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The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the
anisotropy of magnetoviscous effect, change in viscosity with orientation of magnetic field, have
been a focus of interest since four decades. A satisfactory understanding of the microscopic origin of
anisotropy of magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense
research. Here, we present an extensive simulation study to understand the relation between the
anisotropy of magnetoviscous effect and the underlying change in micro-structures of ferrofluids. Our
results indicate that field-induced chain-like structures respond very differently depending on their
orientation relative to the direction of an externally applied shear flow, which leads to a pronounced
anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction
strengths which correspond to weak, intermediate and strong interactions between dipolar colloidal
particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids
as well as with an existing theoretical model called the chain model. A non-monotonic behaviour
in the anisotropy of magnetoviscous effect is observed with increasing dipolar interaction strength
and is explained in terms of micro-structure formation.

PACS numbers: 75.50.Mm, 82.20.Wt, 83.80.Hj, 83.80.Gv, 47.32.-y

I. INTRODUCTION

Magnetic fluids in general and ferrofluids in particular
exhibit interesting viscous properties in the absence and
presence of an external field. The viscous properties of
ferrofluids have been studied for decades due to the med-
ical and technological applications [1]. The strength of
the magnetic field has a major influence on the viscosity
of ferrofluids which is known as the magnetoviscous effect
(MVE) [1–8]. In addition to the strength of the applied
field, its orientation with respect to the flow geometry is
found to have an influence on the viscosity of the ferroflu-
ids, which is known as the anisotropy of magnetoviscous
effect. It has been first observed in a classic experiment
on dilute ferrofluids by McTague in 1968 [9]. In Mc-
Tague’s experiment, an external magnetic field is applied
parallel and perpendicular to the capillary tube axis. He
found that the viscosity increases when the external mag-
netic field is applied parallel to the flow direction com-
pared to the change in viscosity when the field is oriented
perpendicular to the flow direction. This is due to the
occurrence of an additional magnetic torque due to the
misalignment of dipole moment and the magnetic field
direction. In 1972, Shliomis [10] proposed a theoretical
model (NI model) for non-interacting ferrofluid system to
understand the anisotropy of MVE. The NI model suc-
cessfully described the results of McTague’s experiment.
To observe the viscosity changes in the flow, gradient of
the flow and the vorticity directions, Grants et al. [11]
carried out experiments in a parallel plate geometry for
a weakly interacting system. From this experiment, it is
observed that the magnetic field is applied along gradient
of the flow direction causes large viscosity than that of
the flow and vorticity directions. Later on, a number of
experiments have been carried out in a capillary flow ge-

ometry in dilute as well as in concentrated ferrofluids [12–
14]. A clear dependence of MVE on shear rate has been
observed experimentally in ferrofluids with volume frac-
tions greater than 1% [15–17]. Since the NI model does
not take the shear dependence of MVE into account, this
model is not sufficient qualitatively and quantitatively to
explain the viscosity changes in an interacting ferrofluid
system. An alternative approach to ferrofluid dynam-
ics and their MVE via the macroscopic thermodynamics
was proposed by Müller and Liu [18]. Since our aim here
is to better understand the relation between MVE and
underlying structural changes, we focus on the kinetic
chain model of Zubarev and Iskakova [19]. Since dipo-
lar interactions lead to chain-like aggregates, the chain
model assumes the aggregates to be effectively rigid and
non-interacting. A few numerical simulations focussed
on the anisotropy of magnetoviscous effect in semi-dilute
and moderately interacting ferrofluids [20, 21]. The nu-
merical results are successfully compared to the chain
model prediction for moderately interacting system. The
anisotropy of magnetoviscous effect by varying dipolar
interaction strengths including strong interactions is im-
portant to study in order to obtain a clear picture of the
rheology of various ferrofluid systems. Here, we mainly
focus on this aspect, which has not been studied system-
atically in experiments and in simulations so far. The
inter-chain interactions can not be ignored with increas-
ing dipolar interactions. The chain model is not valid in
such cases. We provide structural information from sim-
ulations to incorporate in the chain model to observe the
possible influence of inter-chain interactions.
We organize the paper as follows. In Sec. II, we de-

scribe the model we use to study ferrofluids and the non-
equilibrium simulation details. In Sec. III, we provide a
brief review of existing theoretical models which relate
the MVE to mesoscopic structures. Our results and dis-
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cussions on the zero field case are given in Sec. IV and on
the applied field case are given in Sec. V. The compari-
son of our results with experiments is shown in Sec. VI.
The summary of the paper and a short discussion are
provided in Sec. VII.

II. METHODS

We study ferrofluids that can be modelled as a sys-
tem of N magnetically hard point dipoles in a volume
V and diameter σ with short range repulsive interac-
tion and long range dipole-dipole interaction [22–24]. We
choose truncated and shifted Lennard-Jones potential
ULJ
ij with a cut-off rc = 21/6σ such that the potential is

cut off in the minimum (known as the Weeks-Chandler-
Anderson potential [22]), which mimics the steric repul-
sion of polymer-coated colloidal particles.

ULJ
ij = 4ǫ

[

(

σ

rij

)12

−
(

σ

rij

)6
]

, (1)

where ǫ is the depth of the potential, rij is the distance
between two particles. The long range dipole-dipole in-
teraction is given by

Udd
ij =

µ0m
2

4πr3ij
[ui · uj − 3(ui · r̂ij)(uj · r̂ij)]. (2)

For a system of monodispersed particles, m is the mag-
netic dipole moment, dm is the magnetic core diameter,
ui is the orientation of particle i, rij = ri− rj is the con-
nector vector of the two particles, rij = |rij |, r̂ij =

rij

rij

and µ0 = 4π×10−7 H/m. The dipole interaction strength
of two dipoles with minimum distance dm is given by
λm = µ0m

2/4πkBTd
3
m, where kB is the Boltzmann con-

stant and T is the temperature. Due to steric repul-
sion the minimum distance between two dipolar parti-
cles is dh, thus the effective dipolar interaction strength

becomes λ = λm

(

dm

dh

)3

. We take the long-range part

of dipolar interaction into account using reaction field
method (RF)[25]. In this method, a cavity of radius rRF

(here rRF = 8.0σ) is defined within which the interactions
of dipolar particles are treated explicitly. The particles
outside this cavity form a dielectric continuum, εs, which
develops a reaction field inside the cavity. The strength
of the reaction field acting on particle i is given by

H
RF
i =

2 (εs − 1)

2εs + 1

1

r3RF

∑

j

mj ,

where the summation extends over molecules inside the
cavity. We consider rRF much greater than rc of short
range interactions. We used RF method with a metallic
boundary condition (εs → ∞) [22, 25] so that the system
is surrounded by a uniform medium with infinite mag-
netic permeability, thus the internal magnetic field co-
incides with the applied homogeneous external field H.
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FIG. 1. The equilibrium magnetisation curve (M) as a func-
tion of applied magnetic field strength (H).

