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From  

Bernice Wright, Ph.D 

b.wright@ucl.ac.uk 

 

 

02
nd

 May, 2015 

 

Dear Dr Richardson, 

 

Please find attached a copy of the research article entitled “GRID and Docking Analyses 

Reveal a Molecular Basis for Flavonoid Inhibition of Src-Family Kinase Activity” for 

consideration for publication in Journal of Nutritional Biochemistry. This is original work 

that has not been published in any form and is not under consideration elsewhere. The 

manuscript has been read and approved by each author.  

 The mechanisms of action of flavonoids are of particular interest is their ability to 

function as protein and lipid kinase inhibitors. We have previously described structure-

activity studies that reinforce the possibility for using flavonoid structures as templates for 

drug design. In the present study we examined flavonoid (quercetin, apigenin and catechin) 

interactions with Src-family kinases (Lyn, Fyn and Hck) using an in silico approach applying 

the Sybyl docking algorithm and GRID. We performed this study to begin clarifying our 

understanding of structural interactions of flavonoids with kinases to allow construction of 

more potent and selective counterparts derived from these compounds. Our study presents 

methodology that may be used to construct virtual libraries of flavonoid interactions to guide 

drug discovery using these compounds as molecular templates.  

We would be very grateful for this work to be considered for publication in Journal of 

Nutritional Biochemistry. We look forward to hearing from you in due course. 

 

Yours sincerely,  

 

Bernice Wright 

Research Fellow 
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From  

Bernice Wright 

b.wright@ucl.ac.uk 

 

02
nd

 May, 2015 

 

Dear Dr. Richardson, 

Please find attached a copy of the research manuscript entitled “GRID and Docking Analyses 

Reveal a Molecular Basis for Flavonoid Inhibition of Src-Family Kinase Activity”. We have 

performed a revision of our manuscript, incorporating all changes suggested by the reviewers. 

We thank the reviewers for their suggestions to improve the manuscript and they have been 

addressed as follows: 

 

Reviewer 1 

1. In the Highlights, your first point should be revised to summarize what you did, not what 

could be done. 

 

We apologise for this error and we have corrected the first point in the Highlights: 

Docking, interaction mapping (GRID), and protein modelling methodology are used to 

indicate how the study of flavonoid interactions with kinases can guide drug discovery 

using these compounds as molecular templates. 

 

2. The use of the term "homologous" is not quite correct on page 5, Results/Discussion.   

We thank the reviewer for the thoughtful correction of the term „homologous‟. We have 

replaced this term with „structurally similar‟. 

3. With regard to Figure 1, you refer to various hydroxyl positions (i.e., C-3) that are not 

correspondingly numbered in the figure. 

We apologise for this error. We have reviewed the full manuscript and we have changed 

labels for hydroxyl groups to correspond with the numbering scheme in Figure 1. 

We look forward to your reply in due course. 

 

Yours sincerely,  

Bernice Wright 

Research Fellow 

*Response to Reviewers



Graphical Abstract (for review)



Highlights 

 

 Docking, interaction mapping (GRID), and protein modelling methodology are used 

to indicate how the study of flavonoid interactions with kinases can guide drug 

discovery using these compounds as molecular templates. 

 

 High quality predicted kinase structures are suitable for flavonoid computational 

studies. 

 

 Structural interactions of flavonoids with kinases are necessary to allow construction 

of more potent and selective counterparts derived from these compounds. 

*Highlights (for review)
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Abstract 

Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and 

anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that 

drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-

kinase (PI3K), Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK, and PKA. X-ray crystallographic 

analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl 

substitutions are important structural features for their binding to kinases. A clearer 

understanding of structural interactions of flavonoids with kinases is necessary to allow 

construction of more potent and selective counterparts.  

 

We examined flavonoid (quercetin, apigenin and catechin) interactions with Src-family 

kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology 

model (Lyn) was used in our analyses to demonstrate that high quality predicted kinase structures 

are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen 

bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of 

plausible contacts indicated that quercetin formed the most energetically stable interactions, 

apigenin lacked hydroxyl groups necessary for important contacts, and the non-planar structure of 

catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl 

functional group supported docking results. Based on these findings, we predicted that quercetin 

would inhibit activities of Src-family kinases with greater potency than apigenin and catechin. 

We validated this prediction using in vitro kinase assays.   

 

We conclude that our study can be used as a basis to construct virtual flavonoid 

interaction libraries to guide drug discovery using these compounds as molecular templates.  

 

Keywords 

Flavonoid molecular templates, GRID, Sybyl docking, selective flavonoid-based analogues, 

kinase inhibition, flavonoid computational studies, cardiovascular disease and flavonoids, anti-

platelet agents and flavonoids 
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1.1. Introduction  

 

Bioactive, plant-derived flavonoids impact on the function of the vascular system through 

inhibition of the activity of kinases which regulate cell proliferation [1-3], the immune response 

[4-7], inflammatory processes [5-6], blood coagulation [8] and platelet-mediated thrombosis [9-

11]. Flavonoids can achieve these effects by gaining direct access to signalling kinases in the 

cytosolic compartment [12-16]. A number of reports demonstrate that flavonoids are versatile and 

effective kinase inhibitors [1-3, 5, 7, 13, 17- 32], but they also show that these compounds are not 

selective. The aim of this study is to apply complementary computational methodologies to 

elucidate specific and important flavonoid interactions with Src-family kinases. The work 

demonstrates that homology models can be used for these studies together with predictive 

computational methodology to generate data that can guide functional studies demonstrating 

biological validation of predicted flavonoid interactions with kinases. This approach to screening 

flavonoid activities for kinases will accelerate the process of understanding the molecular 

interactions of flavonoids with kinases and allow translation of these compounds to more potent 

and selective analogues. The present study provides a basis for virtual experimental 

methodologies to explore structural features of these compounds, which confer selectivity and 

potency toward Src-family kinases.  

