
The slowly evolving background state of 
the atmosphere 
Article 

Published Version 

Creative Commons: Attribution 3.0 (CC-BY) 

Open Access 

Methven, J. ORCID: https://orcid.org/0000-0002-7636-6872 
and Berrisford, P. (2015) The slowly evolving background state
of the atmosphere. Quarterly Journal of the Royal 
Meteorological Society, 141 (691). pp. 2237-2258. ISSN 1477-
870X doi: https://doi.org/10.1002/qj.2518 (Part B) Available at 
https://centaur.reading.ac.uk/39874/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1002/qj.2518 
To link to this article DOI: http://dx.doi.org/10.1002/qj.2518 

Publisher: Royal Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Reading’s research outputs online



Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015) DOI:10.1002/qj.2518

The slowly evolving background state of the atmosphere

John Methvena* and Paul Berrisfordb

aDepartment of Meteorology, University of Reading, UK
bNCAS–Climate, ECMWF, Reading, UK

*Correspondence to: J. Methven, Department of Meteorology, University of Reading, Earley Gate, Reading, RG6 6BB, UK.
E-mail: J.Methven@reading.ac.uk

The theory of wave–mean flow interaction requires a partition of the atmospheric flow into
a notional background state and perturbations to it. Here, a background state, known as
the Modified Lagrangian Mean (MLM), is defined as the zonally symmetric state obtained
by requiring that every potential vorticity (PV) contour lying within an isentropic layer
encloses the same mass and circulation as in the full flow. For adiabatic and frictionless
flow, these two integral properties are time-invariant and the MLM state is a steady solution
of the primitive equations. The time dependence in the adiabatic flow is put into the
perturbations, which can be described by a wave-activity conservation law that is exact even
at large amplitude. Furthermore, the effects of non-conservative processes on wave activity
can be calculated from the conservation law.

A new method to calculate the MLM state is introduced, where the position of the lower
boundary is obtained as part of the solution. The results are illustrated using Northern
Hemisphere ERA-Interim data. The MLM state evolves slowly, implying that the net non-
conservative effects are weak. Although ‘adiabatic eddy fluxes’ cannot affect the MLM state,
the effects of Rossby-wave breaking, PV filamentation and subsequent dissipation result in
sharpening of the polar vortex edge and meridional shifts in the MLM zonal flow, both at
tropopause level and on the winter stratospheric vortex. The rate of downward migration of
wave activity during stratospheric sudden warmings is shown to be given by the vertical scale
associated with polar vortex tilt divided by the time-scale for wave dissipation estimated
from the wave-activity conservation law. Aspects of troposphere–stratosphere interaction
are discussed.

The new framework is suitable to examine the climate and its interactions with
disturbances, such as midlatitude storm tracks, and makes a clean partition between
adiabatic and non-conservative processes.
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1. Introduction

The theory of wave–mean flow interaction requires a partition
of the atmospheric flow into a notional background state and
perturbations to it. The evolution of both components and
their diagnosed ‘interaction’ depends upon the partition. This
article defines a new background state, designed to isolate the
effects of non-conservative processes on the evolution of both
the background state and large-amplitude perturbations. In an
adiabatic, frictionless flow, the background state would be strictly
steady and all the time-dependent motion would be reflected
in the perturbations, often described loosely as ‘wave activity’.
Therefore any time dependence in the background is associated

with non-conservative processes. The non-conservative effects
on wave activity can also be quantified from global data. The
lower boundary of the background state is found as part of the
solution, which makes the partition useful for examination of
large-amplitude baroclinic waves and their two-way interaction
with the background flow.

The background state is defined in terms of two fundamental
integral quantities, mass and circulation, that are conserved
in adiabatic, frictionless flow. Each integral quantity is treated
as a functional of only two variables, potential vorticity (PV)
and potential temperature, that are themselves conserved for
adiabatic and frictionless flow in a material sense (following fluid
parcels). When potential temperature is materially conserved, air
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is constrained to move along isentropic surfaces. Since PV is also
conserved, it can be used to label air parcels on each isentropic
surface so that every PV contour is a material contour (moves
with the air) and there is no mass flux across it. The mass and
circulation enclosed by every PV contour within every isentropic
layer are conserved, meaning that they are invariant in time (see
Hoskins, 1991). This is true for the full three-dimensional (3D)
time-dependent flow and, since the background state is defined
with the same integral properties (as functionals of PV and θ), it
shares the same conservation properties. The key difference from
the full flow is that the background state is defined to be zonally
symmetric. McIntyre (1980) described a zonally symmetric state
referenced with respect to the position of PV contours as the
modified Lagrangian mean (MLM) state.

The latitude of a PV contour, with value Q, on an isentropic
surface, with potential temperature �, in the background state
will be described as its ‘equivalent latitude’, φe(Q, �).∗ The
concept of equivalent latitude was introduced by Butchart and
Remsberg (1986) and developed by Norton (1994) to examine the
stratospheric polar vortex. These authors defined φe by requiring
PV contours to contain the same area under rearrangement
to zonal symmetry. However, since isentropic density varies on
isentropic surfaces, this form of rearrangement is not conservative,
since it implies a change in the mass of layers. Nakamura (1995)
used the mass integrals to describe a meridional coordinate
that was mapped to equivalent latitude by assuming constant
isentropic density within each layer. He also derived MLM
evolution equations describing changes in the MLM PV and zonal
flow (his equations 2.12 and 2.13). In particular, he showed that
the effects of non-conservative processes can be represented as
an equivalent advection by a meridional circulation without eddy
flux terms. A drawback of the Nakamura (1995) approach is that
uniform density in each isentropic layer is assumed when mapping
mass from (Q, �) coordinates into physical coordinates (φ, z).
While this approximation works quite well in the stratosphere, it
is poor crossing the tropopause and throughout the troposphere.

Here, the definition will be such that both the mass and
circulation enclosed by φe(Q, �) in the background state
must equal the corresponding mass, M(Q, �), and circulation,
C(Q, �), integrals from the full 3D state. Since the integral
properties are the same and the only difference is the geometry of
PV contours on each isentropic surface, such a state is described
as an ‘adiabatic rearrangement’ of the flow. The difficulty in the
procedure is that both integral constraints must be respected,
determining both the MLM vorticity and isentropic density
distributions and therefore the location of every PV contour
in (φ, z) or (φ, p) coordinates (assuming hydrostatic and gradient
wind balance on the sphere). The mass and vorticity distributions
are linked through the PV inversion relation. The approach taken
is to iterate towards a set of equivalent latitudes that satisfies both
constraints, using PV inversion to define the partition between
vorticity and isentropic density anomalies.

Rossby-wave disturbances in the atmosphere can be described
in terms of meridional displacements of PV contours along
isentropic surfaces from their equivalent latitudes in the zonally
symmetric background state. In an adiabatic, frictionless fluid,
these would be the same as air parcel displacements from a
notional ‘undisturbed’ reference position. The set of reference
locations could be interpreted as describing a Lagrangian mean
state. The atmosphere is not adiabatic or inviscid and air parcels
mix. These effects result in mass crossing isentropic surfaces
and the PV contours on them. However, it is still possible to
identify disturbances with the positions of PV contours. This
MLM approach (McIntyre, 1980) has several advantages over a
Lagrangian mean, where quantities are averaged over selected
material volumes, using their centre of mass as a coordinate.