We have compared the results obtained by RF method
with those of the Ewald summation method both with
a metallic boundary condition. For the present range of
parameters, we find that both methods give identical re-
sults within numerical uncertainties. Since we find the
RF method to be computationally more efficient than
the Ewald summation method, we choose to perform our
simulations with the RF method.
We parameterise our model for cobalt-based ferrofluids

according to the ferrofluids used in the work by M. Gerth-
Noritzsch et al. [26]. We choose the magnetic volume
fraction φ = 0.0021 that corresponds to a hydrodynamic
volume fraction φh = φ (dh/dm)

3
= 0.007 where mag-

netic core diameter dm = 10 nm and effective hydrody-
namic particle diameter dh = σ = 15 nm . The individual
magnetic moments mi = mui give rise to a macroscopic
magnetization M = Msū, where ū = (1/N)

∑

i ui is the
average orientation of the particles and Ms = Nm/V is
the saturation magnetization. We choose the saturation
magnetization value Ms = 3.2 × 103A/m from experi-
ment [26]. For a dipolar interaction strength λ ≈ 4.6,
the magnetization curve obtained from simulations are
comparable to the experimental data as shown in Fig. 1.

We perform Langevin dynamics (LD) simulations in
the presence of a shear flow V(r) with vorticity Ω(r) =
1
2∇ × V(r). The translational and rotational Langevin
equations of motion of the system are given by

M v̇i = −ξT [vi(t)−V(r)] + f
B
i (t) + Fi (3)

I · ω̇i = −ξR [ωi(t)−Ω(r)] + τ
B
i (t)+ τi +mui ×H, (4)

where M and I are the mass and inertia tensor of the
particle with linear and angular velocity vi and ωi re-
spectively, ξT is the translational friction coefficient and
ξR is the rotational friction coefficient. For a solvent of
viscosity ηs, ξT = 3πηsσ and ξR = πηsσ

3. f
B
i (t) and
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τ
B
i (t) are Gaussian random forces and torques. The

potential forces are given by Fi = −∇ri
U with U =

1
2

∑

ij(U
LJ
ij +Udd

ij )+
∑

i U
RF
i , where URF

i is the potential
energy from the reaction field approach. The potential
torques are given by Fi = −∇ri

U and τi = −LiU with
rotational operator Li = ui× ∂

∂ui
. The external magnetic

field contributes an additional term UH
i = −mui ·H to

the potential energy of the system. The torque exerted
by the magnetic field is −LiU

H
i = mui×H. We consider

the free-draining limit in Eqs. (3) and (4) since hydrody-
namic interactions are not taken into account.
In a planar shear flow along the xy-plane V(r) =

(γ̇y, 0, 0) with vorticity along the z-axis, the effective
shear viscosity is defined as η = −Pyx/γ̇, where Pyx is

the yx-component of the pressure tensor and γ̇ = ∂v(x)
∂y

is the shear rate. In the absence of an external torque,
particles rotate with an angular velocity equal to the vor-
ticity (ω = Ω). A deviation in the angular velocity from
the vorticity of the particle causes an additional friction
in the rotation of the particle gives rise to a rotational
viscosity. In the presence of an external magnetic field,
dipole moment of particles prefer to orient in the field
direction. A viscous torque −ξR (ωi −Ω) tends to ro-
tate the particle causing a misalignment of moment and
the field. A magnetic torque mui ×H develops to coun-
teract the viscous torque. From the magnetic and vis-

cous torque balance, we get M ×H = NξR

V (〈ω〉 −Ω) =
6ηsφh (〈ω〉 −Ω) [27], which contributes to the antisym-
metric part of viscous stress tensor. The total viscous
stress tensor σ can be decomposed into its isotropic, sym-
metric traceless and antisymmetric part [4, 6]:

σ = −pI+ σ
sym +

1

2
ǫ · σa, (5)

where the isotropic pressure p is one-third of the trace of
the total viscous pressure tensor. σsym is the symmetric
traceless part of viscous stress tensor. The antisymmetric
part of the viscous stress tensor is due to the body cou-
pling σ

a = M ×H. ǫ is the total antisymmetric tensor
of rank three. By incorporating the Irving-Kirkwood ex-
pression for the stress tensor, the constitutive equation
(the expression for viscous pressure tensor) has a form
given by [28]

σ = −pI+ ηs

[

∇v + (∇v)
T
]

− 1

2V

N
∑

j<k

(rjkFjk)
sym

+
1

2
ǫ · (M×H) .(6)

The rotational viscosity (ηrot) of the system is given by,

ηrot =
1

2γ̇
ǫ · σa =

1

2γ̇
ǫ · (M×H) , (7)

The contribution of H
RF
i to the rotational viscosity is

negligible for the range of state points we study and is
not included in the calculation of ηrot. Three Miesowicz

viscosity coefficients are defined in a planar shear flow
according to the orientation of an external magnetic field
with respect to the flow, gradient of the flow and the
vorticity direction, denoted as η1, η2, and η3, respectively
[7, 28]. The relative difference of each viscosity coefficient
with respect to the corresponding zero field viscosity de-
termines the anisotropy of magnetoviscous effect [1, 21],

MVE,∆η =
η(H, γ̇)− η(H = 0, γ̇)

η(H = 0, γ̇)
. (8)

We perform Langevin dynamics simulations for sys-
tems containing N = 1000 particles in a planar shear flow
subject to various orientations and strengths of an ex-
ternally applied magnetic field H. We use Lees-Edwards
periodic boundary conditions for non-equilibrium simu-
lations [25]. The integration time step for equilibrium
simulations is ∆t = 0.002 and reduced to ∆t = 0.00025
for high shear rates.

III. THEORETICAL MODELS

We briefly review the existing theoretical models de-
veloped to understand the rheology of ferrofluids. The
magnetoviscous effect of non-interacting ferrofluids has
been predicted with the help of the NI model by Shliomis
[10]. The rotational viscosity of a non-interacting fer-
rofluid system predicted using NI model has the form
ηrot = M⊥H/4Ω, where M⊥ is the non-equilibrium com-
ponent of the magnetization perpendicular to the mag-
netic field direction. For weak flows, M⊥ is small and cal-
culated from the phenomenological magnetization equa-
tion in linear approximation. The modified rotational
viscosity is the predicted as [27],

ηrot =
3

2
ηsφhh

L1(h)

2 + hL1(h)
, (9)

where h = mH/kBT is the Langevin parameter and the
Langevin function L1(x) = coth(x)− 1/x. According to
Shliomis model only rotational viscosity contributes to
the total viscosity, η1 = η2 and η3 = ηs. The maximum
viscosity increase predicted by the NI model is 3