 

 A number of functionally-diverse kinases (myosin light chain-kinase, PKC and PKA [25]) 

with a central involvement in the growth, proliferation and functional maintenance of nucleated 

cells and key regulatory roles in signal transduction in platelets were incorporated into initial 

studies investigating flavonoids as molecular probes for enzyme/kinase catalytic sites. Previous 

reports also demonstrated that congeneric flavonoids (quercetin, catechin, apigenin) and their 

physiological metabolites inhibit the function of platelets by interfering with the activities of 

tyrosine (Syk, Fyn and Lyn) [13, 18, 30-31] and lipid (PI3K) [18] kinases, as well as 

phospholipases (phospholipase Cγ2) [13, 18, 30-31]. These compounds exert pro-oxidant and 

antioxidant effects on the production of reactive nitrogen [32] and oxygen [33-34] species 

respectively, by targeting the activatory motifs of membrane-bound proteins including the FcRγ 

chain [18] and Linker and Activator of T cells [18].  
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 Furthermore, studies have shown that flavonoids inhibit the activities of kinases in 

vascular and immune cells. Red wine polyphenolic compounds containing high levels of 

flavonoids inhibit the phosphorylation of serine/threonine kinases, p38 mitogen activated protein 

kinase (MAPK), extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun N-terminal kinase and 

protein kinase B/Akt in vascular smooth muscle cells (VSMC) [1] and endothelial cells [3]. The 

phytoeostrogen, genistein, was recently reported to inhibit high glucose-induced adhesion of 

monocytes to human aortic endothelial cells by inhibiting adenylate cyclase and protein kinase A 

(PKA) [5]. The flavone, luteolin was reported to inhibit VSMC proliferation by blocking the 

activities of Akt and Src [2]. Other flavonoid subgroups including flavanones (hesperidin, 

naringin) blocked high glucose-induced phosphorylation of p38 MAPK in monocytes [6]. The 

complex flavan-3-ol, epigallocatechin-3-gallate (EGCG) was suggested to inhibit mast cell-

dependent allergic reactions in vivo by blocking the activities of tyrosine (Fyn, Lyn, Btk, Syk) 

and serine/threonine (Akt and c-Jun N-terminal kinase) kinases [7]. EGCG was also shown to 

reverse the progression of immune-mediated glomerulonephritis, partly by reducing oxidative 

stress through inhibition of inducible nitric oxide synthase, nitric oxide metabolites, p-Akt, 

phosphorylated ERK1/2, p47phox, and myeloperoxidase [4].  

 

 These studies indicate that flavonoids interact with kinases on a molecular level, and X-

ray crystallographic analyses of kinase-flavonoid complexes demonstrate that the flavonoid ring 

systems and their hydroxyl substitutions determine the specificity of binding of these compounds 

to Src-family kinases (Hck) [35], lipid kinases (PI3Kγ) [27], serine/threonine kinases (PIM1) 

[24], and DNA gyrase [36]. Molecular docking analyses support such structural studies. 

Monomeric flavonoids were shown in docking studies to be accommodated in specific binding 

sites found on Raf1 kinases [28] as well as serine proteases [37] involved in blood coagulation 

and the inflammatory response.  

 

 In the present study, we investigated potential binding modes (docking) and molecular 

interactions (GRID) of flavonoids (quercetin, apigenin and catechin: Figure 1.) with solved (Fyn 

and Hck) and modelled (Lyn) Src family kinases using GRID and docking algorithms. We 

suggested inhibitory potencies for these compounds based on docking and GRID data, and we 

authenticated these potencies using in vitro kinase activity assays. We report that computational 
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analysis approximating flavonoid interactions with modelled and crystallised kinases, together 

with biological validation, may direct and accelerate virtual screening studies for translation of 

these compounds into selective and potent small-molecule inhibitors applied to the discovery of 

therapeutic agents for vascular disorders.  

 

 

2.1. Results/Discussion 

 

2.1.1. The Human Lyn Kinase Model is Structurally Robust and is Structurally Similar to 

the Crystal Structure of the Lyn Kinase Domain 

 

We constructed a model of the Lyn kinase domain to validate the use of homology models in our 

computational approach for investigating flavonoid binding within Src family kinase catalytic 

sites (Figure 2.). A model of the Lyn kinase domain was built based on the Lyn kinase domain 

from Mus musculus (PDB-ID 2h8h) template (Figure 3A.) using the ESyPred3D online server. 

The model (Figure 3B.) was structurally similar to the crystal structure of the human Lyn kinase 

domain (PDB-ID 3a4o) (Figure 3C.) - the root mean square deviation (RMSD) was 1.6 Å. The 

ModFOLD server (http://www.reading.ac.uk/bioinf/ModFOLD/) [38-39] was used to evaluate 

global and local model quality prior to docking. 

Our approach is supported by reports [40-44] describing the use of homology models for 

virtual screening in structure-based drug design. This methodology has been demonstrated to be 

reliable in accurately predicting the structure of proteins, particularly in those cases where the 

target is structurally similar to the template. Computer-aided drug design approaches can 

complement homology modelling approaches to provide a completely virtual environment for 

drug discovery. A typical structural bioinformatics workflow includes characterization of a 

protein target, modelling the protein using sequence homology, optimization of the protein 

structure and finally docking of small ligands into the active site. Previous studies have 

demonstrated interactions of modelled proteins with small molecules which were subsequently 

validated using in vitro biological assays. The discovery of novel PTP1B inhibitors [40], Cdc25 

phosphatase inhibitors [41], and angiogenin inhibitors [42] has been enabled through the use of 

virtual screening strategies.  
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For our specific problem involving the use of flavonoids as templates for drug design, 

high quality kinase homology models will increase the efficiency of screening because they 

permit the availability of a wide range of kinases. The extensive sequence information that is 

currently available indicates that there are an increasing number of proteins as potential drug 

targets with unknown structures [44]. Our approach using protein models as well as solved 

protein structures strengthens the possibility of screening the entire flavonoid family of 

compounds against all kinases that they are likely to target in vivo.  

