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Pipelined median architecture 
 

J. Cadenas 

 
The core processing step of the noise reduction median filter technique is to find the median within a 

window of integers. A four-step procedure method to compute the running median of the last N W-bit 

stream of integers showing area and time benefits is proposed. The  method slices integers into groups 

of B-bit using  a pipeline of W/B blocks. From the method, an architecture is developed giving a 

designer the flexibility to exchange area gains for faster frequency of operation, or vice versa, by 

adjusting N, W and B parameter values. Gains in area of around 40%, or in frequency of operation of 

around 20%, are clearly observed by FPGA circuit implementations compared to latest methods in the 

literature.   

 

Introduction: The median filter is a well-established technique for noise reduction in image processing and 

yet the concept of the median finds new applications in image forensics [1], electrocardiography [2] and in 

fast processing of real-time systems [3]. For N = 2k +1 sorted integers the median is the integer at the middle 

position.  Hardware architectures for computing the median are broadly classified in sorting-based methods 

[4] and non-sorting-based methods [5][6]. As sort is theoretically bound by O(NlogN) time, non-sorting 

methods have emerged driven by the idea of completing the median in O(W) time, where W is the bit length 

of the integers of the unsorted set from where the median is sought. Typically, in hardware scenarios, W is 

restricted to high resolution analogue-to-digital converters with W ≤ 24, or to bytes for image pixels, thus 

even for modest values of N, non-sorting median calculation methods gain an advantage.   

This Letter develops a non-sorting method to calculate the median as a four step procedure; this follows 

from a reformulation of parallelism at the bit level of a previous method [6]. Each step is easily implemented 

for fast computation with the overall result that the median is computed three times faster than before, as 

confirmed here by a timing analysis. The main features of the previous method are preserved; it computes 

the median on a set of N W-bit integers by W/B processing blocks, where B is a parameter of how many bits 

of the integers are sliced for processing. Each block contributes B-bit towards finding the median in a 

pipeline stage. Two key ideas are put forward. The first is a parallel addition at the bit level within each 

block of computation, whereas previously, this addition was computed serially. The second is a parallel 

decision and selection to carry forward the computation to subsequent blocks. These key ideas are facilitated 

by encoding slices of bits using a binary-to-thermometer code, referred to as B-to-T encoding.  

 

B-to-T encoding: A code of r-1 ones followed by a zero is referred to as a thermometer code; this is common 

in fast ADCs [7]. For instance, the binary code for decimal value 110 = 012 can be written in thermometer 

code either as 00012 or as 11102; this Letter uses the latter. For a binary pattern of B-bit we will express the 

thermometer code as an output string of r = 2
B
 bits; the bit vector is denoted as qi for i = 0, …, 2

B
-1. In short, 

for an input i10 the B-to-T encoder sets bits in vector q with indices i, …, 2
B
-1.  

 

Small example: Consider a data set of N = 9 integers, xj = {6, 0, 12, 13, 10, 3, 15, 5, 9}, each of W = 4 bits 

(labelled as [3:0]). If xj is sorted the median is at position P = 5; integer 9 for this set. Partitioning each xj 

with B = 2 bits forms W/B = 2 blocks. The two MSBs of x (xj[3:2]) are processed first in Block 2. Block 1 

processes the two LSBs (xj[1:0]) as shown in Table 1. Integers are processed sequentially, and a B-to-T 

encoding on the integer slice is performed on the fly on a 4-bit vector (2
B
) as previously stated. Each one of 

the bits of this encoding vector is added vertically, also on the fly, as Ai, i = 0, …, 3, starting from a count of 

0. Note this addition is parallel. For instance, bit slice “012” for integer 6 is encoded as “1110” (and added to 

an initial “0000”); then bit slice “002” for integer 0 is encoded as “1111” and added to the running count of 

“1110” gives a count of  “2221” (second row under Block 2 in Table 1). After all nine integers are processed 

by Block 2 A3, A2, A1, A0 have counts 9, 6, 4, 2 respectively. A block finds B-bit of the median as the first 

occurrence of the index i where Ai ≥ P, (for Block 2 this occurs at i = 2 under column A2). 
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Table 1: Window with integers xj = {6, 0, 12, 13, 10, 3, 15, 5, 9} and on-the-fly addition of B-to-T encoding 

on 2-bit slices. 