2ηsφh.
Thus, the relative increase in viscosity is small for low
volume fractions. This is not true in the case of inter-
acting particles. Weak inter-particle interactions have
been incorporated into dynamic mean-field models [29],
but their range of validity is rather limited [20]. Strong
dipolar interactions have successfully been included in
the chain model [19] with following assumptions that (i)
the chains are rigid and straight (ii) dipole moment is
frozen in the particle and (iii) inter-chain interactions
are neglected. From the minimization of an approxi-
mated free energy expression, the chain model predicted
the cluster size distribution g(n). The cluster size distri-
bution is predicted to be an exponential function of chain
size at strong interaction strengths, g(n) ∝ exp(−n/a0),
where a0 is related to the average chain length 〈n〉 by



4

〈n〉 = [1− exp(−1/a0)]
−1

. In the case of a simple shear
flow geometry, v = (vx(y), 0, 0) with flow, gradient and
vorticity in x, y and z directions respectively, the shear
viscosity predicted by the chain model when the external
magnetic field is oriented parallel and perpendicular to
the flow direction is given by [19]

ηp − ηs
ηs

=
∑

n

nvg(n)

(

αn +
1

2
[(ζn + βnB)(〈e2x〉+ 〈e2y〉)

+(−1)pβn(〈e2y〉 − 〈e2x〉) + 2(χn − 2Bβn)〈e2xe2y〉]

+(−1)p
1

2v

αkBT

ηs
(
ax
2γ̇

〈e2x〉+
bxy
γ̇

〈e2xey〉)
)

(10)

where p = 1 or 2 if the magnetic field is oriented along
the flow or the gradient of flow direction, respectively.
ax and bxy are calculated from equations for the first
and second moments of the orientation distribution func-
tion. All parameters are explained in detail in [19]. Since
the cluster size distribution g(n) is input to the viscosity
expression, Eq. (10), the shear thinning behavior is not
properly account in for the model. An ad-hoc solution
was proposed in [1, 30], where a maximum chain size is
associated with each shear rate via a simple force bal-
ance. According to this a chain breaks when viscous and
magnetic forces become equal. The magnetic interaction
force is considered between the particles in the centre of
the chain. The viscous force on the chain is estimated
as Fvis = ξeff γ̇ȳ, where ξeff = n

2 ξ
T and ȳ = n

2σ, which
increases with γ̇. The magnetic force between particles
is estimated by Fm ∼ λkBT/σ and does not depend on
the chain length. Therefore, a chain disintegrates when
γ̇c = 4λ

τBn2
max

where nmax is the critical chain length for

breakage and γ̇c is the critical shear rate.

IV. RESULTS - ZERO APPLIED FIELD

The ferrofluid system subjected to a planar shear flow
exhibits interesting rheological properties both in the ab-
sence and presence of an external magnetic field. With
the aid of structural properties, we interpret the changes
in rheological properties at various shear rates, strengths
and orientations of an external magnetic field.
We show in Fig. 2, the zero-field shear viscosity as a

function of shear rate for the three chosen dipolar in-
teraction strengths. The shear rates vary by four or-
ders of magnitude (10−3 ≤ γ̇ ≤ 10). At low shear
rates, the system shows a clear Newtonian regime. In
this regime the viscosity is constant with shear rate and
shear viscosities for all three λ values match with their re-
spective equilibrium viscosities obtained from the Green-
Kubo (GK) method [24]. With increasing shear rate the
system shows a shear-thinning behaviour, where the on-
set decreases to lower shear rates as dipolar interaction
strength increases. We discuss below these properties
and associated structural changes for each λ value.

0.0001 0.001 0.01 0.1 1 10 100
shear rate

0.0001

0.001

0.01

0.1

1

(η
−η

s)/
η s

λ = 2.37
λ = 4.62
λ = 6.17

(0.08, 0.09)

(0.4, 0.03)

GK

FIG. 2. The zero shear viscosity scaled by solvent viscosity
as a function of shear rate for different dipolar interaction
strengths (λ). A clear transition from Newtonian regime to
shear thinning regime with increasing shear rate is observed.
The horizontal continuous lines are equilibrium viscosities ob-
tained from the Green-Kubo (GK) method [24] and dashed
lines are error bars of equilibrium viscosities.

A. Weak dipolar interaction strength

In the case of weak dipolar interactions (diamond sym-
bols in Fig. 2), we observe a well defined Newtonian
regime for a wide range of shear rates and a feeble shear
thinning regime beyond γ̇ > 1. The shear thinning
regime is fitted with a power law η−ηs

ηs
∝ γ̇−q, where

q is the power-law exponent. We identify the onset of
shear thinning regime by the intersection of equilibrium
viscosity and the power law fit to the shear thinning
regime. We want to relate viscosity changes to the struc-
tural reorganization of particles from their equilibrium
micro-structures. We compute the cluster size distribu-
tion g(n), the local connectivity C(nc) of our system at
different shear rates and compare with the equilibrium
case, shown in Fig. 3(a) and Fig. 3(b) . The connectiv-
ity computes the fraction of particles having nc number
of neighbours. Two particles are considered neighbors if
they are separated by a distance less than 1.5σ, i.e., in
the middle between first and second coordination shells
[24]. The same criteria is adopted in the cluster size
distribution to recognize particles in the same cluster.
From the local connectivity analysis (Fig. 3(b)), we ob-
serve that for the weak interaction strength λ = 2.37,
there is no significant structural changes with shear rate
(except for a negligible increment in isolated particles at
the cost of one-coordinated particles). The cluster size
distribution (Fig. 3(a)) does not vary with shear rate,
except for the highest shear rate γ̇ = 6, where we find
a small decrease in chain length. This small change in
the cluster size seems to be contributing to the decrease
in the viscosity at high shear rates. In the weak interac-
tion case, we observe no prominent structure formation
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FIG. 3. For weak dipolar interaction strength λ ≈ 2.37: (a)
the cluster size distribution g(n) as a function of chain size
n for various shear rates and the exponential fit is shown
as dashed line (b) The connectivity C(nc) as a function of
coordination number nc for various shear rates (c) average
chain size 〈n〉 as a function of shear rate. Explanation given
in Sec. IVA.

in the system, thus the chain model is invalid in this
case. Nevertheless, we attempt to fit g(n) obtained from
simulations with above mentioned exponential function.
We find that g(n) shows an exponential decay but the
average chain size 〈n〉 obtained from the exponential fit
shows a deviation from the 〈n〉 computed from simula-
tion (see Fig. 3(c)). The deviation is expected for weak
interaction strengths since the chain model is valid for
those systems with straight and rigid chains.