∗Throughout, subscript ‘e’ will be used to denote quantities defined at
equivalent latitudes.

The resulting generalised Lagrangian mean theory, first obtained
by Andrews and McIntyre (1978), has an exact wave-activity
conservation law, but becomes problematic as material surfaces
are increasingly distorted by stretching and folding associated
with chaotic advection. Solomon and Nakamura (2012) have
recently reviewed the relation between Lagrangian and MLM
definitions of wave activity.

A major advantage of the MLM definition is that PV can be
calculated as a diagnostic from the data without a time-dependent
tracer calculation. In this study, ERA-Interim analyses (Dee et
al., 2011) will be used to provide the atmospheric data required.
The European Centre for Medium-Range Weather Forecasts
(ECMWF) model cannot represent tracer structures as fine as
those observed, so an inevitable side effect is that numerical
mixing will transfer mass across PV contours. However, the
quality of ERA-Interim data has been found to be comparable
to other contemporary reanalyses and considerably better than
older reanalyses. For example, Simmons et al. (2014) report
improvement in the variability and trends of temperature and
Berrisford et al. (2011) found better closure in the global
budgets of mass, moisture, energy and angular momentum.
This improvement in data quality is thought to be due to the use
of 4D-Var, variational bias correction of satellite data, improved
observational datasets and other improvements to the forecast
model and assimilation system.

An important attribute of the new background-state definition
is the treatment of the lower boundary. If the flow were adiabatic,
the potential temperature would be materially conserved
following the horizontal flow along the lower boundary. Therefore,
just as the MLM framework tracks PV contours along isentropic
surfaces in the fluid interior, it is natural to track θ contours
along the lower boundary. In practice, there is strong mixing in
the atmospheric boundary layer, so θ contours approximately
follow the horizontal flow along the top of the boundary layer.
A novel aspect is that the background-state lower boundary is
determined as part of the solution and defines a set of equivalent
latitudes for disturbances near the Earth’s surface.

Wave-activity conservation laws are derived from conserved
properties of the full flow: for example, energy or zonal angular
momentum. In general, these properties are not conserved by
the perturbation alone, because there is ‘exchange’ between the
background state and perturbation. In addition to the usual
invariants such as energy and angular momentum, any function
of θ and potential vorticity (PV) is globally conserved for the
full flow, since these two quantities are conserved following
all fluid parcels if the flow is adiabatic and frictionless. These
additional invariants are called Casimirs. McIntyre and Shepherd
(1987) outlined a systematic approach to finding wave-activity
conservation laws by combining energy or angular momentum
with a Casimir that is chosen to obtain a disturbance quantity
that is at least second order and globally conserved.

The definition of the background state is vital to the existence
of a wave-activity conservation law at finite perturbation
amplitude. It is essential to describe the background state
as a function of PV and θ in order to use the Casimir
method. The MLM background state meets these criteria. Since
it is zonally symmetric, a conservation law can be obtained
by the zonal angular momentum–Casimir method following
Haynes (1988). Many studies involving wave activity have been
theoretical, applied to idealized models or atmospheric data with
approximations (such as small amplitude or quasi-geostrophic
expressions). The key aim here is to apply the full diagnostics
in the examination of global meteorological analysis data.
Preliminary results were presented in Methven (2009) and the
derivation of finite-amplitude expressions for pseudomomentum,
pseudoenergy and their calculation from data was presented in
Methven (2013). This article describes the method for obtaining
the background state that was used in those studies.

Nakamura and Solomon (2011) have also devised wave-activity
calculations valid at large amplitude to study wave–mean flow
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interaction throughout the atmosphere using analyses. Similar
to the approach here, they used the functionals M(Q, �) and
C(Q, �) plus gradient wind and hydrostatic balance to define a
zonally symmetric ‘reference state’. One key difference is that they
use the Eulerian zonal mean potential temperature on a pressure
surface to specify the lower boundary of their background state.
This is not consistent with an adiabatic rearrangement, such that
the same mass and circulation are enclosed within isentropic layers
that intersect the Earth’s surface. In the new method presented
here, a lower boundary is found that is consistent with mass and
circulation. Consequently, it is possible to define wave activity
associated with displacements of potential temperature contours
along the lower boundary (following Magnusdottir and Haynes,
1996), which are an essential component of baroclinic wave
development in the extratropics. The boundary-wave activity has
also been shown to dominate variability on the large-scale, such
as the periods of eastward and westward phase propagation of
Rossby waves at the tropopause (Methven, 2013).

The background state is defined and the calculation method
described in section 2, including the integral properties, balance
relations, boundary conditions used for the PV inversion and
iteration of equivalent latitudes to obtain consistency with the
mass and circulation of the atmospheric data. The numerical
methods are outlined in the Appendix. Section 3 summarizes the
definition of pseudomomentum and its flux, following Haynes
(1988). Readers who are more interested in the applications than
in the details of the calculation can skip to section 4.

Application of the methods is illustrated for three problems:
(i) the background state and wave activity in the troposphere,
(ii) wave–mean flow interaction during sudden stratospheric
warmings (SSWs) and (iii) troposphere–stratosphere interaction.
A dynamical phenomenon central to all three is the vortex erosion
mechanism (Legras and Dritschel, 1993). Rossby-wave breaking
stirs PV on isentropic surfaces, resulting in stretching and folding
of PV contours and the formation of PV filaments. Wave breaking
tends to act preferentially outwards on the edge of a large-scale
vortex, so that mass is carried away from the vortex edge in the
filaments and is transferred irreversibly into the surrounding surf
zone, where the fine-scale filaments mix with their surroundings.
The net effect is to enhance the PV gradient of the vortex edge
in the background state and to reduce the gradient in the surf
zone. The vortex is typically more compact and axisymmetric as
a result (Melander et al., 1987). The more compact vortex and
sharper PV gradient are associated with a stronger jet around
the vortex. The MLM framework is ideally suited to pulling out
this behaviour from the data, as illustrated in section 4 using
ERA-Interim data for a six-month period (1 November 2009–1
May 2010).

SSWs are perhaps the most extreme example of the vortex
erosion mechanism in the atmosphere. Section 5 focuses on
the stratospheric polar vortex in the build-up and during SSWs
and on the links with wave activity in the troposphere. The
vertical profile of pseudomomentum is used to distinguish
periods dominated by barotropic modal structures (Esler and
Scott, 2005) or by the upward group propagation of Rossby-wave
packets. The mechanism for the repeated downward migration
of wave activity that occurs during SSWs is also investigated.
The new diagnostics point to the importance of wave dissipation
in the mechanism and in determining the rate of downward
migration. Conclusions and the potential for future applications
are described in section 6.