  

  

2.1.2. Flavonoid Docking and GRID Interactions within Lyn, Fyn and Hck ATP Binding 

Sites Indicate their Potencies for Inhibition of Kinase Activity 

 

Our previous studies demonstrated key structural differences between flavonoids for inhibition of 

kinase-dependent signalling in platelets [13]. In the present study, we have performed in silico 

evaluations of the binding poses (via docking using the Sybyl algorithm) and functional group 

interactions (via interaction energy predictions using the GRID algorithm) between quercetin, 

apigenin and catechin and the catalytic sites of Lyn, Fyn and Hck Src-family kinases, to examine 

potential underlying molecular interactions for each of these compounds and the kinases of 

interest. Quercetin, apigenin and catechin were manually docked into the substrate binding 

groove/ATP-binding site in the hinge region between the N- and C-lobes in Lyn, Fyn and Hck 

kinases. The Sybyl docking programme was used to predict potential interactions of the 

flavonoids with residues in the kinase ATP binding sites, and the GRID programme was run to 

predict corresponding interaction energies of hydrophilic and hydrophobic regions. The GRID 

programme [45] predicted three dimensional energy contour surfaces/regions (energy minima 

were displayed as dotted regions) within the substrate binding grooves of Hck, Fyn (crystal 

structures) and Lyn (homology model) corresponding to the energy minima of hydrophilic (OH) 

and hydrophobic (DRY) small chemical probes representative of flavonoid functional groups 

(OH - hydroxyl groups; DRY - aromatic rings). Used in this manner, the GRID programme was 

applied to independently verify the docking results. The Sybyl programme utilised a semi-

flexible docking algorithm to dock the flavonoids into the ATP-binding site of the selected Src 

family kinases.  The performance of the Sybyl algorithm [46] in ligand docking and scoring was 
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judged by its ability to reliably reproduce interactions observed for a known inhibitor-kinase 

complex (quercetin-Hck complex, PDB-ID 2HCK), by way of a positive control.  

We extracted the X-ray pose of quercetin from within the ATP binding site of Hck (PDB-

ID 2HCK - reference structure), for use as a control. Additionally, a model of quercetin was built, 

minimised and docked into the crystal structure of Hck. The docked pose for quercetin, from the 

model, superimposed onto the reference model of quercetin taken from the co-crystallised 

complex (Figure 4B.) with an RMSD of 1.372 Å, which is well within the generally accepted 

values of 1.5 to 2 Å. A cluster of hydrophilic interactions were observed adjacent to interactions 

between ASN141 and ASP154 the C ring and B ring hydroxyls in the Lyn kinase domain (Figure 

4B.). Modelled quercetin docked into Hck with the chromone moiety (A-C ring complex) 

directly adjacent to glycine (GLY344) and methionine (MET341) (Supplemental Figure 2A.). 

These data were supported by GRID, which showed areas of hydrophilic interactions (GLY344 

and the C ring C-10 hydroxyl) corresponding to the hydrogen bonds revealed by docking 

(Supplemental Figure 2B.). Quercetin co-crystallised with Hck [35] also formed hydrogen 

bonds with methionine residues (MET341). Within the ATP-binding site of Fyn (Supplemental 

Figure 1A. and 1B.), quercetin docked in a similar orientation as Hck; hydrogen bonds were 

formed between the chromone moiety and methionine (ME835) and between ASP154 and 

LYS39. Hydrophilic GRID interactions adjacent to MET85 were observed, and the hydrogen 

bond contacts formed between ASP148 and LYS39 and B ring hydroxyls were surrounded by 

hydrophilic GRID regions. Our published work has shown that quercetin inhibits Fyn kinase 

activity with high potency; the predicted pose for the flavonol, which optimises the interactions 

with MET85 and GLY88 may account for its potency [13]. Therefore, the predicted pose of 

quercetin bound to Fyn, where the chromone moeity is involved in hydrogen bond interactions, 

may be correlated to high potency inhibition. Within the Lyn homology model, this flavonoid 

docked in a similar orientation as that found in Fyn and Hck; towards asparagine and glycine 

residues (Lyn: ASN141, GLY23) (Figure 5A. and 5B.). Previous studies with fisetin [47] 

(bound to the active form of CDK6), have also shown that quercetin forms hydrogen bonds with 

the side chains of residues in the binding pocket. This binding causes large conformational 

changes during CDK activation by cyclin binding. The 4-keto group and the 3-hydroxyl group of 

fisetin are hydrogen bonded with the backbone in the hinge region between the N-terminal and C-

terminal kinase domain, as has been observed for many CDK inhibitors. However, CDK2 and 
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HCK kinase in complex with other flavone inhibitors, e.g. flavopiridol, showed a different 

binding mode with the inhibitor rotated by about 180 degrees.  