(xj)10 (xj)2  Block 2 A3 A2 A1 A0  Block 1 A3 A2 A1 A0 

6 0110  01 1 1 1 0  10 4 4 4 4 

0 0000  00 2 2 2 1  00 4 4 4 4 

12 1100  11 3 2 2 1  00 4 4 4 4 

13 1101  11 4 2 2 1  01 4 4 4 4 

10 1010  10 5 3 2 1  10 5 5 4 4 

3 0011  00 6 4 3 2  11 5 5 4 4 

15 1111  11 7 4 3 2  11 5 5 4 4 

5 0101  01 8 5 4 2  01 5 5 4 4 

9 1001  10 9 6 4 2  01 6 6 5 4 

   Ai ≥ 5 1 1 0 0  Ai ≥ 5 1 1 1 0 

 

The two MSBs of the median, are then found as M[3:2] = “102”; integers 10 and 9 remain median candidates 

(ticks for Block 2). Next, Block 1 is processed. First, we copy the final sum value to the right of A2 (this is 

A1 with value 4, underlined in Block 2) as the initial value for the addition in Block 1. Secondly, the slices 

for integers 6, 0, 12, 13, 3, 15, and 5 (slices in grey in Block 1) get nullified so they cannot update any Ai for 

Block 1. Computing Ai is as before, on the remaining integer 2-bit slices. The condition A ≥ P is now first 

satisfied under A1 (i = 1). The two LSBs bits of the median are thus M[1:0] = “012”. Concatenating the 

results from blocks 2 and 1 give the median as M = “10012” = 910 (tick in Block 1).  

 

Median calculation method: From Table 1 a method to calculate the median is presented as a four-step 

procedure; 

1. Binary-to-thermometer slice encoding  

2. Parallel addition of encoding bits 

3. Selection of median slice and setting of sum initial values 

4. Nullification of non-median integers 

Step 1 is a code conversion; for slices of B = 2, 3 and 4 bits, fast hardware implementations are easily 

achieved using look-up tables. Step 2 computes Ai in parallel, and as selecting the median slice value for a 

block are made on sums Ai, the method must be faster than previous method [6]. Step 3 requires 2
B
 parallel 

comparisons; the selection of the median is also fast for B = 2, 3 and 4 through the use of look-up tables or 

logic. Note median position P remains a constant for all blocks; setting adders‟ initial values for subsequent 

blocks requires a selection operation and is made fast with a suitable multiplexer. Setting the initial values to 

adders is implemented through a simple truth table.  Step 4, the logic for the nullification of integers, that 

cannot be the median, is also achieved with simple logic blocks. 

 

Parallel operation in a sliding window: Maintaining a parallel update on sums Ai is required for pipelined 

operation on a streaming sliding window. Observe B-to-T (step 1) is paramount here to allow for additions in 

step 2 to proceed in parallel and to keep them coherent. Fig. 1 shows a block diagram to compute the median 

slice M[1:0] of N integers, B = 2. This requires an array r = 2
2
 adders working in parallel on B-to-T encoded 

bits. Each sum is of log2N bits wide to hold a value of up to N. The block of computation has two outputs; 

the median slice for the block, M[1:0], and the initial set value for the sum of the next block (pout in the 

figure). These two outputs are shown at the bottom of the figure, all based on an array of parallel 

comparators. Notice each B-to-T encoding is inhibited by a single enable bit (circle with „&‟) to account for 

nullification of integers. 

 

Sliding window median architecture: In general, for W-bit integers, physical blocks of B-bits each account 

for W/B processing blocks. Input elements xj are pipelined with N stages to arrange for x
1
, x

2
, …, x

N
 as 
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shown in Fig. 1. An array of 2
B
 adders, each of log2N bits, is maintained per block. The current integer gets 

nullified by comparing, for equality, the median bits found thus far, by previous blocks, with the 

corresponding slice bits of xj. Note the required equality comparison to nullify integers is of only B-bit for 

all blocks in a complete architecture and can be omitted for the first block since all integer slices must be 

processed by the first block.  