B. Intermediate dipolar interaction strength

In the case of intermediate dipolar interaction
strengths (circles in Fig. 2), the zero field shear viscosi-
ties obtained as a function of shear rate have higher val-
ues than those observed for weakly interacting ferrofluids
due to the micro-structure formation in the system. We
observe a prominent shear thinning regime. The onset
of shear thinning regime shifts to lower shear rate value
compared to that in the weak interaction case. We un-
derstand this behaviour in terms of structural properties,
the cluster size distribution Fig. 4(a) and the connectiv-
ity Fig. 4(b).
For intermediate interaction strength λ ≈ 4.62, with

increasing shear rate, the connectivity analysis shows
an increment in isolated and one-neighboured particles
at the cost of two-neighboured particles (see Fig. 4(b)).
This indicates that particles in longer chains tend to form
shorter chains and isolated particles with increasing shear
rates. The disintegration (“rupture”) of long chains in
the system is in agreement with earlier simulation re-
sults [31]. With further increase in shear rate (beyond
γ̇ > 0.4), we observe a prominent reduction in parti-
cles with one- and two- neighbours and an increase in
isolated particles. The cluster size distribution shows a
prominent deviation from its equilibrium structure with
increasing shear rate. The rupturing is more prominent
in this case compared to the weakly interacting ferroflu-
ids (see Fig. 4(a)). The average chain size decays in a
stretched exponential form, 〈n〉 ∝ exp−(cγ̇)β , β < 1,
with the shear rate (see Fig. 4(c)). From this analysis we
infer that a decrease in one- and two- neighboured parti-
cles and shortening of chain size corresponds to a promi-
nent decrease in viscosity with increasing shear rate.

C. Strong dipolar interaction strength

In the case of strong dipolar interaction strengths
(squares in Fig. 2), we observe a Newtonian regime at
shear rates, γ̇ < 0.01 and the onset of shear thinning is
shifted even more towards low shear rates compared to
weak and intermediate dipolar interaction strengths. The
shear thinning is prominent in this case. Interestingly,
one can distinguish two different shear thinning regimes
(0.01 < γ̇ < 2 and 2 < γ̇), characterized by different
slopes. The structural analyses are shown in Fig. 5. In
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FIG. 4. For intermediate dipolar interaction strength λ ≈
4.62: (a) the cluster size distribution g(n) as a function of
chain size n for various shear rates and the exponential fit to
the data is shown as dashed line (b) The connectivity C(nc)
as a function of coordination number nc for various shear
rates (c) average chain size 〈n〉 as a function of shear rate.
Explanation given in Sec. IVB.
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FIG. 5. For strong dipolar interaction strength λ ≈ 6.17:
(a) the cluster size distribution g(n) as a function of chain
size n for various shear rates(b) The connectivity C(nc) as a
function of coordination number nc for various shear rates (c)
average chain size 〈n〉 as a function of shear rate. Explanation
given in Sec. IVC.
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Fig. 5(a) and Fig. 5(b), we show the cluster size distribu-
tion and the connectivity, respectively, for different shear
rates. In the Newtonian regime, the connectivity and
cluster size distribution do not deviate significantly from
the equilibrium case. The connectivity shows that the
number of particles having two neighbours are prominent
and the cluster size distribution shows the presence of
large clusters as in equilibrium. These micro-structures
contribute to the high value of viscosity in the Newto-
nian regime. In the shear thinning regime 0.01 < γ̇ ≤ 2,
we observe from the connectivity analysis a gradual in-
crease in the one-neighboured particles at the cost of
two-neighboured particles. It is clear from the cluster
size analysis that large clusters rupture into smaller ones
with increasing shear rate. At higher shear rate values,
γ̇ > 2, the micro-structures disintegrate mostly into iso-
lated (80%) and one-neighboured particles. The cluster
size distribution in these regime is in agreement with rup-
turing observed in connectivity analysis.
The average chain size from simulations is comparable

to that obtained from the exponential fit to the clus-
ter size distribution as discussed in the chain model pre-
diction. At the lowest shear rate this simple exponen-
tial function fails due to the presence of complex struc-
tures. The average chain size decays with shear rate in
a stretched exponential form with a stretching exponent
β < 1 (see Fig. 5(c)).
Here, we summarise our results pertaining to the zero-

field shearing. We have studied the shear viscosity
at different shear rates for varying dipolar interaction
strengths. In the weak dipolar interaction, we have ob-
served a prominent Newtonian regime for a wide range of
shear rates, but with increasing dipolar strength, the sys-
tem shows a strong shear thinning behaviour. We have
studied the structural changes as the system goes from
Newtonian to shear thinning regime. We have found that
the rupturing of structures play an important role in the
decrease in viscosity at high shear rates. Snapshots of
ferrofluid system at weak and strong dipolar interaction
strengths in Newtonian and shear thinning regime are
shown in Fig. 6. Next we focus on rheology of ferrofluids
in the presence of an external magnetic field.

V. RESULTS - APPLIED MAGNETIC FIELD

The external magnetic field changes the total viscosity
of the system with varying field strength and orientation.
We study the effect of an applied field in the Newtonian
and shear thinning regime. The Miesowicz viscosity co-
efficients η1, η2 and η3 are defined corresponding to the
orientation of an applied field in the flow, gradient of the
flow and the vorticity direction, respectively. Each vis-
cosity coefficient has contributions from the symmetric
part (termed as configurational viscosity ηconf) and from
the anti-symmetric part of the stress tensor (termed as
the rotational viscosity ηrot), both of which we compute
explicitly and the total viscosity is ηtotal = ηconf + ηrot

(a)λ = 2.37, Newtonian regime

(b)λ = 2.37, Shear thinning regime

(c)λ = 6.17, Newtonian regime

(d)λ = 6.17, Shear thinning regime

FIG. 6. Snapshots (projection of all particles) of model fer-
rofluid system in a shear flow in the absence of magnetic field
(H = 0).

(see Eqs. (6) and (7)).
We organize our results in the same format as in

the Sec. IV. For the chosen values of dipolar interac-
tion strengths (λ ≈ 2.37, 4.62 and 6.17), we have ap-
plied an external magnetic field for varying strength,
0.5 < |H| < 4. We first present the results related to
the effect of applied field on the shear viscosities in the
zero field Newtonian regime.
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A. Applied magnetic field- (i) Newtonian regime

The Miesowicz viscosities in the Newtonian regime
computed at each dipolar interaction strength are shown
in Fig. 7(a) for (λ = 2.37, γ̇ = 0.04), Fig. 8(a) for (λ =
4.62, γ̇ = 0.004) and Fig. 9(a) for (λ = 6.17, γ̇ = 0.008).
The corresponding structural changes are studied for an
applied field strength Hx = Hy = Hz = 2 which cor-
responds to a Langevin parameter h ≈ 3, 4.3, 6 for
λ ≈ 2.37, 4.62 and 6.17, respectively.