2. Definition and calculation of the background state

2.1. Mass and circulation integrals

The background state is defined in terms of volumes of integration
bounded above and below by isentropic surfaces, with fixed
separation �θ , and laterally by an Ertel PV contour q = Q, such

that only higher PV is contained:

M(Q, �) = 1

�θ

∫∫ ∫
q≥Q

ra2 dλ dμ dθ , (1)

C(Q, �) = 1

�θ

∫∫∫
q≥Q

ζa2 dλ dμ dθ , (2)

where a is the Earth’s radius, λ is longitude, μ = sin φ and
φ is latitude. θ = T(p00/p)κ is potential temperature, where T
is temperature, p00 is a constant reference pressure (1000 hPa),
κ = R/cp = 2/7, R is the gas constant for dry air and cp is
its specific heat capacity at constant pressure. � is the value
of θ labelling the midpoint of the isentropic layer. r is the
isentropic density (9) and ζ is the vertical component of absolute
isentropic vorticity (4). M is the mass divided by the isentropic
surface separation, �θ . C is the circulation around the volume.
The integration volumes include any PV cut-offs. Ertel PV is
defined under the approximations of the hydrostatic primitive
equations by

q = ζ

r
. (3)

The vertical component of absolute vorticity on a sphere
rotating with angular velocity 	 is given by

ζ = 2	μ − ∂U

∂μ
+ 1

1 − μ2

∂V

∂λ
, (4)

where the derivatives of the horizontal wind are taken along
isentropic surfaces. Here U = (u/a) cos φ, V = (v/a) cos φ,
where (u, v) is the horizontal velocity.

The ERA-Interim reanalysis data used here are obtained
from the analyzed fields archived on model levels. Since
the ECMWF model is pseudo-spectral, the data are taken
in spherical harmonic form and transformed on to the full
Gaussian grid. The model levels are defined in a terrain-following
hybrid-pressure vertical coordinate, often described as η-levels
(Simmons and Burridge, 1981). Pressure is calculated at every
location from the surface pressure, ps(λ, μ, t), and the coordinate
definition. Temperature and pressure together define the potential
temperature θ(λ, μ, η, t). The data are then interpolated on to
a finite set of isentropic surfaces labelled θm. Centred finite
differences in isentropic coordinates are used to calculate the
relative vorticity. The method used to calculate isentropic density,
r, is described in the next section. Further details on the numerical
methods are given in the Appendix.

2.2. Balance relations for the zonally symmetric state

The background state is defined in terms of the integrals
M(Q, �) and C(Q, �). The zonal flow can be associated with the
background state circulation by using Stokes’ theorem applied to
a zonally symmetric state:

C(Q, �) = 2πa2
[
U + 	(1 − μ2)

]
. (5)

A subtlety with this equation is that it is necessary to know the
equivalent latitude of every PV contour μ(Q, �) to find U(Q, �).
The method starts from first-guess equivalent latitudes specified
by the area enclosed by PV contours in the 3D state:

μ1
e(Q, �) = 1 − A(Q, �)

2πa2
, (6)

where the area A(Q, �) is defined with isentropic density set
to 1 in the integrand of the mass integral (1). However, unless
the isentropic density is uniform in each isentropic layer, the
background-state contour q = Q will not contain the same mass
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or circulation as the PV contour q = Q from the 3D state. The
full problem requires a simultaneous solution for the isentropic
density and velocity field of the background state and this is
achieved through a new technique called equivalent latitude
iteration with PV inversion (ELIPVI for short).

In isentropic coordinates, hydrostatic balance and the
horizontal pressure gradient force are best described in terms
of the Montgomery potential, M, defined by

M = cpT + gz. (7)

Starting from the first variation of (7), followed by hydrostatic
balance in height coordinates, dp = −ρg dz and the ideal gas law,
ρ = p/(RT), to eliminate the density, ρ, and the definition of θ ,
it is possible to obtain an expression for hydrostatic balance in θ
coordinates (e.g. Bleck, 1973):

∂M

∂θ
= cp

T

θ
= cp

(
p

p00

)κ

(8)

and to express the isentropic density in terms of M:

r = −1

g

∂p

∂θ
= − 1

�g

∂2M

∂θ 2
, (9)

where the function

� = RT

pθ
= R

p

(
p

p00

)κ

= R

p00

(
1

cp

∂M

∂θ

)(κ−1)/κ

. (10)

Substituting the definitions for absolute vorticity (4) for a
zonally symmetric flow and isentropic density (9) into the PV
definition (3) gives

2	μ − ∂U

∂μ
= − q

�g

∂2M

∂θ 2
. (11)

For a steady, zonal flow, in the absence of friction, the meridional
component of the momentum equation reduces exactly to
gradient wind balance on the sphere:(

2	 sin φ + U sin φ

cos2 φ

)
Ua + cos φ

a

∂M

∂φ
= 0. (12)

Gradient wind balance (12) and Stokes’ theorem (5) can be
used to replace ∂U/∂μ in (11) with an expression involving
only M and the circulation C (which is a known function in this
problem), to give

1 + 1

(2	a sin φ cos φ)2

{(
1 + sin2 φ

)3

2 sin2 φ cos φ

∂

∂φ

(
cos φ

1 + sin2 φ

∂M

∂φ

)

−
(
1 + 3 sin4 φ

)
2 sin2 φ cos φ

∂

∂φ

(
cos φ

∂M

∂φ

)

+ q C(q, θ) sin φ

�gπ

∂2M

∂θ 2

}
= 0. (13)

PV inversion amounts to solving this equation for M, given q
and C(q, θ). It would be linear in M and elliptic, if it were not
for the function �, which introduces weak nonlinearity. The PV
inversion (13) is discretized using second-order finite differences
and boundary conditions are required around the perimeter of
the domain. This particular form (13), expressed in terms of φ, is
used because it involves only second-order meridional derivatives
of M and enables the boundary conditions to be applied more
easily (section 2.2.1).

Note that Nakamura and Solomon (2011) combine (5), (10)
and (12) to obtain an elliptic equation relating derivatives of

M(μe, θ) and C(μe, θ), which also has nonlinearity introduced
by �. They start from a first-guess given by the integral of mass
poleward of fixed latitude circles, M, and use it to identify a PV
value, Q, with matching mass functional M(Q, θ) = M(μ, θ).
This PV value is then used to find the corresponding value of
the circulation functional C(Q, θ). Their method proceeds by
iterating mass and circulation simultaneously as functions of
(μ, θ), rather than the approach here, where the functional values
are preserved and the iteration is to the equivalent latitudes. The
� function is also updated by an outer ‘nonlinear iteration’ (see
section A9). Therefore, although the state they obtain should
have both mass and circulation integrals consistent with gradient
wind and hydrostatic balance, it is not guaranteed that these
integrals converge on the functionals obtained from the original
3D data (although relation (27) constrains them to be close to the
observed values). Also, since they use the Eulerian zonal average
of θ on a pressure surface as the lower boundary condition, the
mass integrals cannot match at lower levels (except in the special
circumstance in which the θ distribution on the lower boundary
obtained here matches the Eulerian zonal average).

The numerical method for inverting (13) is outlined in the
Appendix and involves a linear inverter (assuming � is known)
and a ‘nonlinear iteration’ to recalculate� and the lower boundary
terms from the results and feed this back into the linear inverter.
Once M is known, the zonal wind and isentropic density can be
calculated from (12) and (9).