 
 

Fig. 1 A median slice block of computation, encompassing the four steps, to calculate the median on a 

sliding window of N integers 

 

All previous outputs from a block, namely M and P, are pipelined from one block to the next; after W/B 

processing blocks, the median M is found, with each block contributing B-bit to M. The median for each 

window emerges every clock cycle. Given the median computation requires W/B blocks with two pipeline 

registers each, the latency for the architecture in Fig. 1 is of N+2(W/B)-1 clock cycles.  

 

Timing analysis: Fig. 1 layout shows pipeline cuts that can be conveniently made anywhere to modify the 

critical path delay T. Therefore, a pipeline cut is made such that the critical path of Fig. 1 is essentially due 

to the parallel comparator array plus the slower of a priority encoder or multiplexer. As, at most, a two-level 

logic is required for a multiplexing operation, then T = log2N + 2. Previous work had a critical path of T[6] = 

3log2N + 6 for B = 2 [6], so this proposal makes a processing step, at least, three times faster regardless of 

any B value. For comparison, the median architecture in [5], T[5] is basically the delay cost of the Carry-Save 

Adder tree (CSA) and at least of log1.5(N/2) + log2N to account for the final adder [8]. For convenience, 

Fig. 1 can also be cut such that the critical path remains essentially the delay cost of the adder (to sum N 

bits); this is also the delay cost of a Carry-Save Adder tree in practical terms. Thus, in this work the claim is 

that the presented architecture can be conveniently made as fast as previous methods for all practical values 

of N. Note this is independent of parameter B; however it seems convenient to maintain B as small as 2, 3 or 

4 bits, in order to keep the on-the-fly encoding as a small look-up table. The sorting-based method in [4], 

presented as hardware area-efficient, has a critical path of N-1 logic levels and therefore is slower than the 

time complexity of this work.  

 

Circuit results in FPGA technology: The results for a median architecture in [5], referred to as LCBP, and 

the one presented here for the same FPGA device is shown in Table 2. These are for the case of N = 9 and 

25 integers each of W = 8 bits. The proposed processing block has two pipeline registers delay and so 

latency is of 7 clock cycles (2(8/2) – 1 = 7). Note that this latency (latency per block * number of blocks – 1, 

caused by waiting for a window of N integers to fill) is common to both the LCBP and the proposal here. 

Table 2 shows that for N = 9 and B = 2, the proposed method here runs roughly at the same frequency as 

LCBP architecture but with much less FPGA resources; this saving can be as high as 40%. For N = 9, and B 

= 3, the advantage of the reduced latency (5 clock cycles vs 8 for LCBP) can be exchanged for a faster 

frequency (from 286 MHz to 335 MHz) while settling for the same latency as LCBP. This is so, since each 
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of three processing cells (W/B = 8/3) is cut-pipelined with three internal registers, so latency is of 3*3-1 = 8 

clock cycles. Area saving is also obvious from the table for the case B = 3. Once more, the smaller latency 

can be traded off (from 7 to 11 clock cycles, 3*4-1 = 11) for a frequency increase (from 259 MHz to 330 

MHz); this is a gain of over 20%. The proposal gives a designer the flexibility to easily trade off an increase 

in frequency for a small penalty in latency to any specific architecture of N integers by choosing a suitable 

parameter value for B.   

 

Conclusion: The four-step median calculation method proposed here makes either faster or as fast 

computations, than previous hardware algorithms in the literature. The median on N integers completes after 

W/B processing blocks for a serial stream of W-bit integers when slicing the integers by B bits. As 

processing more bits per block may result is shorter latency, this can be traded off for faster operation. 

Smaller area is also observed for some N design parameters. One further improvement to this design 

requires finding a way to fuse the adder and the comparison of Fig. 1 into a single optimised block to make 

it smaller and faster. The four-step median method given here is also easily implemented as a fast 

programming solution using arrays or trees. 

 

Table 2: FPGA resources and frequency of operation for the median architecture LCBP in [5] and the one 

presented here. 

 N = 9 N = 25 

 LCBP Here LCBP Here 

  B = 2 B = 3  B = 2 

CLB (Slices) 459 254 284 668 652 

DFF 516 507 478 964 1303 

LUT 632 336 567 766 975 

fmax (MHz) 327 332 286/335 318 259/330 

Latency, clocks 8 7 5/8 8 7/11 
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