Apigenin docked within Lyn (Figure 5C. and 5D.), Hck (Supplemental Figure 1C. and 

1D.) and Fyn (Supplemental Figure 2C. and 2D.) with a similar number of hydrogen bonds as 

quercetin, suggesting that these flavonoids may inhibit Src-family kinase activity with similar 

potency. However, apigenin has been reported previously as a poor inhibitor of Fyn kinase 

activity, whilst quercetin was shown to be a high potency inhibitor [13]. It is possible that the 

hydrogen bond formed between the methionine (MET91: Lyn and MET341: Hck) and the para-

hydroxyl in the A ring of apigenin (observed in Lyn and Hck ATP docking, but not Fyn) is 

necessary. GRID interactions supported the hydrogen bonds that were formed. In the Lyn kinase 

domain MET91 and GLU89 hydrogen bonds with the A ring C-6 hydroxyl are adjacent to 

favourable hydrophilic GRID regions. ASN19 binding to the A ring C-6 hydroxyl in Fyn as well 

as the THR82 and GLU83 bound to the B ring C-17 hydroxyl are also near favourable 

hydrophilic GRID regions. Within the Hck kinase domain, MET341 binds to the A ring C-6 

hydroxyl and SER345 and ASP348 bind to the B ring C-17 hydroxyl. Quercetin does not directly 

interact with methionine (MET91) in the Lyn kinase domain and, as the flavonol is a potent 

inhibitor of Lyn, the C ring C-10 hydroxyl must also be important. Therefore, apigenin may be 

less potent than quercetin due to lower affinity caused by omission of the C ring C-10 hydroxyl 

from the structure of the flavone. Apigenin may be more selective for Src than for Lyn, Fyn and 

Hck, as previous studies demonstrate; in in vitro pull-down assays the flavone binds Src in an 

adenosine triphosphate-competitive manner [48].  

Within the ATP binding pocket of Lyn (Figure 5E. and 5F.), catechin docked in an 

opposite orientation to that of quercetin, but a similar orientation to apigenin. The B-ring of the 

flavan-3-ol was positioned adjacent to the methionine residue (MET91). Similar to quercetin, the 

C ring C-10 hydroxyl oxygen formed a hydrogen bond with the methionine (MET341) residue, in 

Hck (Supplemental Figure 1E. and 1F.) and Fyn (MET85) (Supplemental Figure 2A. and 

2B.). Catechin also docked with a similar number of hydrogen bonds as quercetin, in Fyn, Lyn 

and Hck binding sites. These data suggest that the orientation of the flavonoids within kinase 

ATP-binding sites rather than the number of hydrogen bonds formed may determine their 

inhibitory potency. Although these data suggested that catechin may inhibit Src-family kinase 

activity with similar high potency as quercetin, previous reports have demonstrated that this 
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compound inhibits Fyn kinase activity with low potency. GRID hydrophilic interactions 

corresponded to hydrogen bonds formed between GLU89, MET91 and ALA92 and A and B ring 

hydroxyl oxygens in the Lyn kinase domain, those formed between MET85 and C ring C-10 

hydroxyls in the Fyn kinase domain, and those between MET341, ALA342 and LEU273 and C 

and A ring hydroxyls. Therefore, although the hydroxyl groups on the non-planar C-ring form 

hydrogen bonds, these may not be energetically favourable. Previous studies have shown that 

within the ATP-binding site of DNA gyrase, epigallocatechin gallate (EGCG) a structural 

homologue of catechin (epicatechin), was orientated in a manner opposite to that of quercetin and 

a network of hydrogen bonds was formed between the flavonol and neighbouring residues but 

hydrogen bonds only formed between residues and the B ring of the epicatechin moiety [49]. 

Moreover, specific knockdown of Fyn (but not Src) with small interfering RNA inhibited both 

EGCG-stimulated phosphorylation of Akt and endothelial nitric oxide synthase as well as 

production of nitric oxide in bovine aortic endothelial cells [50]. Furthermore, in an in vitro 

protein-binding assay, EGCG was found to directly bind with the GST-Fyn-SH2 domain but not 

the GST-Fyn-SH3 domain [51]. Therefore, complex flavan-3-ols targeted at Src homology 

domains may prove to be a more viable means of achieving potent inhibition of Src-family 

kinases than catechin. 

The docking results suggest that catechin may be only partially anchored within Src-

family kinase binding pockets via A-ring hydroxyl bonds, whereas quercetin and apigenin 

molecules with planar C rings are potentially fully anchored within these kinases. The fact that 

catechin is only partially anchored in the binding pocket also suggests that solvation effects may 

be playing a role here. The planarity of the flavonoid chromone moiety has been reported to be 

essential for the inhibitory activity of these compounds [13]. Therefore, quercetin and apigenin 

may be more potent inhibitors of Src-family kinase activity than catechin, due to more stable 

binding. 
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2.1.3. Flavonoid Inhibitory Potencies for Lyn and Hck Suggested from Docked 

Conformations and GRID Interactions are Validated by in vitro Kinase Activity Assays 

 

Quercetin inhibited the activities of Lyn and Hck to a significantly greater extent than both 

apigenin and catechin (Figure 6.). Therefore inhibitory potencies, from approximated binding 

conformations (docking) and functional group interactions (GRID) suggesting that quercetin was 

a more potent inhibitor than apigenin and catechin, were substantiated. Quercetin (150 µM) 

inhibited Hck kinase activity 9-fold greater than apigenin (150 µM) but only 3-fold greater than 

catechin (150 µM) (Figure 6B. and 6C.). Quercetin also exerted inhibition of Hck kinase activity 

at 10 µM, a concentration that was achieved in vivo in human subjects following ingestion of a 

quercetin glucoside supplement. These differences indicated that C-ring hydroxylation (apigenin) 

may be more important than C-ring planarity (catechin) for potent inhibition of Src-family kinase 

activity, and the non-planar C ring C-10 hydroxyl (catechin) may elicit an inhibitory effect. 