2.2.1. Boundary conditions at the Equator and North Pole

Since the method has been implemented for the Northern
Hemisphere in spherical polar coordinates, it is necessary to
specify lateral boundary conditions at the North Pole and Equator.
At the Pole, cos φ = 0, so, for non-singular M,

cos φ
∂M

∂φ
= 0 (14)

and from (12) it can be seen that u = 0. At the Equator,
using sin φ = 0 in (12) implies that (14) also applies there (for
any equatorial flow). To solve the second-order equation (13),
boundary conditions are required on the meridional derivative
of cos φ ∂M/∂φ at the Equator. To simplify presentation, the
geostrophic wind, ug, is introduced:

ug = − 1

2	a sin φ

∂M

∂φ
. (15)

Rearranging (12) then yields

ug = u

(
1 + u

2	a cos φ

)
. (16)

On applying l’Hôpital’s rule to (15) as φ → 0,

ug(φ = 0) = − 1

2	a

∂2M

∂φ2
. (17)

A quadratic function is fitted to M(φ) approaching the Equator
by using (17) with (14) at the Equator and assuming an additional
condition of uniform curvature of M from the Equator to the
junction between the first and second columns of grid boxes
adjacent to the Equator (denoted by the latitude label j2). This
gives

∂M

∂φ

∣∣∣∣
j2

= −2	aug(0)φj2 = −2	aueq

(
1 + ueq

2	a

)
φj2, (18)

where the second equality uses (16) and the zonal wind at the
Equator, ueq, is specified from the circulation integrals spanning
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the Northern Hemisphere on each isentropic surface using (5).
This provides a near-equatorial lateral boundary condition, so
that (13) can be solved in a way that correctly constrains the first
and second derivatives of M along each isentropic surface at the
Equator. Once M is known polewards of this boundary condition,
M on the first column of grid points from the Equator is given by

M1 = M2 − ∂M

∂φ

∣∣∣∣
j2

(φ2 − φ1) , (19)

where M1, M2, φ1 and φ2 are the values of M and latitude at the
first and second points from the Equator on the inversion grid.

2.2.2. Boundary condition at the top boundary

The top boundary of the inversion domain is taken to be the
3043 K isentropic surface, θtop, and the highest isentropic level
used on the inversion grid is 2979 K. These isentropic surfaces
were chosen so that they remain within the range of the ERA-
Interim data. Note that the top model level in ERA-Interim
corresponds to a pressure of 0.1 hPa. The pressure at θtop is used
to specify the top boundary condition. However, the pressure in
the background state is not known, since the aim is to solve for it,
so the top boundary pressure must be specified from the 3D data.
During winter, the horizontal flow and pressure perturbations
(relative to the mean) are strong at 0.1 hPa, associated with the
extension of the polar vortex into the lower mesosphere. However,
throughout much of winter the polar vortex is approximately
circularly symmetric, even when its centre is displaced from the
North Pole. If the vorticity of the vortex is circularly symmetric
(at all levels), then we can also expect its pressure field to be
concentric about its centre.

The approach taken is to identify the polar vortex centre as
the maximum in the vertical average of PV across the top third
of θ levels (mid-stratosphere and above). The native data grid
is transformed into spherical coordinates, where the polar axis
points through the vortex centre. The pressure from the analysis
data at the top boundary is then averaged within a set of latitude
bands defined in this transformed coordinate, which determines
the function ptop(φ). The goal is that this is the most consistent
boundary condition, with a vortex in the zonally symmetric state
that is being sought.

The function ptop(φ) determines ∂M/∂θ according to (8),
thereby providing the top boundary condition for (13).

2.2.3. Boundary condition at the lower boundary

The lower boundary taken for the input to the calculation is the
second terrain-following model level above the Earth’s surface in
the ERA-Interim data (η = 0.99586). For a typical atmospheric
profile, this corresponds to 30 m above the surface. The lowest
level (≈ 10 m) was not used because very stable nocturnal
boundary layers, especially during the polar winter, introduce
very low isentropic density and high magnitude PV anomalies (of
both signs), which disrupted the attempt to calculate a balanced
state. Recall that friction is not being included in the momentum
equation of the background state (12) and so it could be more
consistent to take a lower boundary coincident with the top of
the planetary boundary layer. However, taking a higher η level for
the lower boundary excludes a larger proportion of atmospheric
mass from the background. The level chosen was found to obtain
the most consistent results in terms of temporal variation of the
lower boundary of the background state.

For isentropic surfaces intersecting the lower boundary, the
total mass and circulation enclosed by the isentropic layer of
depth �θ (centred on the θ surface) are obtained by integration.
These integrals are functions of surface θ only and will be denoted
as Ms(�) and Cs(�). They are used to define the equivalent
latitudes of the intersection of each isentropic surface with the

lower boundary. As will be described in section 2.3, this defines
the position of the lower boundary on the inverter grid, θLB(μj).

For the inversion of (13), the lower boundary condition and
the intersection of isentropic surfaces with the surface are treated
following Bleck (1973, 1974). Combining (7) with (8) gives

M = gz + θ
∂M

∂θ
. (20)

A quadratic curve (M = a + bθ + cθ 2) is fitted in the vertical
through the two lowest isentropic levels above the lower boundary,
subject to the constraint that at the lower boundary

M = gzLB + θLB
∂M

∂θ
, (21)

where zLB and θLB are the geopotential height and potential
temperature on the lower boundary at position (φ, t). See section
A2 for the way in which zLB is calculated from the 3D data. This
provides a mixed lower boundary condition for (13).

The same quadratic fit is used to extrapolate M in the vertical
to isentropic levels below the lower boundary. This enables
horizontal derivatives of M to be evaluated in (13) and (12) at
interior points adjacent to the intersection of isentropic surfaces
with the lower boundary.

Once M is known, together with the boundary condition (21),
this quadratic curve also defines pressure, pLB, and density, ρLB,
at the lower boundary of the background state. The geostrophic
wind (ugLB) is given by

ugLB = − 1

2	a sin φ

(
1

ρLB

∂pLB

∂φ
+ g

∂zLB

∂φ

)
(22)

and (16) is then used to obtain the full zonal wind, uLB.

2.3. Iteration of equivalent latitudes

The MLM state is defined as the zonally symmetric state with PV
qo(μ, θ) and lower boundary potential temperature θos(μ) that
has the same integral properties M(Q, �), C(Q, �), Ms(�),
Cs(�) as the full 3D state. The zonal wind and isentropic density
are obtained by inverting the background PV distribution using
the balance relation (13) with appropriate boundary conditions.

In practice, the area, mass and circulation integrals are
calculated from the 3D state for a discrete number of PV values,
Qk, and isentropic layers, θm. The first-guess equivalent latitudes
μ1

e(Qk, θm) are calculated from (6). First-guess PV q1
o(μj, θm)

on the inverter grid, μj, is obtained by inverting the functional
relation by interpolating PV from values Qk at irregular latitude
points μe(Qk) to the regular grid points μj (section A5).

The first-guess PV distribution is then inverted using (13)
to obtain the Montgomery potential and hence temperature,
pressure, isentropic density and zonal flow. These are used to
calculate the mass and circulation integrals of the 2D state.
Since density is positive-definite, the mass integrals decrease
monotonically with equivalent latitude:

∂M
∂μ

= ∂M
∂A

∂A
∂μ

≈ −ro2πa2, (23)

where the definition of the integrals yields ∂M/∂A = ro, where
ro is the isentropic density of the MLM state. The 2πa2 factor
assumes that area integrals from the MLM state will approximately
equal those from the 3D state, so that (6) can be used. This gives
a direction for the update of equivalent latitude:

δμM
e (Q, θ) = − (M2D − M)

∂μ

∂Mμ1/4
e . (24)
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The factor μ
1/4
e is included to control steps nearer the Equator,

where the PV inversion is most sensitive. If the state is to be
stable to symmetric perturbations, the PV must be positive in the
Northern Hemisphere and therefore, from (2), the circulation
also decreases monotonically with Q and equivalent latitude.
Differentiation of (5) gives

∂C
∂μ

= 2πa2

(
∂U

∂μ
− 2	μ

)
, (25)

which can be inserted into an alternative formula for the
equivalent latitude update:

δμC
e (Q, θ) = − (C2D − C)

∂μ

∂C μ1/4
e . (26)

Equal weighting is given to the mass and circulation estimates of
the update and the iteration proceeds until the equivalent latitude
updates across the domain fall below a chosen tolerance. The
numerical details on the equivalent latitude iteration procedure
can be found in section A10. Thuburn and Lagneau (1999)
showed that the variation of mass with PV value along isentropic
surfaces is related to circulation by

Q
∂M
∂q

(Q) = ∂C
∂q

(Q) (27)

and this is also true for the background state when the iteration
has converged. Therefore, it is not important whether mass or
circulation is used to obtain the state, but convergence is found
to be fastest if both are used.