1. Weak dipolar interaction strength, λ ≈ 2.37

At λ = 2.37, the viscosity changes are rather well de-
scribed by Shliomis prediction, Eq. (9), assuming parti-
cles are non-interacting (see dashed lines in Fig. 7(a)).
The viscosity is dominated by the rotational contribu-
tion leading to η1 ≈ η2 and η3 ≈ ηs. Deviations from
Shliomis prediction are due to weak inter-particle inter-
actions leading to micro-structure formation. The viscos-
ity change from the zero-field viscosity (MVE), when the
field is oriented (1) along flow direction, shows ten times
increase in viscosity (contribution from ηrot) (2) along
the gradient direction of flow, shows ten times increase
in viscosity (contribution from ηrot) (3) along the vortic-
ity direction, shows no change in viscosity (contribution
is only from ηconf), see Fig. 10.
Both the structural quantities (the connectivity and

the chain size distribution) show same behaviour in all
three directions (see Figs. 7(b) and 7(c)), which explains
why the configurational viscosity does not change with
the direction. Also the value of configurational viscos-
ity is small due to the absence of prominent structure
formation (presence of short chains only) in the system.
The rigidity of the chains is extracted from the radius

of gyration as 〈R2
g〉 ∝ n2ν , where n is the chain size,

ν is the rigidity exponent and it varies as 1/2 ≤ ν ≤ 1.
The chains are rigid when ν approaches 1. A fully flexible
chain is described by ν = 1/2. In the case of λ ≈ 2.37, we
find that the rigidity exponent is ν ≈ 0.7. Thus we infer
that the chains present in the system are semi-flexible
hence the misalignment of magnetic moment and the field
causes the rotational viscosity which contributes to the
magnetoviscous effect. Note that a slightly larger value
of ν was observed in strong magnetic fields for a more
concentrated system [31].

2. Intermediate dipolar interaction, λ ≈ 4.62

For the case of intermediate dipolar interactions
(Fig. 8(a)), we observe that the total viscosity has contri-
butions from both configurational and rotational viscosi-
ties. When the applied field is oriented in the flow and
gradient direction, ηconf and ηrot have almost equal con-
tributions. When the field is in the vorticity direction,
the sole contribution to the total viscosity is from the
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FIG. 7. For λ ≈ 2.37 with applied field H in Newtonian
regime: (a) The configurational viscosity ηconf , the rotational
viscosity ηrot and the total viscosity ηtot = ηconf + ηrot as a
function of strength of the magnetic field H are shown as cir-
cles, squares and diamond symbols, respectively. Top panel:
Viscosities when the field is oriented in the flow direction,
middle panel: when the field is oriented in the gradient of the
flow direction, bottom panel: when the field is oriented in the
vorticity direction. (b) The connectivity C(nc) as a function
of nc for different orientations of magnetic field (c) Cluster
size distribution g(n) as a function of n at different orien-
tations of magnetic field. Exponential fit to g(n) is shown
as dashed lines. All structural analysis are performed with
a fixed magnetic field strength of H = 2.0. Explanation is
given in Sec. VA1.
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configurational viscosity. The increase in configurational
viscosity with applied magnetic field strength when the
field is oriented in the gradient direction can be explained
in terms of micro-structural changes. In this case, the
connectivity (see Fig. 8(b)) shows a huge deviation from
equilibrium structures. The fraction of two-neighboured
particles are increased at the cost of isolated particles.
The cluster size distribution (see Fig. 8(c)) shows an in-
crease in the number of large clusters. Both quantities
show the presence of long chains in the system aligned
along the field direction. Due to the prominent chain
formation we observe an increase in configurational vis-
cosity. The rotational viscosity increases with the field,
when the field is applied in the flow and gradient direction
and is zero in the vorticity direction. Qualitatively, we
find that this behaviour of η1 and η2 is also well predicted
by the chain model for chains with an axis ratio of 2− 3
[19]. The viscosity change from the zero-field viscosity
(MVE), when the field is oriented (1) along the flow direc-
tion, shows four times increase in viscosity (contribution
from both ηconf and ηrot) (2) along gradient direction of
the flow, shows forty times increase in viscosity (contri-
bution from both ηconf and ηrot) (3) along the vorticity
direction, shows no change in viscosity (contribution is
only from ηconf), see Fig. 10. We find that chains are
relatively rigid ( rigidity exponent ν ∼ 0.8) compared to
those present in weakly interacting systems. The mis-
alignment of rigid chains from the magnetic field direc-
tion causes an increase in rotational viscosity. Due to the
long chain formations in the system, the configurational
viscosity also contributes to MVE in the gradient of flow
direction. Thus, the contributions from both rotational
and configurational viscosities cause the huge increase in
MVE.

3. Strong dipolar interaction, λ ≈ 6.17

In the case of strong dipolar interactions (Fig. 9(a)),
the main contribution to the total viscosity is from the
configurational part when the field is oriented along the
flow and the vorticity direction. A similar behaviour
of the configurational viscosity is qualitatively predicted
by the chain model for chain lengths greater than 5
[6, 19]. The connectivity analysis shows a deviation
from the equilibrium structure with an increase in two-
neighboured particles at the cost of decreasing three-
neighboured particles in the flow and vorticity direction.
This explains a decrease in viscosity from the zero field
viscosity value. Along the gradient direction the con-
nectivity shows an increase in the one-neighboured par-
ticles and a decrease in the three-neighboured particles.
This observation is not enough to interpret the increase
in configurational viscosity along the gradient direction.
We computed cluster size distribution and observed that
in the gradient direction the number of chains between
lengths 10 − 40 has increased considerably at the cost
of isolated particles, which explains the increase in con-
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FIG. 8. For λ ≈ 4.62 with applied field H in Newtonian
regime: (a) The configurational viscosity ηconf , the rotational
viscosity ηrot and the total viscosity ηtot = ηconf + ηrot as a
function of strength of the magnetic field H are shown as cir-
cles, squares and diamond symbols, respectively. Top panel:
Viscosities when the field is oriented in the flow direction,
middle panel: when the field is oriented in the gradient of
the flow direction, bottom panel: when the field is oriented
in the vorticity direction. (b) The connectivity C(nc) as a
function of nc for different orientations of magnetic field (c)
Cluster size distribution g(n) as a function of n at different
orientations of magnetic field. Exponential fit to the data is
shown as dashed lines. All structural analysis are performed
with a fixed magnetic field strength of H = 2.0. Explanation
is given in Sec. VA2.