Inhibition of Lyn kinase activity by quercetin was 4-fold greater than that mediated by both 

apigenin and catechin (Figure 6A. and 6C.). The differences in inhibition may be due to binding 

to antibodies [52] as Lyn kinase was immunoprecipitated, whereas Hck was a recombinant 

protein.  

 Recent studies show that flavonoids can bind directly to protein kinases, including 

Akt/protein kinase B (Akt/PKB), Fyn, Janus kinase 1 (JAK1), mitogen-activated protein kinase 

kinase 1 (MEK1), phosphoinositide 3-kinase (PI3K), mitogen-activated protein (MAP) kinase 

kinase 4 (MKK4), Raf1, and zeta chain-associated 70-kDa protein (ZAP-70) kinase, and alter 

their phosphorylation state to regulate multiple cell signalling pathways [53]. Apigenin, luteolin 

and quercetin that have been reported to inhibit GSK-3β [54], with 50% inhibitory values of 1.5, 

1.9, and 2.0 µM, respectively, were predicted to fit within the binding pocket of GSK-3β with low 

interaction energies (-76.4, -76.1, and -84.6 kcal·mol-1), respectively) and low complex energies 

(-718.1, -688.1, and -719.7 kcal·mol-1), respectively).  

Previous studies have described results that are in line with those presented in the current 

study, as they demonstrate that flavonoid attenuation of, and binding to lipid [23, 36] and 

serine/threonine kinases [22-24] is dependent on a C ring C-10 hydroxyl for high potency 

inhibition. Substitution of the C ring C-10 hydroxyl has been shown to reduce the IC50 of 

quercetin analogues [55]. By contrast, substitution of the C ring C-10 hydroxyl with an amine 
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group was shown to confer greater selectivity for Src than the epidermal growth factor receptor 

[56]. Removal of the C ring C-10 and B ring C-16 hydroxyls (apigenin) and addition of a C-17 

methyl group to the B ring of quercetin (tamarixetin) correlated with low potency inhibition of 

Fyn involved in GPVI signalling [13]. Hydroxylation of the A ring may also be important for 

binding because quercetagetin (with an A ring C-1 hydroxyl that is omitted from the structure of 

quercetin) was demonstrated to be more potent than quercetin in the ATP binding sites of pim 

kinases [24]. Modification of A and B rings with phenol group (LY294002: analogue derivative 

of quercetin) on an unmodified chromone moiety also increases potency and selectivity of 

quercetin [57]. 

Previous docking studies of flavonoid-kinase inhibition substantiated by biological assays 

have also indicated that these compounds may be selective. A report described that Fyn kinase, 

not Lyn and Syk, was inhibited by morin in a dose-dependent manner (IC50: 5.7 µM). 

Kaempferol-7,4'-dimethylether was previously demonstrated as a potent p38α inhibitor, 

displaying 13-fold selectivity for p38α over JNK3 [58]. Flavone compounds without a 6-methoxy 

group preferentially inhibited JNK3; luteolin-7-O-glycoside, was identified as a potent inhibitor 

with the greatest selectivity toward JNK3. Flavanol compounds, however, were shown to display 

similar inhibitory activities toward both kinases. Delphinidin strongly inhibited TNF-alpha-

induced COX-2 expression in JB6 P+ mouse epidermal (JB6 P+) cells, whereas two other major 

phenolic compounds (resveratrol and gallic acid) did not exert significant inhibitory effects [59]. 

Delphinidin inhibited the TNF-alpha-induced phosphorylations of JNK, p38 MAP kinase, Akt, 

p90RSK, MSK1, and ERK, and subsequently blocked the activation of the eukaryotic 

transcription factors AP-1 and NF-κB. Kinase and pull-down assay data revealed that delphinidin 

inhibited Fyn kinase activity and directly bound with Fyn kinase noncompetitively with ATP 

[59]. This may enable us to perform pharmacophore studies with our work as a basis. A 

pharmacophore model for ATP-competitive inhibitors interacting with the active site of the 

EGFR protein tyrosine kinase, together with published X-ray crystal data of quercetin in complex 

with the Hck tyrosine kinase, and deschloroflavopiridol in complex with CDK2, a putative 

binding mode of the isoflavone genistein was previously proposed [60]. Based on literature data 

suggesting that a salicylic acid function, i.e. the 5-hydroxy-4-keto motif in genistein, could serve 

as a pharmacophore replacement of a pyrimidine ring, superposition of genistein onto the potent 

EGFR tyrosine kinase inhibitor 4-(3'-chlorophenylamino)-6, 7-dimethoxyquinazoline led to the 
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formation of 3'-chloro-5,7-dihydroxyisoflavone. This target structure was 10 times more potent 

than genistein.  

 

 

3.1. Conclusions 

We conclude that both computational and experimental methodologies may be used together to 

understand flavonoid-kinase molecular interactions. Dissections of interactions between key 

flavonoid functional groups and kinases have revealed important information about structural 

features underlying the inhibitory potencies of these compounds. Derivation of potent, selective 

small-molecule inhibitors from flavonoids is therefore possible. Flavonoid analogues have been 

constructed, but a clear understanding of the manner in which functional groups on these 

compounds associate with molecular targets is crucially important for substantial progress to be 

made in this venture.  

We describe the basis for an organised experimental strategy based on computational 

guidelines that may begin to form an interaction library and help direct further design for rational 

screening of the flavonoid structure. Our application of complementary computational algorithms 

considers the inclusion of kinases with both solved structures (X-ray or NMR) and homology 

models to investigate the molecular interactions of key functional groups on the flavonoid 

structure (using GRID and docking programmes) within the Src-family kinase ATP binding site. 