A similar procedure is used to iterate on the equivalent latitudes
of θm contours along the lower boundary. However, ∂M/∂μ
along the lower boundary cannot be calculated from (23) because
the derivative there is taken along isentropic surfaces. However,
(25) still applies and can be used to define the shifts in surface
equivalent latitudes, μes, using (26).

The new method described in this section is named equivalent
latitude iteration with PV inversion (ELIPVI). In addition to the
adiabatic rearrangement of the flow to zonal symmetry using
the ELIPVI procedure outlined above, a number of additional
operations are required to deal with features of atmospheric
data that do not fit naturally with the concept of a zonally
symmetric background state. These include orography, negative
PV near the Equator and short-lived PV anomalies associated
with non-conservative processes. These will be described in the
Appendix with reference to the results from the background-state
calculation.

3. Measuring large-amplitude wave activity relative to the
background state

Wave-activity density is a measure of the amplitude of the
difference between a perturbed flow and a suitable reference
flow. It is defined to be second-order in disturbance quantities,
in order to represent an amplitude. The definition is chosen
so that the wave-activity density, P, obeys a local conservation
law:

∂P

∂t
+ 1

a cos φ

∂F(λ)

∂λ

+ 1

a cos φ

∂

∂φ

(
F(φ) cos φ

) + ∂F(θ)

∂θ
= S, (28)

where (F(λ), F(φ), F(θ)) are the components of wave-activity flux in
isentropic spherical coordinates and S denotes non-conservative
effects including diabatic and frictional processes. The global
integral of wave activity is conserved if S = 0 and there is no flux
across the boundaries of the integration domain.

The definition of the reference state is vital to the existence of
an exact wave-activity conservation law at finite perturbation
amplitude. It is essential to describe the reference state as
a function of PV and θ in order to use the Casimir
method (see section 1). If the reference state is also zonally
symmetric (i.e. the MLM state defined in this article), the
pseudomomentum conservation law is obtained by the zonal
angular momentum–Casimir method. If the reference state is
steady (time-symmetric), the pseudoenergy conservation law
is obtained by the energy–Casimir method. Following Haynes
(1988), the pseudomomentum density (within isentropic layers
that do not intersect the lower boundary) is given by

P(λ, φ, θ , t) = Pw − r′u′ cos φ, (29)

where term Pw is associated with displacements of PV contours on
isentropic surfaces and is therefore called the ‘Rossby-wave term’
(e.g. Methven et al., 2005). An exact integral form† is given by

2πaPw = −rq [M]q
qo

+ r [C]q
qo

, (30)

following Thuburn and Lagneau (1999) and Methven (2013),
where q(λ, φ, θ , t) is the Ertel PV of the full state, qo(φ, θ , t)
denotes the background-state PV and the perturbation q′ =
q − qo is defined as the difference between the full PV and
the background state at a point on a given isentropic surface.
[M]q

qo
stands forM(q, θm) − M(qo, θm), where, at each location

(λ, φ, θm), q and qo are found from the full state and background
state and used as arguments in the functional M(Q, �). The
same procedure is applied to the circulation functional C. This
expression is valid for arbitrary disturbances with any amplitude
or shape in PV contours and obeys a conservation law with the
form (28). At small amplitude, the term reduces to Pw = 1

2 roQyη
2,

where the meridional parcel displacementη = −q′/(∂qo/∂y) and

Qy = ro cos φ
1

a

∂qo

∂φ
. (31)

Qy is the form of meridional PV gradient that acts in place
of β from the familiar quasi-geostrophic β-plane setting. Pw is
therefore positive-definite, since the background meridional PV
gradient is positive.

The −r′u′ cos φ term is often called the ‘gravity-wave term’,
although it could also arise in large-scale balanced flows. In
practice, the ‘Rossby-wave’ term Pw is greater than the ‘gravity-
wave’ term locally and by several orders of magnitude in the
integral over the Northern Hemisphere.

On isentropic surfaces that intersect the lower boundary, there
is an additional ‘boundary contribution’ to pseudomomentum
that is chiefly negative and discussed briefly in section 4.2.
Methven (2013) presents the derivation of equations used to
calculate the various terms in the large-amplitude pseudomo-
mentum. The pseudomomentum flux (see Haynes, 1988 for a
derivation) is given by

F(λ) = uP − ro

2

(
u′2 − v′2) cos φ − a cos φ τ̃ (po, p′, θ),

F(φ) = vP − rou′v′ cos φ,

F(θ) = p′

ga

∂M′

∂λ
, (32)

where the function of pressure τ̃ is defined by (3.12c) of
Haynes (1988). If the atmosphere is assumed to be an
ideal gas and |p′|/po � 1, then it can be shown that τ̃ ≈
cpκ/(pog)(po/p00)κp′2. Note that the meridional and vertical

†Note that the opposite sign has been used in Haynes (1988) and Magnusdottir
and Haynes (1996).
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components have the same expression as the Eliassen–Palm flux
in isentropic coordinates (Andrews, 1983), but with the important
addition of the meridional advection of pseudomomentum
density, vP. The horizontal advection of pseudomomentum often
dominates the nonlinear flux (Magnusdottir and Haynes, 1996)
and has a major bearing on the interpretation of the results.

Both the pseudomomentum and the components of the flux
can be calculated at every point in the 3D domain (λ, φ, θ) at
any time. However, in all the figures shown the information will
be summarized on the meridional plane (φ, θ) by taking zonal
averages. Nevertheless, it is important that all the perturbations
have been defined relative to the MLM state, not the Eulerian
zonal mean state. Throughout the remainder of the article,
the ‘pseudomomentum density’, P, will be abbreviated to
‘pseudomomentum’ and should not be confused with its volume
integral.

4. Results illustrated for the troposphere in winter

4.1. Background-state structure

The background state is illustrated for a snapshot during the
Northern Hemisphere winter in Figure 1. It is completely
specified by the distribution of PV on isentropic surfaces,
qo(φ, θ), plus the boundary conditions for PV inversion (13).
These include the position of the lower boundary, θos(φ), the
pressure on the isentropic top boundary and the zonal flow at
the Equator (obtained from hemispheric circulation integrals).
Since the isentropic density is positive-definite, the mass integrals
(1) must decrease as Q increases along an isentropic surface.
When rearranged to obtain the zonally symmetric background,
this means that PV must increase monotonically on every
isentropic surface (such that higher value PV contours enclose
less mass on their northern side). Furthermore, θos also decreases
monotonically towards the pole, as indicated by the negative slope
of the lower boundary.

