time the inclusion assemblage was

formed, we then have to consider only the lowest values

of the calculated Th∞. The size of the measured inclusions

however limits the possible formation temperatures accessi-

ble, due to the aforementioned volume threshold. Nonethe-

less, if enough large inclusions are present, the method pre-

sented can achieve an accuracy in cave air temperature deter-

mination of ±0.25 ◦C.

6 Conclusions

We introduced a simulation-based bubble radius determina-

tion method and successfully assessed its accuracy by com-

paring it to non-optical measurements. We revealed that in

conjunction with this method, our thermodynamic model en-

ables us to reliably determine the nominal homogenisation

temperature of single inclusions with an accuracy of better

than ±0.25 ◦C if the vapour bubble radius exceeds 1.5 µm.

For smaller radii, 1Th∞ will be no larger than ±1 ◦C. The

success of our method in determining paleotemperatures de-

pends on the number of fluid inclusions that can be found in

a growth band of the stalagmite. For high enough numbers,

our method allows accurate determination of cave tempera-

tures with an error no worse than ±1 ◦C. If in addition the

stalagmite contains large inclusions, the precision expected

is even better than ±0.25 ◦C.
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