Our method is an important pre-requisite to structure-function work that will ensure efficient 

dissection of the complete family of compounds within the flavonoid polyphenolic subgroup.  

 The findings presented here form the basis for further combined computational and 

structural studies to fully elucidate and exploit the key molecular interactions between Src-family 

kinases and flavonoids. With rigorous validation of computational modelling approaches, all 

plausible permutations of flavonoid interactions with signalling kinases of target cells may be 

explored and catalogued for application to drug design. 
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4.1. Experimental Section 

4.1.1. Ethics Statement 

Blood was obtained from healthy aspirin-free human volunteers with written informed consent, 

following approval from the University of Reading Research Ethics Committee. 

 

4.1.2. Materials 

 

Quercetin, apigenin and catechin were purchased from Extrasynthese (Genay, France). 

Flavonoids were solubilised in dimethylsulphoxide (DMSO) obtained from Sigma (Poole, UK). 

Protein A Sepharose (PAS: from Staphylococcus aureus) and silver nitrate were also purchased 

from Sigma. Collagen (Type I (fibrillar) from equine tendons) was from Nycomed (Munich, 

Germany) and the anti-Lyn and anti-Hck primary antibodies were obtained from Santa Cruz 

Biotechnology (Autogen Bioclear UK Ltd; Calne, Wilts, UK). Recombinant Hck protein was 

obtained from New England Biolabs (Hitchin, Herts, UK). Horseradish peroxidase (HRP)-

conjugated secondary antibodies were from GE Healthcare (Little Chalfont, UK). The 

chemiluminescence detection system was obtained from Pierce (Thermo Fisher Scientific; 

Rockford, IL USA). The GRID programme suite was licensed from Molecular Discovery 

(Perugia, Italy), the Sybyl programme was licensed from Tripos (St. Louis, USA) and the 

PyMOL programme was licensed from DeLano Scientific (CA, USA).  

 

4.1.3. Preparation and Stimulation of Platelets 

 

Blood was obtained from healthy, aspirin-free, human volunteers with informed consent, 

following approval from the University of Reading Research Ethics Committee. Platelets were 

isolated by differential centrifugation and suspended in modified Tyrode’s-HEPES buffer (134 

mM NaCl, 0.34 mM Na2HPO4, 2.9 mM KCl, 12 mM NaHCO3, 20 mM HEPES, 1 mM MgCl2, 5 

mM glucose, pH 7.3) to a density of 8X108 cells·mL-1 in modified Tyrode’s-HEPES buffer 

containing 1 mM EGTA to prevent aggregation. Platelets (450 µL) were incubated with 

flavonoids or DMSO (1 µL: 0.2% (v/v)) for 5 min (after 10 s stirring) prior to stimulation with 
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collagen (25 µg.mL-1: 50 mL) for 90 s in an optical aggregometer at 37°C with continuous 

stirring.  

 

 

4.1.4. Immunoprecipitation and in vitro Kinase Assays 

 

Lyn was immunoprecipitated as described previously [18]. Lyn immunoprecipitate and 

recombinant Hck were suspended in kinase buffer (105 mM NaCl, 20 mM HEPES (pH 7.4), 5 

mM MnCl2, 5 mM MgCl2, 2 mM NaF, 1 mM Na3VO4, 10 µM adenosine triphosphate (ATP)) 

containing 5 µCi 32P-ATP per reaction, were incubated at 30ºC for 20 min with flavonoids or 

DMSO (0.2% (v/v)) and the kinase reaction terminated through addition of an equal volume of 

Laemmli reducing sample treatment buffer. Proteins were separated by SDS-PAGE, and 

transferred to PVDF membranes which were exposed to storage phosphor screens to detect 

incorporation of 32P (autophosphorylation) into the immobilised kinase.  

 

 

4.1.5. Immunoblotting 

 

Non-specific binding to PVDF membranes containing proteins, was blocked by incubation with 

5% (w/v) bovine serum albumin (BSA) dissolved in 1X Tris-buffered saline-Tween (TBS-T) (20 

mM Tris-base, 0.14 M NaCl, 0.1% Tween®-20; pH 7.6). Membranes were incubated with 

primary antibodies (1 µgmL-1) diluted in 2% (w/v) BSA dissolved in 1X TBS-T at 4 ºC 

overnight. Total levels of Lyn and Hck were measured by immunoblotting using anti-Lyn 

antibody or by silver staining (Hck). Normalisation for protein loading was performed by 

expressing levels of activity of Lyn and Hck, relative to total levels of those proteins, and was 

expressed as a percentage compared to the untreated control that represented 100% activity. For 

immunoblotting, blots were washed for 45 min in 1X TBS-T before incubation with a HRP-

conjugated secondary antibody (1:4000 dilution) for 2 h at room temperature (RT) with rotation. 

Proteins were detected on X-ray film using the chemiluminescence system. Densitometry 

analysis was performed using ImageQuant software (GE Healthcare: Little Chalfont, UK) and a 
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BioRad GS710 densitometer with Quantity One analysis software (BioRad; Hemel Hempstead, 

UK).  

 

 

4.1.6. Structural Alignments 

 

The Dali-lite structural sieving server was used to perform structural alignments of Lyn, Fyn and 

Hck kinase domains. This server generates structural alignments by an iterative process involving 

filtering out residue-residue correspondences until optimal (superimposable) corresponding 

residues are achieved in structures, under a threshold of RMSD. The lsqkab programme in the 

CCP4 programme suite was used to perform structural alignments of the crystallised and docked 

quercetin molecules. 