The mass and circulation integrals used to construct the state
are defined for discrete PV values, Qk, and isentropic levels,
θm. In the troposphere, the isentropic levels have a regular
separation, �θ , of 1.5 K, while the level spacing is stretched
above 320 K (see section A1). The inversion method requires
this relatively small �θ in order to cope accurately with the
lower boundary, since �θ determines the intervals in latitude
between the locations where the isentropic surfaces intersect the
lower boundary. Furthermore, the stratification is much weaker
in the troposphere than the stratosphere, so small �θ is required
to resolve tropospheric structures in the background state and
perturbations. The change in stratification across the tropopause
also means that Qk values need to be set closer together in the
troposphere. Figure 1(a) shows the PV contours used in the
calculation. The contour interval is regular in Ertel PV (1 PVU)
above 5 PVU. The contour interval is regular in log(PV) from 0
to 1 PVU. The PV-level spacing blends between the two sets over
the interval 1–5 PVU. The troposphere and lower stratosphere
have similar latitude spacing between Qk contours, although with
closer spacing across the tropopause, where PV gradients are
strongest, and wider spacing poleward of the tropopause on these
isentropic surfaces.

PV inversion of this zonally symmetric distribution is used
to obtain the Montgomery potential, M, and hence isentropic
density, ro, and zonal wind, uo, from vertical (9) and horizontal
(12) derivatives of M. Figure 1(b) shows that the isentropic density
falls rapidly across the tropopause, indicating the rapid increase
in static stability. Note that the 2 PVU contour of the background
state closely follows the sharp gradient in isentropic density in
the extratropics. At approximately 30◦N, there is a subtropical
tropopause jump where the 2 PVU contour is almost vertical
and the gradient in density almost horizontal (for example along
350 K). Equatorward of the jump, PV contours are no longer

coincident with the tropopause, which can be identified with the
vertical gradient in ro at about 360 K.

The MLM zonal flow, uo, is strongest in the subtropical jet
on the tropopause jump (Figure 1(c)). The strong vertical wind
shear in the troposphere below is in balance with the mass field
as described by the PV inversion relation (13). If the state is
transformed into pressure coordinates, the meridional gradient
of θ along pressure surfaces is in gradient thermal wind balance
with ∂uo/∂p. Consequently, the θ gradient is large below the
subtropical jet and the lower boundary has a steep slope in θ
coordinates. At the time shown, there is a second jet at 65◦N,
which could be described as the tropospheric polar jet.

Some features of the background state arise from operations
required to define the state from global data, in addition to the
adiabatic rearrangement to zonal symmetry. For example, it does
not make sense to rearrange the orographic height of the lower
boundary or θ anomalies associated with elevated orography
and these aspects are dealt with in section A2. Small-scale
PV anomalies in the boundary layer and high-latitude lower
troposphere are also not regarded as part of the background
state and therefore are removed before calculating the mass and
circulation integrals (section A3). Nevertheless, after finding the
first-guess equivalent latitudes, there is typically a very narrow
spike of high PV at the pole, associated with the rearrangement
of the highest PV values to the North Pole in the monotonic
background state. These high values typically occur at midlatitude
fronts and are not regarded as part of the background; they are
removed by truncating the spike in the first guess (section A6).
Similarly, the meridional gradient in boundary θ must tend to
zero approaching the Equator to obtain a balanced background
state; this is achieved by modifying the first guess. Finally, any
negative PV in the Northern Hemisphere background state is
removed by setting PV to zero in those locations, as described in
section A7.

4.2. Wave-activity amplitude in the troposphere

The evolution of perturbations, defined as the difference between
the full 3D state and the modified Lagrangian mean at every point
(λ, μ, θ), can be described by the pseudomomentum conservation
law (28). In the absence of diabatic or frictional processes, pseudo-
momentum is a globally conserved property of the perturbations.
The conservation relation provides a powerful way to view non-
local transfer of wave activity throughout the atmosphere in
terms of a pseudomomentum flux (32) and the local increase in
pseudomomentum associated with flux convergence. The non-
conservative term S is important to pseudomomentum (for
example in wave dissipation) and will be examined in section 5.4.

The pseudomomentum is defined by (29), where the isentropic
surface, θm, is above the lower boundary at all longitudes around
a latitude circle in the full 3D state. The set of these latitude circles
from all isentropic levels will be referred to as the interior domain.
The structure of pseudomomentum in the meridional plane is
summarized by presenting its zonal mean in Figure 1(d). The
interior pseudomomentum takes the sign of the background-
state meridional PV gradient in the limit of small disturbance
amplitude. Since the MLM PV gradient is everywhere positive, the
pseudomomentum is expected to be positive almost everywhere,
as seen in the figure. The interior pseudomomentum is focused
on the location of the extratropical tropopause in the background
state, with the largest values just on the stratospheric side at high
latitudes in the vicinity of the ‘polar jet’ seen in Figure 1(c).
The pseudomomentum is much weaker in the vicinity of the
subtropical jet at the time shown. This is consistent with the
distinction between the subtropical jet and ‘eddy-driven jet’
further poleward (Lee and Kim, 2003).

Figure 1(e) shows the ‘boundary contribution’ to pseudo-
momentum associated with the meridional displacement of θ
contours along the lower boundary. The contribution covers
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(a) (b) (c)

(d) (e) (f)

Figure 1. Partition of the atmospheric state at 1800 UTC on 22 January 2010 into the MLM background state and the perturbation from it, focusing on the
troposphere. (a) Background-state Ertel PV, qo (PVU) –the contour interval (CI) is not uniform below 5 PVU (see text). (b) MLM isentropic density, ro (CI =
10 kg m−2 K−1). (c) MLM zonal wind, uo. (d) Interior pseudomomentum (CI = 5000 kg K−1 m−1 s−1). (e) Boundary contribution to pseudomomentum from the
exterior domain (CI as in (d)). (f) Perturbation kinetic energy times isentropic density (CI = 20 000 kg K−1 s−2). In all panels, the lower bold curve is the lower
boundary of the background state; the upper bold curve is its qo = 2 PVU contour (tropopause).

much of the extratropical lower troposphere, because the range of
latitudes reflects the large meridional excursion of each θ contour
along the lower boundary. For example, the contour θs = 273 K
makes excursions between 25 and 75◦N in the 3D state. The cal-
culation follows the method of Magnusdottir and Haynes (1996).
The non-zero values of pseudomomentum below the location
of the lower boundary in the background state are associated
with points that are above the lower boundary in the 3D state.
Since these points are exterior to the background state range of
θ at that latitude, Methven (2013) described this contribution
as the exterior term, Pe. The non-zero values of ‘boundary pseu-
domomentum’ in Figure 1(e) above the background-state lower
boundary are associated only with points (λ, φ, θ) that are ‘below
ground’ in the full 3D state. Therefore this contribution is also
described as part of the ‘exterior term’ Pe. In the small-amplitude
limit, Pe takes the sign of absolute vorticity times the meridional
θ gradient along the lower boundary of the background state
(see Methven, 2013), which is negative-definite for the modified
Lagrangian mean.

