Estimation after subpopulation selection in adaptive seamless trials

[thumbnail of open access]
Preview
Text (open access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of PrePrintVersion.pdf]
Text
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Kimani, P. K., Todd, S. orcid id iconORCID: https://orcid.org/0000-0002-9981-923X and Stallard, N. (2015) Estimation after subpopulation selection in adaptive seamless trials. Statistics in Medicine, 34 (18). pp. 2581-2601. ISSN 0277-6715 doi: 10.1002/sim.6506

Abstract/Summary

During the development of new therapies, it is not uncommon to test whether a new treatment works better than the existing treatment for all patients who suffer from a condition (full population) or for a subset of the full population (subpopulation). One approach that may be used for this objective is to have two separate trials, where in the first trial, data are collected to determine if the new treatment benefits the full population or the subpopulation. The second trial is a confirmatory trial to test the new treatment in the population selected in the first trial. In this paper, we consider the more efficient two-stage adaptive seamless designs (ASDs), where in stage 1, data are collected to select the population to test in stage 2. In stage 2, additional data are collected to perform confirmatory analysis for the selected population. Unlike the approach that uses two separate trials, for ASDs, stage 1 data are also used in the confirmatory analysis. Although ASDs are efficient, using stage 1 data both for selection and confirmatory analysis introduces selection bias and consequently statistical challenges in making inference. We will focus on point estimation for such trials. In this paper, we describe the extent of bias for estimators that ignore multiple hypotheses and selecting the population that is most likely to give positive trial results based on observed stage 1 data. We then derive conditionally unbiased estimators and examine their mean squared errors for different scenarios.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/40011
Identification Number/DOI 10.1002/sim.6506
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics > Applied Statistics
Publisher Wiley
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar