
Pipelined median architecture
Article

Accepted Version

Cadenas Medina, J. (2015) Pipelined median architecture.
Electronics Letters, 51 (24). pp. 1999-2001. ISSN 0013-5194
doi: https://doi.org/10.1049/el.2015.1898 Available at
https://centaur.reading.ac.uk/39965/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1049/el.2015.1898

Publisher: Institution of Engineering and Technology (IET)

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

1

Pipelined median architecture

J. Cadenas

The core processing step of the noise reduction median filter technique is to find the median within a

window of integers. A four-step procedure method to compute the running median of the last N W-bit

stream of integers showing area and time benefits is proposed. The method slices integers into groups

of B-bit using a pipeline of W/B blocks. From the method, an architecture is developed giving a

designer the flexibility to exchange area gains for faster frequency of operation, or vice versa, by

adjusting N, W and B parameter values. Gains in area of around 40%, or in frequency of operation of

around 20%, are clearly observed by FPGA circuit implementations compared to latest methods in the

literature.

Introduction: The median filter is a well-established technique for noise reduction in image processing and

yet the concept of the median finds new applications in image forensics [1], electrocardiography [2] and in

fast processing of real-time systems [3]. For N = 2k +1 sorted integers the median is the integer at the middle

position. Hardware architectures for computing the median are broadly classified in sorting-based methods

[4] and non-sorting-based methods [5][6]. As sort is theoretically bound by O(NlogN) time, non-sorting

methods have emerged driven by the idea of completing the median in O(W) time, where W is the bit length

of the integers of the unsorted set from where the median is sought. Typically, in hardware scenarios, W is

restricted to high resolution analogue-to-digital converters with W ≤ 24, or to bytes for image pixels, thus

even for modest values of N, non-sorting median calculation methods gain an advantage.

This Letter develops a non-sorting method to calculate the median as a four step procedure; this follows

from a reformulation of parallelism at the bit level of a previous method [6]. Each step is easily implemented

for fast computation with the overall result that the median is computed three times faster than before, as

confirmed here by a timing analysis. The main features of the previous method are preserved; it computes

the median on a set of N W-bit integers by W/B processing blocks, where B is a parameter of how many bits

of the integers are sliced for processing. Each block contributes B-bit towards finding the median in a

pipeline stage. Two key ideas are put forward. The first is a parallel addition at the bit level within each

block of computation, whereas previously, this addition was computed serially. The second is a parallel

decision and selection to carry forward the computation to subsequent blocks. These key ideas are facilitated

by encoding slices of bits using a binary-to-thermometer code, referred to as B-to-T encoding.

B-to-T encoding: A code of r-1 ones followed by a zero is referred to as a thermometer code; this is common

in fast ADCs [7]. For instance, the binary code for decimal value 110 = 012 can be written in thermometer

code either as 00012 or as 11102; this Letter uses the latter. For a binary pattern of B-bit we will express the

thermometer code as an output string of r = 2
B
 bits; the bit vector is denoted as qi for i = 0, …, 2

B
-1. In short,

for an input i10 the B-to-T encoder sets bits in vector q with indices i, …, 2
B
-1.

Small example: Consider a data set of N = 9 integers, xj = {6, 0, 12, 13, 10, 3, 15, 5, 9}, each of W = 4 bits

(labelled as [3:0]). If xj is sorted the median is at position P = 5; integer 9 for this set. Partitioning each xj

with B = 2 bits forms W/B = 2 blocks. The two MSBs of x (xj[3:2]) are processed first in Block 2. Block 1

processes the two LSBs (xj[1:0]) as shown in Table 1. Integers are processed sequentially, and a B-to-T

encoding on the integer slice is performed on the fly on a 4-bit vector (2
B
) as previously stated. Each one of

the bits of this encoding vector is added vertically, also on the fly, as Ai, i = 0, …, 3, starting from a count of

0. Note this addition is parallel. For instance, bit slice “012” for integer 6 is encoded as “1110” (and added to

an initial “0000”); then bit slice “002” for integer 0 is encoded as “1111” and added to the running count of

“1110” gives a count of “2221” (second row under Block 2 in Table 1). After all nine integers are processed

by Block 2 A3, A2, A1, A0 have counts 9, 6, 4, 2 respectively. A block finds B-bit of the median as the first

occurrence of the index i where Ai ≥ P, (for Block 2 this occurs at i = 2 under column A2).

2

Table 1: Window with integers xj = {6, 0, 12, 13, 10, 3, 15, 5, 9} and on-the-fly addition of B-to-T encoding

on 2-bit slices.

(xj)10 (xj)2 Block 2 A3 A2 A1 A0 Block 1 A3 A2 A1 A0

6 0110 01 1 1 1 0 10 4 4 4 4

0 0000 00 2 2 2 1 00 4 4 4 4

12 1100 11 3 2 2 1 00 4 4 4 4

13 1101 11 4 2 2 1 01 4 4 4 4

10 1010 10 5 3 2 1 10 5 5 4 4

3 0011 00 6 4 3 2 11 5 5 4 4

15 1111 11 7 4 3 2 11 5 5 4 4

5 0101 01 8 5 4 2 01 5 5 4 4

9 1001 10 9 6 4 2 01 6 6 5 4

 Ai ≥ 5 1 1 0 0 Ai ≥ 5 1 1 1 0

The two MSBs of the median, are then found as M[3:2] = “102”; integers 10 and 9 remain median candidates

(ticks for Block 2). Next, Block 1 is processed. First, we copy the final sum value to the right of A2 (this is

A1 with value 4, underlined in Block 2) as the initial value for the addition in Block 1. Secondly, the slices

for integers 6, 0, 12, 13, 3, 15, and 5 (slices in grey in Block 1) get nullified so they cannot update any Ai for

Block 1. Computing Ai is as before, on the remaining integer 2-bit slices. The condition A ≥ P is now first

satisfied under A1 (i = 1). The two LSBs bits of the median are thus M[1:0] = “012”. Concatenating the

results from blocks 2 and 1 give the median as M = “10012” = 910 (tick in Block 1).

Median calculation method: From Table 1 a method to calculate the median is presented as a four-step

procedure;

1. Binary-to-thermometer slice encoding

2. Parallel addition of encoding bits

3. Selection of median slice and setting of sum initial values

4. Nullification of non-median integers

Step 1 is a code conversion; for slices of B = 2, 3 and 4 bits, fast hardware implementations are easily

achieved using look-up tables. Step 2 computes Ai in parallel, and as selecting the median slice value for a

block are made on sums Ai, the method must be faster than previous method [6]. Step 3 requires 2
B
 parallel

comparisons; the selection of the median is also fast for B = 2, 3 and 4 through the use of look-up tables or

logic. Note median position P remains a constant for all blocks; setting adders‟ initial values for subsequent

blocks requires a selection operation and is made fast with a suitable multiplexer. Setting the initial values to

adders is implemented through a simple truth table. Step 4, the logic for the nullification of integers, that

cannot be the median, is also achieved with simple logic blocks.

Parallel operation in a sliding window: Maintaining a parallel update on sums Ai is required for pipelined

operation on a streaming sliding window. Observe B-to-T (step 1) is paramount here to allow for additions in

step 2 to proceed in parallel and to keep them coherent. Fig. 1 shows a block diagram to compute the median

slice M[1:0] of N integers, B = 2. This requires an array r = 2
2
 adders working in parallel on B-to-T encoded

bits. Each sum is of log2N bits wide to hold a value of up to N. The block of computation has two outputs;

the median slice for the block, M[1:0], and the initial set value for the sum of the next block (pout in the

figure). These two outputs are shown at the bottom of the figure, all based on an array of parallel

comparators. Notice each B-to-T encoding is inhibited by a single enable bit (circle with „&‟) to account for

nullification of integers.

Sliding window median architecture: In general, for W-bit integers, physical blocks of B-bits each account

for W/B processing blocks. Input elements xj are pipelined with N stages to arrange for x
1
, x

2
, …, x

N
 as

3

shown in Fig. 1. An array of 2
B
 adders, each of log2N bits, is maintained per block. The current integer gets

nullified by comparing, for equality, the median bits found thus far, by previous blocks, with the

corresponding slice bits of xj. Note the required equality comparison to nullify integers is of only B-bit for

all blocks in a complete architecture and can be omitted for the first block since all integer slices must be

processed by the first block.

Fig. 1 A median slice block of computation, encompassing the four steps, to calculate the median on a

sliding window of N integers

All previous outputs from a block, namely M and P, are pipelined from one block to the next; after W/B

processing blocks, the median M is found, with each block contributing B-bit to M. The median for each

window emerges every clock cycle. Given the median computation requires W/B blocks with two pipeline

registers each, the latency for the architecture in Fig. 1 is of N+2(W/B)-1 clock cycles.

Timing analysis: Fig. 1 layout shows pipeline cuts that can be conveniently made anywhere to modify the

critical path delay T. Therefore, a pipeline cut is made such that the critical path of Fig. 1 is essentially due

to the parallel comparator array plus the slower of a priority encoder or multiplexer. As, at most, a two-level

logic is required for a multiplexing operation, then T = log2N + 2. Previous work had a critical path of T[6] =

3log2N + 6 for B = 2 [6], so this proposal makes a processing step, at least, three times faster regardless of

any B value. For comparison, the median architecture in [5], T[5] is basically the delay cost of the Carry-Save

Adder tree (CSA) and at least of log1.5(N/2) + log2N to account for the final adder [8]. For convenience,

Fig. 1 can also be cut such that the critical path remains essentially the delay cost of the adder (to sum N

bits); this is also the delay cost of a Carry-Save Adder tree in practical terms. Thus, in this work the claim is

that the presented architecture can be conveniently made as fast as previous methods for all practical values

of N. Note this is independent of parameter B; however it seems convenient to maintain B as small as 2, 3 or

4 bits, in order to keep the on-the-fly encoding as a small look-up table. The sorting-based method in [4],

presented as hardware area-efficient, has a critical path of N-1 logic levels and therefore is slower than the

time complexity of this work.

Circuit results in FPGA technology: The results for a median architecture in [5], referred to as LCBP, and

the one presented here for the same FPGA device is shown in Table 2. These are for the case of N = 9 and

25 integers each of W = 8 bits. The proposed processing block has two pipeline registers delay and so

latency is of 7 clock cycles (2(8/2) – 1 = 7). Note that this latency (latency per block * number of blocks – 1,

caused by waiting for a window of N integers to fill) is common to both the LCBP and the proposal here.

Table 2 shows that for N = 9 and B = 2, the proposed method here runs roughly at the same frequency as

LCBP architecture but with much less FPGA resources; this saving can be as high as 40%. For N = 9, and B

= 3, the advantage of the reduced latency (5 clock cycles vs 8 for LCBP) can be exchanged for a faster

frequency (from 286 MHz to 335 MHz) while settling for the same latency as LCBP. This is so, since each

4

of three processing cells (W/B = 8/3) is cut-pipelined with three internal registers, so latency is of 3*3-1 = 8

clock cycles. Area saving is also obvious from the table for the case B = 3. Once more, the smaller latency

can be traded off (from 7 to 11 clock cycles, 3*4-1 = 11) for a frequency increase (from 259 MHz to 330

MHz); this is a gain of over 20%. The proposal gives a designer the flexibility to easily trade off an increase

in frequency for a small penalty in latency to any specific architecture of N integers by choosing a suitable

parameter value for B.

Conclusion: The four-step median calculation method proposed here makes either faster or as fast

computations, than previous hardware algorithms in the literature. The median on N integers completes after

W/B processing blocks for a serial stream of W-bit integers when slicing the integers by B bits. As

processing more bits per block may result is shorter latency, this can be traded off for faster operation.

Smaller area is also observed for some N design parameters. One further improvement to this design

requires finding a way to fuse the adder and the comparison of Fig. 1 into a single optimised block to make

it smaller and faster. The four-step median method given here is also easily implemented as a fast

programming solution using arrays or trees.

Table 2: FPGA resources and frequency of operation for the median architecture LCBP in [5] and the one

presented here.

 N = 9 N = 25

 LCBP Here LCBP Here

 B = 2 B = 3 B = 2

CLB (Slices) 459 254 284 668 652

DFF 516 507 478 964 1303

LUT 632 336 567 766 975

fmax (MHz) 327 332 286/335 318 259/330

Latency, clocks 8 7 5/8 8 7/11

J. Cadenas (University of Reading, Reading, RG6 6AX, UK)

E-mail: o.cadenas@reading.ac.uk

References

1 Kang X., Stamm M.C., Peng A. and Liu K.J.R : „Robust median filtering forensics using an autoregressive

model‟, IEEE Trans. Inf. Forensics and Security, 2013, 8, 9, pp. 1456-1468.

2 Niederhauser T., Wyss-Balmer T., Haeberlin A., Marisa T., Wildhaber R.A, Goette J. and Vogel R.:

„Baseline wander filtering algorithms for long term electrocardiography‟, IEEE Trans. on Bio. Eng., 2015,

62, (6), pp. 1576-1584

3 Atia M.M, Georgy J., Korenberg M.J., and Noureldin, A: „Real-time implementation of mixture particle

filter for 3D RISS/GPS integrated navigation solution‟, Electron. Lett., 2010, 46, (15), pp. 1083-1084

4 Chen, R. D., Chen, P. Y., and Yeh, C. H.: „Design of an area-efficient one-dimensional median filter‟,

IEEE Trans Circ. and Syst. II, 2013, 60, (10), pp. 662-666

5 Prokin, D., and Prokin, M.: „Low hardware complexity pipelined rank filter‟, IEEE Trans. Circ. and Syst.

II., 2010, 57, (6), pp. 446-450

5

6 Cadenas, J., Megson, G. M., Sherratt, R. S. and Huerta, P.: „Fast median calculation method‟, Electron.

Lett., 2012, 48, (10), pp. 558-560

7 Hieu B. V., Beak S. Choi S, Seon J. and Jeong T. T.: „Thermometer-to-binary encoder with bubble error

correction (BEC) for flash analog-to-digital converters (FADC)‟, 3
rd

 Int. Conf. on Communications and

Electronics, 2010, pp. 102-106.

8 Parhami, B.: „Computer arithmetic, algorithms and hardware designs‟ (Oxford, 2000)