It is readily shown that growing normal modes must have
zero global pseudomomentum, in order to permit exponential
growth in meridional parcel displacements while also conserving
pseudomomentum (Held, 1985). Baroclinically unstable normal
modes are characterized by Pe = −Pw. However, Methven
(2013) has shown that in atmospheric data the positive interior
contribution far outweighs the negative exterior contribution
in the hemispheric integral. Reasons for this are not known

precisely. However, in nonlinear life cycles the boundary-wave
activity saturates first as surface cyclones reach the mature phase,
wrapping air masses cyclonically, while the tropopause-level
pseudomomentum continues to amplify for several days. The
net effect of many such baroclinic growth events is likely to result
in more wave activity at tropopause level than in the boundary
contribution. In addition, surface fluxes lead to a much more
rapid dissipation of lower boundary thermal anomalies than the
rate of dissipation of interior PV anomalies.

There are also additional terms in the large-amplitude
expression for pseudomomentum that are not shown here. In
addition to the ‘gravity-wave term’ −r′u′ cos φ, which is relatively
small, there is a contribution from the ‘intersection domain’
(denoted Pd in Methven, 2013) representing points that are above
the lower boundary in the background state, but only above the
lower boundary at some longitudes around the latitude circle in
the full 3D state. This term is almost everywhere positive and
partially cancels the negative contribution to Pe seen above the
lower boundary of the background state in Figure 1(e) (it occupies
the same region in (φ, θ) space).

Figure 1(f) shows disturbance kinetic energy (multiplied by
density r) over the interior domain. Energy is not conserved for
the disturbances alone. However, pseudoenergy is conserved for
adiabatic, frictionless disturbances to a steady background state.
Although the MLM state is not strictly steady, it will be shown
that it varies very slowly. Note that the kinetic energy is calculated
for disturbances defined relative to the MLM state. At the time
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(a)

(b)

(c)

(d)

Figure 2. Evolution of the background state in the troposphere. Time runs from
0000 UTC on 1 November 2009 to 0000 UTC on 1 May 2010. (a) Potential
temperature at the lower boundary of the background state (CI = 5 K) with
gradient −∂θo/∂φ in colour (CI = 0.1 K deg−1). (b) PV at the 311 K surface,
which crosses the tropopause in the midlatitudes with gradient Qy in colour (CI
= 10−11 m−1 s−1). (c) MLM zonal wind (CI = 2.5 m s−1) with the 2 PVU contour
in bold. (d) Eulerian zonal mean wind (same scale). Labels A–F refer to events in
pseudomomentum at the tropopause level (see Figure 3(b)).

shown, the structure of the kinetic energy is rather similar to the
pseudomomentum, with the largest values near the extratropical
tropopause.

4.3. Background-state evolution in the troposphere

The background state was obtained for analysis times (every
6 h) throughout the six-month extended winter period from
0000 UTC on 1 Nov 2009 to 0000 UTC on 1 May 2010.
The troposphere is bounded by two key surfaces: the lower
boundary and the tropopause. The lower boundary potential
temperature θos(μ) is defined from the equivalent latitudes where
the isentropic levels, θm, intersect the lower boundary, μes(θm).
Each isentropic surface typically forms a cap over the North Pole,
bounded by its intersection with the lower boundary in the 3D
analysis. The tropopause poleward of about 30◦N is characterized
by the q = 2 PVU surface and the equivalent latitude of this
contour, μe(Q, �), describes its position in the background state.

The time series of potential temperature at the lower boundary
of the background state, θos, is shown in Figure 2(a). The most
striking feature is that the time series varies only slowly over the
six-month period. The cold surface temperatures expand slowly
equatorward until midwinter (event C is 1800 UTC on 31 Decem-
ber 2009) and then slowly retract polewards moving into spring
(event F at 0000 UTC on 1 March 2010). It is important to note that
no time averaging has been applied to the data. The background

state has an inherently slow variation, because it can only change
through non-conservative processes (diabatic, frictional or mix-
ing effects). The implication is that the effects of these processes
are weak, but nevertheless systematic on seasonal time-scales.

The small-amplitude, rapid oscillations in the contours are
associated with the diurnal cycle (the analyses are every 6 h). They
are most prominent in the lower troposphere at low latitudes
and reflect a diurnal variation in the mass of isentropic layers in
the Northern Hemisphere. The variation is associated with the
large diurnal variation of near-surface potential temperature in
the mountainous regions of the Northern Hemisphere that are
high enough to outcrop through potential temperature surfaces
(especially the Tibetan Plateau). To some extent, the effect is ame-
liorated by shifting the lower boundary vertically to a reference
geopotential in the 3D state before calculating the mass and circu-
lation integrals (section A2). However, there is still a substantial
diurnal variation and in the rearrangement to obtain the mono-
tonic θs profile of the background state, the fluctuations associated
with ‘hotter spots’ on the Earth’s surface are reflected near the
Equator in the background state. They are readily eliminated by
post-processing with a diurnal filter but one was not applied here.

The colour shading in Figure 2(a) reflects the meridional
gradient of θos and highlights pronounced intraseasonal
variability with time-scales of 5–30 days, which will be
discussed in section 4.4 with relation to wave activity. Some
relates to meridional motion of the θos contours, while some
relates to meridional progression of the gradient polewards or
equatorwards (e.g. before events A, B, C and F).

The PV on the 311 K isentropic surface is contoured in
Figure 2(b) and the meridional PV gradient Qy, defined by (31),
is shown by colour shading. The isentropic density weighting in
(31) is important, since it gives more weight to the tropospheric
side of the tropopause, where the density is higher (Figure 1(b)).
The PV gradient highlights the seasonal cycle in the position
of the tropopause on this isentropic surface, associated with the
expansion of the polar PV reservoir in the lowermost stratosphere
moving into winter and its contraction again moving into spring.
The dominant non-conservative process is long-wave radiative
cooling, which has a characteristic time-scale in the upper
troposphere of 35 days. Long-wave cooling from water vapour
just below the tropopause results in a systematic maintenance of
PV above the tropopause (e.g. Chagnon et al., 2013).

The intraseasonal signals noted at the lower boundary are also
seen at tropopause level. For example, in the episodes labelled
A, D and F, the PV contours near the tropopause and the
gradient migrate polewards. It will be shown later that this is a
manifestation of wave–mean flow interaction. Recall that this
state can only change through non-conservative processes and
these episodes are a result of Rossby-wave breaking, filamentation
of PV and consequent dissipation, enabling mass to cross PV
contours equatorwards. This is the vortex erosion mechanism
described in the Introduction. Nakamura (1995) derived an
equation describing the evolution of the MLM PV qo derived from
the time dependence of mass integrals (1). Although his eq. (2.12)
uses equivalent latitudes defined via a uniform isentropic density
for reference, the derivation carries over to the equivalent latitude
obtained here by the ELIPVI method, which is consistent with the
variable isentropic density distribution obtained by preservation
of both mass and circulation integrals in the rearrangement. qo

can only change through non-conservative processes.
Figure 2(c) shows the background-state zonal flow, uo, on the

311 K isentropic surface, obtained by ELIPVI for every analysis.
The bold curve marks the 2 PVU tropopause position. The flow
is maximum on the equatorward side of the tropopause and will
be described as the ‘subtropical jet’, although on θ surfaces below
the jet maximum it lies in the midlatitudes (see Figure 1(c)). This
jet is also slowly varying, with an obvious seasonal march. The
amplitude of the subtropical jet is seen to pulse, tying in with the
intraseasonal variability noted above. In the season shown, it does
not vary substantially in latitude on these time-scales. However,
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this season was characterized by a very persistent southern jet
state across the North Atlantic in particular. In addition, there is
marked variability in the ‘polar jet’ at 70◦N in the background
state, characterized by the presence or absence of the jet.