10

figurational viscosity. The rotational viscosity show a
negligible change with field oriented along the flow di-
rection and an increase along the gradient of flow direc-
tion. At the vorticity direction the rotational viscosity
value is zero. The viscosity change from the zero-field
viscosity (MVE), when the field is oriented (1) along the
flow direction, shows decrease in viscosity (contribution
from ηconf) (2) along gradient direction of the flow, shows
ten times increase in viscosity (contribution from ηconf
and ηrot) (3) along the vorticity direction, shows a de-
crease in viscosity (contribution is only from ηconf), see
Fig. 10. In the flow and the vorticity direction, viscosity
decreases from the zero field value due to the absence
of complex structures which are present in the zero field
case. Also, the rigidity exponent calculated for λ ≈ 6.17
is ν ∼ 0.9. Therefore, the chains are very rigid and are
more or less perfectly oriented in the field direction. So
in the flow and vorticity direction there is no contribu-
tion from change in rotational viscosity. In the gradient
direction ten times increment in viscosity is due to the
misalignment of chains from the field direction and due
to the chain formation. Since the zero field viscosity has
a huge value due to the complex structure, the change in
viscosity is not as prominent as in the case of interme-
diate interaction strength. The magnetoviscous effect in
Newtonian regime is summarised in the schematic shown
in Fig. 10.

B. Applied magnetic field- (ii) shear thinning
regime

We study the effect of an external magnetic field in the
shear thinning regime recognized in the zero field case as
shown in Fig. 2. The chosen shear rate, corresponding
to the shear thinning regime, vary with the dipolar inter-
action strength. For λ ≈ 2.37, 4.62 and 6.17 we choose
shear rates γ̇ = 2.0, γ̇ = 0.8 and γ̇ = 0.4, respectively.
We begin with the weak dipolar interaction case.

1. Weak dipolar interaction strength, λ ≈ 2.37

In the case of weak dipolar interaction, the viscos-
ity changes are well described using Shliomis model, as
shown in Fig. 11(a) with red dashed lines. With increas-
ing shear rate, the existing structure ruptures and the
smaller fragments act like non-interacting system in a di-
lute regime. These features are consistent with the struc-
tural analysis where we see an increment in the popula-
tion of isolated particles.
The change in viscosity from the zero-field viscosity,

when the field is oriented (1) along the flow direction,
shows ten times increases in viscosity (2) along gradient
direction of the flow, shows ten times increase in vis-
cosity (3) along the vorticity direction, is negligible, see
Fig. 17. We also find that the rigidity exponent (which is
around 0.7) shows a negligible change with the shear rate
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FIG. 9. For λ ≈ 6.17 with applied field H in Newtonian
regime: (a) The configurational viscosity ηconf , the rotational
viscosity ηrot and the total viscosity ηtot = ηconf + ηrot as a
function of strength of the magnetic field H are shown as cir-
cles, squares and diamond symbols, respectively. Top panel:
Viscosities when the field is oriented in the flow direction,
middle panel: when the field is oriented in the gradient of
the flow direction, bottom panel: when the field is oriented
in the vorticity direction. (b) The connectivity C(nc) as a
function of nc for different orientations of magnetic field (c)
Cluster size distribution g(n) as a function of n at different
orientations of magnetic field. Exponential fit to the data is
given as dashed line. All structural analysis are performed
with a fixed magnetic field strength of H = 2.0. Explanation
is given in Sec. VA3.
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FIG. 10. A schematic of MVE in Newtonian regime for dif-
ferent dipolar interaction strengths. The MVE when the field
is oriented in (1) the flow direction is shown as circles (2)
the gradient direction of flow is shown as squares (3) vorticity
direction is denoted by diamonds.

(see Fig. 12(b)). Thus the only contribution to the mag-
netoviscous effect is from the rotational viscosity. The
change of the configurational viscosity is negligible due
to the lack of prominent structural changes.
We have also looked at the shear rate dependency on

the viscosity at a fixed applied magnetic field strength
(H = 2.0), which is shown in Fig. 12(a). We find that
at this interaction strength and fixed magnetic field, the
viscosity is fairly constant of shear rate. We notice that
the chain model is invalid in this case due to lack of
chains in the system. In the chain model calculation we
have used the g(n) values from the simulation.

2. Intermediate dipolar interaction strength, λ ≈ 4.62

In the case of intermediate dipolar interactions
(Fig. 13(a)), the total viscosity has contributions from
both configurational and rotational viscosity. But the
absolute value of viscosities are drastically reduced com-
pared to the Newtonian regime. The structural quanti-
ties show that the fraction of isolated particles increases
from 20% (in the Newtonian regime) to 50% and the frac-
tion of particles having two-neighbours decreases to 10%
in the gradient direction from 50%. This shows clearly
that rupturing of the structures is prominent in the gra-
dient direction (see Fig. 13(b)). The cluster size distri-
bution also confirms this observation (Fig.13(c)). The
rigidity exponent shows a decrease in it value with shear
rate from ν ∼ 0.85 to ν ∼ 0.65. The rigidity of the chains
are affected by the shear rate (Fig. 14(b)). The MVE is
less prominent in this case compared to the weakly inter-
acting regime due to the strong rupturing of structures,
see Fig. 17.
Now we discuss the shear rate dependence of the vis-

cosity at a fixed magnetic field strength (H = 2.0), which
is shown in Fig.14(a). We find that at this interaction
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FIG. 11. For λ ≈ 2.37 with applied field H in shear thinning
regime: (a) The configurational viscosity ηconf , the rotational
viscosity ηrot and the total viscosity ηtot = ηconf + ηrot as a
function of strength of the magnetic field H are shown as cir-
cles, squares and diamond symbols, respectively. Top panel:
Viscosities when the field is oriented in the flow direction,
middle panel: when the field is oriented in the gradient of
the flow direction, bottom panel: when the field is oriented
in the vorticity direction. (b) The connectivity C(nc) as a
function of nc for different orientations of magnetic field (c)
Cluster size distribution g(n) as a function of n at different
orientations of magnetic field. Exponential fit to the data is
given as dashed line. All structural analysis are performed
with a fixed magnetic field strength of H = 2.0. Explanation
is given in Sec. VB1.
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FIG. 12. For λ ≈ 2.37: (a) The total viscosities in the flow
(circles) and gradient direction of flow (squares) from simu-
lation (solid symbols) and the chain model prediction (open
symbols computed by inputting value for chain size distribu-
tion from simulations) as a function of shear rate. (b)Top
panel: Average cluster size as a function of shear rate. Bot-
tom panel: The rigidity exponent ν is shown for different
orientation of magnetic field as a function of shear rate for
the magnetic field strength H = 2.0.

strength and fixed magnetic field strength we observe a
prominent decrease in viscosity with the shear rate in
the gradient direction of the flow and there is no signifi-
cant viscosity change observed in the flow direction. We
compare it with the chain model prediction (Fig.14(a))
by inputting the g(n) from simulations. We observe that
the average chain size 〈n〉 decays in a stretched exponen-
tial manner with shear rate.