 

 

4.1.7. Homology Modelling 

 

Homology models were built for Lyn tyrosine kinase (Homo sapiens) from the Src kinase crystal 

structure template (PDB ID: 2H8H) using ESyPred3D server [61]. The per-residue error was 

predicted using the ModFOLD server [38, 62-63]. The colour-coding used by ModFOLD 

represents the residue accuracy according to a pseudo-temperature scheme (blue indicates 

residues closest to the native structure; red, those furthest from the native structure). Residues 

coloured in red are also predicted to have a higher propensity for flexibility according to the 

DISOclust method [64]. Images were rendered using PyMOL (http://www.pymol.org). 

 

 

4.1.8. GRID Analysis 

 

The GRID programme [45] was utilised to predict potential binding sites, represented as three 

dimensional energy contour surfaces (or regions), for functional groups within the ATP binding 

pocket of Hck, Fyn (crystal structures) and Lyn (homology model) kinase domains. The resulting 

energy contours indicate the location of energetically favourable interactions, with negative 
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energy levels indicating favourable regions. The potential energy (Exyz) between the target (Hck, 

Fyn or Lyn) and a small chemical probe (OH, OH2 and DRY) at each node of the GRID was 

calculated as: Exyz = ΣEEL + ΣEHB + ΣELJ [47, 66]. ΣEEL is defined as the appropriately modified 

electrostatic energy, ΣEHB is the hydrogen bonding energy and ΣELJ is the Lennard-Jones 

potential energy between probe and target atoms. Successive probe positions were sampled in the 

same way until each grid point was assigned an energy value. The program GRIN, the first step 

in the GRID calculation, was used to prepare each of the coordinate files by removing hydrogens 

(in the case of the Lyn homology model) adding counterions (Na
+ 

was used in each case) to 

neutralise the overall charge on the protein taking care not to include counterions near any 

potential binding sites and including the associated energy variables to individual atom types as 

defined in GRIN. The move directive in GRID was set to -1 to allow the counterions to move in 

response to the probe. The GRID calculations were performed using a grid spacing of 0.5Å in a 

GRID box defined as a three dimensional grid of points around and within the ATP binding 

pocket of Hck, Fyn or Lyn (approximately X  x Y x Z). Hydrophilic (OH) and hydrophobic 

(DRY) probes were selected as being most representative of flavonoid functional groups (OH - 

hydroxyl groups; DRY - aromatic rings),although, additional chemical probes used included O, 

OFU, hydrogen donor: OH2, OH, hydrophobic: DRY and hydrogen acceptor: N1+, N1, N:=, O- 

(default) probes. The program MINIM was used convert the GRID output to a readable format 

suitable for input to PyMOL (DeLano Scientific) for graphical viewing and interpretation. 

 

  

4.1.9. Docking Analysis 

 

The crystal structures of Fyn (2DQ7) and Hck (2HCK) were obtained from the protein data bank 

(http://www.ebi.ac.uk). In order to prepare the protein structures for the docking experiments 

duplicate chains, where present, as well as all water molecules were removed. Additionally, all 

ligands were extracted from the coordinate files. Finally, the protein structures were prepared for 

the docking runs using the Biopolymer Structure Preparation Tool implemented in the 

programme SYBYL. Docking experiments utilized the Surflex-Dock automatic docking 

algorithm. The structures of quercetin, apigenin and catechin were built using the BUILDER 

module in InsightII and a conformational minimisation was performed for these ligands using the 
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consistent valence force field (CVFF) to the lowest energy conformers for docking analyses.  

Docking was performed by placing the molecule in the binding pocket of the protein (together in 

one pdb file) before proceeding with the docking algorithm. In order to calculate the hydrogen 

bond (H-bond), van der Waals (vdW) and hydrophobic interactions, the resulting PDB files from 

the docking runs were input to the program CONTACTS, available in the CCP4 programme 

suite. Potential H-bonds were assigned if the distance between two electronegative atoms was 

less than 3.3 Å, whereas any separation greater than 3.3 Å, but less than 4.0 Å, was considered a 

vdW interaction. 
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Figure Legend 

 

Figure 1. Flavonoid structures.  

The flavonoid structure comprises an oxygenated heterocyclic middle ring (C ring) flanked by 2 

aromatic rings (A and B rings). Flavones (apigenin) are characterised by a non-hydroxylated C 

ring, whereas flavonol (quercetin) C rings contain a C-10 hydroxyl group. Flavan-3-ols (catechin) 

are defined by a non-planar, C-10 hydroxylated C ring that is not substituted with a C-9 carbonyl 

group.  

 

 

Figure 2. Structural alignments of Lyn, Fyn and Hck kinase domains.  

The Dali-lite structural sieving server was used to perform structural alignments of Hck (2HCK), 

Lyn (3A4O) and Fyn (2DQ7) kinase domains. The RMSD for Hck and Lyn was 2 Å, for Hck and 

Fyn was 1.9 Å, and for Lyn and Fyn was 1.2Å.  

 

Figure 3. Homology models built for Lyn tyrosine kinase (Homo sapiens).  

Homology model of human Lyn kinase, based on the 2H8H template, using the ESyPred3D 

server [61] (A). The per-residue error was predicted using the ModFOLD server [40, 63-64]. The 

colours represent the residue accuracy according to a pseudo-temperature scheme (blue indicates 

residues closest to the native structure; red, those furthest from the native structure). 

Superimposition (performed using Mustang-MR) of the homology model of Lyn kinase domain 

(blue), from the 2H8H template, and the X-ray crystal structure of human Lyn kinase domain 

(green, PDB-ID 3A4O) (B). The RMSD between the kinase domains of the homology model and 

the crystal structure using Dalilite was 1.6 Å. Superimposition of the active site of Lyn kinase 

domain homology model (blue) and Lyn kinase domain crystal structure (green) (C). Active site 

residues are highlighted as ball and stick. Reference [61] refers to the use of the methods 

developed by the authors of the cited publication. 