3. Strong dipolar interaction strength, λ ≈ 6.17

In the case of strong dipolar interactions (Fig. 15(a)),
the total viscosity has a non-monotonic behaviour with
increasing magnetic field strength when the field is ori-
ented in the flow direction. The total viscosity increases
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FIG. 13. For λ ≈ 4.62 with applied field H in shear thinning
regime: (a) The configurational viscosity ηconf , the rotational
viscosity ηrot and the total viscosity ηtot = ηconf + ηrot as a
function of strength of the magnetic field H are shown as cir-
cles, squares and diamond symbols, respectively. Top panel:
Viscosities when the field is oriented in the flow direction,
middle panel: when the field is oriented in the gradient of
the flow direction, bottom panel: when the field is oriented
in the vorticity direction. (b) The connectivity C(nc) as a
function of nc for different orientations of magnetic field (c)
Cluster size distribution g(n) as a function of n at different
orientations of magnetic field. Exponential fit to the data is
denoted by dashed line. All structural analysis are performed
with a fixed magnetic field strength of H = 2.0. Explanation
is given in Sec. VB2.
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FIG. 14. For λ ≈ 4.62: (a) The total viscosities in the flow
(circles) and gradient direction of the flow (squares) from sim-
ulations (solid symbols) and the chain model prediction (open
symbols computed by inputting the values of the chain size
distribution from simulations) as a function of shear rate. (b)
Top panel: Average cluster size as a function of shear rate.
The stretched exponential fit is shown as dashed lines. Bot-
tom panel: The rigidity exponent ν is shown for different
orientation of magnetic field as a function of shear rate for
the magnetic field strength H = 2.0.

with field strength when the field is oriented in the gra-
dient direction and decreases when the field is oriented
in the vorticity direction. The configurational viscosity
decreases with H in the flow and vorticity direction and
increases with H in the gradient direction. The expla-
nation to this behaviour is similar to that given for the
viscosity change in strong dipolar interaction strength in
the Newtonian regime. The rotational viscosity increase
with H both in the flow and gradient direction of the flow
and it is zero in the vorticity direction (Fig. 15(a)). The
structural quantities show a drastic rupturing of micro-
structures in gradient direction of the flow and we observe
increase in number of chains with short chain length and
a decrease in number of chains with large chain length.
The rigidity component of chains in the flow and gra-

dient direction shows a change in values from ν ∼ 0.95
to ν ∼ 0.65. In the vorticity direction it ranges form
ν ∼ 0.95 to ν ∼ 0.8. The MVE is similar to that of inter-
mediate interaction strength due to the strong rupturing
in the system, see Fig. 17.
Fixing the applied magnetic field strength, we show

the change in viscosities as a function of shear rate in
Fig. 16(a). Viscosities in flow and gradient direction show
a prominent decrease with shear rate. The chain model
fails to predict the viscosity at low shear rates in the flow
direction.
To summarise this section, we have computed Miesow-

icz viscosities in the shear thinning regime. We have
studied the corresponding structural changes and ex-
plained the viscosity changes in terms of rupturing of
chains. Rupturing is significant in the intermediate and
strong dipolar interaction regime, leading to pronounced
shear thinning behavior. Even though the field-induced
viscosity is larger for stronger dipolar interactions (com-
pare Figs. 12(a), 14(a), 16(a)), the relative viscosity
increase measured by ∆η is the largest in the weakly in-
teracting regime due to the low value of the zero-field vis-
cosity. The magnetoviscous effect in the shear thinning
regime is summarised in the schematic shown in Fig. 17.
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FIG. 15. For λ ≈ 6.17 with applied field H in shear thinning
regime: (a) The configurational viscosity ηconf , the rotational
viscosity ηrot and the total viscosity ηtot = ηconf + ηrot as a
function of strength of the magnetic field H are shown as cir-
cles, squares and diamond symbols, respectively. Top panel:
Viscosities when the field is oriented in the flow direction,
middle panel: when the field is oriented in the gradient of
the flow direction, bottom panel: when the field is oriented
in the vorticity direction. (b) The connectivity C(nc) as a
function of nc for different orientations of magnetic field (c)
Cluster size distribution g(n) as a function of n at different
orientations of magnetic field. Exponential fit to the data is
given as dashed line. All structural analysis are performed
with a fixed magnetic field strength of H = 2.0. Explanation
is given in Sec. VB3.
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FIG. 16. For λ ≈ 6.17: (a) The total viscosities in the flow
(circles) and gradient direction of flow (squares) from simu-
lation (solid symbols) and the chain model prediction (open
symbols computed by inputting value for chain size distribu-
tion from simulations) as a function of shear rate. (b) Top
panel: Average cluster size as a function of shear rate. The
exponential fit is shown as dashed lines.The rigidity exponent
ν is shown for different orientation of magnetic field as a func-
tion of shear rate for the magnetic field strength H = 2.0.

FIG. 17. A schematic of MVE in shear thinning regime for
different dipolar interaction strengths. The MVE when the
field is oriented in (1) the flow direction is shown as circles
(2) gradient direction of the flow is shown as squares (3) the
vorticity direction is denoted by diamonds.
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VI. MAGNETOVISCOUS EFFECT-
COMPARISON WITH EXPERIMENTS

According to the classic experiment by McTague [9],
the viscosity of magnetic fluids is anisotropic and depends
on the relative orientation of the magnetic field with re-
spect to the flow. It is observed that the viscosity is
larger when the magnetic field is oriented parallel to the
flow direction compared to the case when the field is per-
pendicular to the flow. Here, we consider the Miesowicz
viscosities in terms of coefficients parallel and perpen-
dicular to a pipe flow. According to our procedure, the
Miesowicz viscosity η1 is parallel to the flow direction,
thus η‖ = η1. Other two Miesowicz viscosities η2 in gra-
dient direction of the flow and η3 in the vorticity direction
are perpendicular to the flow, thus η⊥ = η2+η3

2 [6]. Thus
the relative viscosity change is defined as

∆η‖/⊥ =
η‖/⊥ − η(H=0,γ̇)

η(H=0,γ̇)
. (11)

We compare our simulation results with the experiment
on the anisotropy of magnetoviscous effects in cobalt fer-
rofluids conducted by the group of Odenbach and co-
workers [26]. As discussed in Sec. II, we parameterize
our model by the magnetic volume fraction φm = 0.0021
and dipolar interaction strength λ = 4.62, which allows
us to reproduce the magnetization curve rather well (see
Fig. 1). We use the same dipolar interaction strength to
study the MVE in the system. In addition to φ and σ,
we need to fix a reference time scale in order to map the
experimental shear rates to those in our simulations. The
experimental data lack the information of clear transition
from the Newtonian regime to the shear thinning regime
(in fact there is no data available corresponding to the
Newtonian regime). Thus, it is difficult to define a criti-
cal shear rate in experiments. But in our simulations, the
transition from Newtonian regime to the shear thinning
regime is well defined (see Fig. 2). Therefore, we define
a characteristic time scale τshear which corresponds to
the onset of shear thinning. Thus, dimensionless shear
rate can be defined in terms of τshear as De = γ̇τshear.
For dipolar interaction strength λ = 4.62, the charac-
teristic time scale corresponding to the onset of shear
thinning is τshear ≈ 12τB. The shear thinning regime be-
longs to 1 < De < 12 and the first Newtonian regime
is when De < 1. From our simulations we identify the
regime where the experiments have been carried out. We
find a range of shear rates which give the comparable re-
sults to the experimental shear rates. Using these details
we find an approximate value of experimental relaxation
time for the onset of shear thinning which is approxi-
mately 7(±1) seconds. To check whether this value is
reasonable, we matched the simulation and experimen-
tal shear rates for zero-field viscosity values and found
that the onset of shear thinning overlaps approximately
around 0.14±0.02 s−1. Available experimental data is in
the shear thinning regime which is between 0.9− 14 s−1