 

Figure 4. The active site of Hck kinase domain (PDB-ID 2HCK) containing co-crystallised 

and docked quercetin molecules. 
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An electrostatic surface representation of the homology model of the Lyn kinase domain showing 

docked quercetin (A) and Hck kinase domain (2HCK) containing co-crystallised (dark blue) and 

docked (light blue) quercetin  (B). ). The RMSD between docked and crystallised quercetin 

molecules was 1.6 Å.  

 

Figure 5. Molecular docking and interaction energies of flavonoids in the substrate binding 

groove of the modelled Lyn kinase domain. 

The docked ligands (quercetin: A, B; apigenin: C, D; catechin: E, F) are shown in bold outline 

with neighbouring amino acid residues indicated. Hydrogen bonds (depicted by dashed lines) are 

shown between the ligand and active site residues with the bond lengths given in Angstroms (Å). 

The GRID programme predicted three dimensional energy contour surfaces/regions (dotted areas 

around docked ligands – quercetin: B; apigenin: D; catechin: F) within the ATP binding groove 

of the Lyn model corresponding to the energy minima of hydrophilic (OH: grey dotted areas) and 

hydrophobic (DRY: black dotted areas), which act as small chemical probes representative of 

flavonoid functional groups (OH: hydroxyl groups and DRY: aromatic groups). GRID showed 

areas of hydrophilic interactions (GLY344 and the C ring C-10 hydroxyl) corresponding to the 

hydrogen bonds formed by quercetin. The A ring C-6 hydroxyl on the structure of apigenin, 

forming hydrogen bonds with MET91 and GLU89, was adjacent to hydrophilic GRID regions. 

GRID hydrophilic interactions correspond to hydrogen bonds formed between GLU89, MET91 

and ALA92, and the A and B ring hydroxyl oxygens on the structure of catechin. 

 

 

Figure 6. Flavonoids block the kinase activity of Hck and Lyn  

Washed human platelets (8X108 cells.mL-1) in the presence of EGTA (1 mM) were stimulated 

with collagen (25 µg.mL-1) for 90 s. Platelets were lysed with ice-cold 1% NP40 and Lyn was 

immunoprecipitated. Lyn immunoprecipitates and recombinant Hck were pre-treated with 

flavonoids (quercetin, catechin or apigenin), or solvent control (DMSO (0.2% v/v)) for 5 min. 

Immunoprecipitates were assayed for kinase activity (see Materials and Methods). Equivalent 

protein loading was verified by reprobing for Lyn and silver staining Hck protein. % inhibition of 

kinase activity is a percentage of the DMSO-treated, collagen-stimulated control (0% inhibition). 

The bars represent the mean (n = 3) % inhibition of kinase activity for each treatment (± S.E.M). 
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* P ≤ 0.05, ** P ≤ 0.01 and *** P ≤ 0.001 compared to the control (DMSO-treated, collagen-

stimulated platelets).      

 

 

Supplemental Figure 1. Molecular docking and GRID interaction energies of flavonoids in 

the ATP binding site of the Hck kinase domain. 

The docked ligands (quercetin: A, B; apigenin: C, D; catechin: E, F) are shown in bold outline 

with neighbouring amino acid residues indicated. Hydrogen bonds (depicted by dashed lines) are 

shown between the ligand and binding site residues with the bond lengths given in Angstroms 

(Å). The GRID programme predicted three dimensional energy contour surfaces/regions (dotted 

areas around docked ligands – quercetin: B; apigenin: D; catechin: F) within the substrate binding 

groove of the Hck kinase domain (crystal structure) corresponding to the energy minima of 

hydrophilic (OH: grey dotted areas) and hydrophobic (DRY: black dotted areas) small chemical 

probes representative of flavonoid functional groups (OH: hydroxyl groups and DRY: aromatic 

groups). MET85 as well as the hydrogen bond contacts formed between ASP148 and LYS39 and 

quercetin B ring hydroxyls were surrounded by hydrophilic GRID regions. Apigenin hydrogen 

bonds (A ring C-6 hydroxyl) to ASN19 as well as the THR82 and GLU83 bound to the apigenin 

B ring C-4́  hydroxyl are near hydrophilic GRID areas. MET85 and catechin C ring C-10 

hydroxyls are also adjacent to GRID hydrophilic areas. 

 

 

Supplemental Figure 2. Molecular docking and GRID interaction energies of flavonoids in 

the ATP binding site of the Fyn kinase domain. 

The docked ligands (quercetin: A, B; apigenin: C, D; catechin: E, F) are shown in bold outline 

with neighbouring amino acid residues numbered. Hydrogen bonds (depicted by dashed lines) are 

shown between the ligand and binding site residues with the bond lengths given in Angstroms 

(Å). The GRID programme predicted three dimensional energy contour surfaces/regions (dotted 

areas around docked ligands – quercetin: B; apigenin: D; catechin: F) within the substrate binding 

groove of the Fyn kinase domain (crystal structure) corresponding to the energy minima of 

hydrophilic (OH: grey dotted areas) and hydrophobic (DRY: black dotted areas) small chemical 

probes representative of flavonoid functional groups (OH: hydroxyl groups and DRY: aromatic 
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groups). GRID areas of hydrophilic interactions were between the quercetin C ring C-10 

hydroxyl and GLY344. MET341 binding to A ring C-6 hydroxyl and SER345 and ASP348 

hydrogen bonds to the B ring C-17 hydroxyl on the structure of apigenin are also adjacent to 

hydrophilic interactions. MET341, ALA342 and LEU273 and C and A ring hydroxyls on the 

structure of catechin are near hydrophilic GRID regions. 
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