[26]. The dimensionless field H used in the simulations
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FIG. 18. The magnetoviscous effect ∆η for a range of dimen-
sionless shear rates as a function of magnetic field strength (in
real units) is computed from simulations (solid symbols) and
compared with experiments (open symbols). ∆η‖ (circles) is
the magnetoviscous effect when the field is parallel to the flow
and ∆η⊥ (squares) is the magnetoviscous effect when the field
is perpendicular to the flow direction (see Eq. (11)).
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FIG. 19. The ratio R of ∆η‖ and ∆η⊥ as a function of dimen-
sionless shear rate for different magnetic field strengths (solid
and open symbols correspond to simulation and experiment,
respectively).

is related to the experimentally applied field Hexpt by

Hexpt = H√
4πµ0σ3/(kBT )

= H
1.1×10−4 A/m. We compare

our simulation results for the same values of applied mag-
netic field strengths used in experiments, namely 10, 15
and 20 kA/m.

We also compare the ratio of parallel and perpendic-

ular MVE, given by R =
∆η‖

∆η⊥
. For a single particle

rotation the ratio R = 2 [32]. In Fig. 19, we show R for
a range of shear rates. All solid symbols corresponds to
the simulation data and open symbols to experimental
data.
Overall, we find that our simulation results are in semi-

quantitative agreement with experiments over a certain
range of shear rates, but deviate for higher shear rates.

VII. SUMMARY AND DISCUSSIONS

We have performed extensive non-equilibrium
Langevin dynamics simulations to study the rheology
of ferrofluids and the influence of micro-structure
formation on rheology. We present here a concise
summary of important results. We consider three values
of dipolar interaction strengths corresponding to the
weakly, moderately, and strongly interacting regime,
respectively. There is hardly any chain formation in
the weakly interacting regime and a massive structure
formation is found in the strongly interacting regime.
The intermediate case of moderate dipolar interaction
corresponds most closely to the experimental situation
[26]. There, we do find a certain degree of structure
formation, as shown by the cluster analysis in Fig. 4.
In the zero field case, we observe a well defined New-

tonian regime and a shear thinning regime in all dipolar
interaction strengths. A prominent shear thinning is ob-

served with increasing dipolar interaction strength. The
onset of shear thinning shifts towards lower shear rate
values with increasing λ. From the analysis of structural
quantities, we find that with the increase in shear rate the
micro-structures begin to rupture and form short chains,
which can be directly correlated to the decrease in vis-
cosity with increasing shear rates.

With the presence of an applied field, we have analysed
changes in rheology in both Newtonian and shear thin-
ning regime. The change in viscosity over the zero-field
value (MVE) is found to have an interesting dependency
on the orientation of the applied field and dipolar interac-
tion strength. The MVE is larger in the case of interme-
diate interaction strength compared to weak and strong
interaction strength cases when the field is applied along
gradient of the flow direction. This is due to the promi-
nent chain formation in intermediate interaction strength
in the presence of an external field, which increases the
contribution of both configurational and rotational vis-
cosity. Even though there is an increase in absolute value
of viscosity in the strong dipolar interaction strength, the
relative change in viscosity from the zero-field viscosity
is not as prominent as in the case of intermediate inter-
action strength. This is mainly due to the large value of
zero-field viscosity that results from the presence of com-
plex structures. The MVE in both Newtonian and shear
thinning regime is influenced by the chain formation and
chain rupturing. The analysis of cluster size distribution,
connectivity and rigidity shows drastic structural changes
(increase in the number of short chains and isolated par-
ticles) as the system moves from the Newtonian to shear
thinning regime. This clearly explains the reduction in
viscosity in the shear thinning regime.

The important point is that shear flow destroys the
microstructures in the field-free case, but the combined
action of a magnetic field and shear flow leads to the for-
mation of larger structures (see Fig. 8) and corresponding
viscosity changes.

We have compared viscosity changes obtained from
simulations with the chain model (computed by inputting
the cluster size distribution from simulations which is a
pivotal quantity to the theoretical model) [19]. For weak
dipolar interactions, we find discrepancies with the the-
oretical model prediction. Such discrepancies are to be
expected since the theory is based on the formation of
chains in the system, wherein no prominent structural
formation occur in the weakly interacting regime. In the
intermediate and strong interaction regimes, the chain
model predictions matched well with most of the simula-
tion data. Exceptions occur at high dipolar interaction
strength for the viscosity change when the field is ori-
ented in gradient direction of the flow, which needs to
be understood better. We have also observed a stretched
exponential decay behaviour of average cluster size with
shear rate in the cases of intermediate and strong interac-
tion strengths, which has not been reported in previous
studies.

Another contribution to the magnetoviscous effect
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results from the shear-induced perturbation of short-
range correlation. The anisotropic pair correlations have
been studied extensively in theory and in simulations
[7, 20, 29, 33, 34]. The high-field anisotropy of pair corre-
lation is observed in the study of Elfimova et al. [34]. In
the weakly interacting case, the influence of short-range
correlations on magnetoviscous effect has been studied
theoretically and compared with simulations [20, 29].
For the moderately interacting case, the theoretical esti-
mate leads only to a small contribution to the viscosity
changes. In the simulations, the viscosity contributions
of perturbed short-range correlations and small cluster
formation are not easily distinguishable.
Finally we compare our results with the experiments

on cobalt-based ferrofluids [26]. We parameterize our
model in such a way that the simulations reproduce the
equilibrium magnetisation curve measured experimen-
tally. With the corresponding value of the dimensionless
dipolar interaction strength λ, we mimic the experimen-
tal ferrofluids and perform non-equilibrium simulations
to investigate the rheological properties. For a range of
shear rates, we get comparable results. Since our simula-
tions are performed at similar concentrations and dipolar

interaction strengths as the experiments [26], we suggest
that the same structural mechanisms are also relevant for
the experimentally observed viscosity changes. For high
shear rates, however, we observe our simulation results
deviate from the experimental data. To further investi-
gate these deviations, it would be interesting to incorpo-
rate polydispersity effects, employ a more detailed mod-
elling of repulsive interactions and include hydrodynamic
interactions in the model.
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