Figure 2(d) shows the Eulerian zonal mean zonal wind, [u],
for comparison with the MLM zonal wind. The subtropical jet
is similar, although weaker in the zonal mean (the same colour
scale has been used). Typically uo ≥ [u], which can be anticipated
by the following argument of Nakamura and Zhu (2010). For
simplicity, consider an isentropic layer with uniform density and
a uniform PV patch of area A(Q) bounded by the wavy contour,
q = Q, and surrounded by lower PV on the isentropic surface.
Now consider drawing a circle described by the equivalent latitude
μe(Q), which by definition contains the same area A(Q). It must
be the case that the latitude circle contains some area outside the
vortex patch where the PV is lower (unless the vortex is circular
and centred on the pole). Therefore, the circulation within the
latitude circle must be lower than the circulation within the wavy
vortex patch itself (2). When isentropic density is not uniform
across a layer, mass rather than area is conserved (for adiabatic
motion) and it can happen that uo < [u].

At high latitudes, [u] is much more variable than uo and flips
between positive and negative at this level. There is evidence
of poleward migration of [u] anomalies that is not seen in uo.
Nakamura (1995) derived an equation (his 2.13) describing the
evolution of the MLM zonal flow uo that is a form of Kelvin’s
circulation theorem, although he used equivalent latitudes defined
via a uniform isentropic density for reference. With the φe

obtained by the ELIPVI method of section 2, which is consistent
with rearrangement preserving circulation as well as mass, it is
clear that uo can only change through non-conservative processes
and a similar evolution equation would apply. It will be shown
below that the synoptic time-scale variability in [u] is a reflection
of adiabatic eddy processes that cannot directly influence the
MLM state.

4.4. Wave-activity evolution at tropopause level

Fluctuations in the MLM state are often related to wave
activity, but only indirectly through non-conservative effects.
Figure 3(a) shows the pseudomomentum calculated relative to
the MLM background state on the 311 K isentropic surface. A
strong characteristic of the pseudomomentum is maxima moving
polewards from the location of the tropopause (and midlatitude
jet) in the background state. They move at a similar rate on many
occasions throughout the season.

A time series of the meridional average of pseudomomentum
poleward of 70◦N at 311 K is shown by the bold curve in
Figure 3(b) (multiplied by −1 to distinguish it from the
stratospheric curves shown). Events A–E label the start of
five marked episodes of high-latitude pseudomomentum at
tropopause level. A sixth episode, labelled F, does not feature
high-latitude pseudomomentum. The dates of the events are as
follows: A (1200 UTC on 6 December 2009), B (0600 UTC on
24 December 2009), C (1800 UTC on 31 December 2009), D
(1800 UTC on 23 January 2010), E (0000 UTC on 4 February
2010) and F (0600 UTC on 1 March 2010).

Episodes B and C exhibit clear migration of a pseudomomen-
tum maximum from 40◦N right to the North Pole over five days
and many other events show a similar rate of poleward movement
(10◦ per day or 13 m s−1).

In episode D, pseudomomentum at 311 K can be seen to
progress polewards from 50◦N at a similar rate and then return
equatorwards. Figure 2(a) of Methven (2013) shows that this
event resembles a baroclinic wave with zonal wavenumber
8. PV anomalies at tropopause level grew simultaneously at
all longitudes and hemispheric pseudomomentum diagnostics
revealed simultaneous growth of positive interior and negative
boundary pseudomomentum in the early phase, as would be

expected for an unstable baroclinic normal mode. In this event,
the movement of pseudomomentum is a result of the growth
in meridional excursions in PV contours and its subsequent
return in the decay phase of the baroclinic wave. Note that
the pseudomomentum moving polewards is associated with
the poleward advection of low PV air within the baroclinic
wave (negative PV anomalies), while the signature of positive
PV anomalies associated with equatorward displacement of PV
contours only reaches 30–40◦N during this episode, because the
Rossby waves break cyclonically.

During the life-cycle event (D), the background-state PV
contours in the range 2–5 PVU migrate polewards (Figure 3(a)).
This is a result of the vortex erosion mechanism (see section
1). Rossby-wave breaking forms PV filaments, with positive PV
extending to the south and negative PV to the north. Stretching
in the time-dependent strain field of the wave means that the
filaments thin until they are dissipated by mixing with their
surroundings. Typically the breaking is asymmetric, with thinner
PV positive filaments, and the net result is equatorwards expulsion
of mass from the polar vortex into the surrounding surf zone.
The background flow also accelerates slightly (Figure 2(c)) in the
decay phase of the baroclinic wave, as a result of changing the PV
distribution, to achieve the maximum jet strength for the season.
As a result of the baroclinic wave event, the background-state θ
gradient along the lower boundary is reduced over 55–65◦N and
enhanced slightly to the south and also near 80◦N. This is typical of
baroclinic wave experiments, where the boundary θ distribution
is flattened as a result of stirring and the gradient is expelled
to latitudes either side of the wave activity (e.g. Greenslade and
Haynes, 2008).

Episodes B and C are also associated with poleward migration
of enhanced θ gradients at the lower boundary of the background
state, while the θ contours themselves shift equatorwards in the
polar regions and the lowest temperatures (θos ≈ 230 K) are seen
at the North Pole immediately following these two events. Close
comparison of Figures 2(a) and 3(a) shows that the enhanced θ
gradients lag the tropopause-level wave activity at each latitude
during the poleward migration. This is intriguing and must be
related to non-conservative processes in poleward-moving air
masses. It is consistent with diabatic cooling of air masses as they
progress polewards, such that a greater proportion of mass is
enclosed in lower isentropic layers capping the North Pole. In
these events, there is not a strong signature in background-state
PV gradients at tropopause level (Figure 2(b)).

Two notable periods where the background-state PV contours
migrate polewards (Figure 2(b)) are labelled A and F. During
episode F, pseudomomentum extends equatorwards to 25◦N
for the first time in the season (Figure 3(a)). This activity
is characterized by anticyclonic wave breaking at tropopause
level on the equatorward flank of the jet. The sharpest PV
gradient shifts polewards and the background-state jet initially
accelerates. The lower boundary θ gradient (Figure 2(a)) is
strong throughout this episode at 60◦N –further poleward than
throughout the winter. The jet then weakens and re-establishes
itself further north following the end of the poleward migration
of PV gradients (Figure 2(c)).

Episode A occurred in early December 2009 and was associated
with a marked build-up of pseudomomentum and poleward
extension right into the polar regions (Figure 3(a)). As shown in
Methven (2013), this was associated with poleward expansion of
nearly stationary ridges in the Alaskan and Scandinavian sectors.
The episode was characterized by a more rapid equatorward
migration of lower boundary θ contours and the strongest
gradient, which then stayed in the southern position throughout
winter. Note that the zonal mean flow (Figure 2(d)) is particularly
negative (westward) in the polar regions after event A and
the anomalies migrate with the wave activity. This behaviour
illustrates that [u] reflects the wave activity itself, rather than
the background state. In contrast, the MLM flow, uo, does
not exhibit poleward migration events. Episodes A, B, C, D,
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(a)

(b)

Figure 3. (a) Evolution of pseudomomentum (wave activity) on the 311 K surface (CI = 5000 kg K−1 m−1 s−1) with background-state PV (PVU) overlaid in bold
contours. (b) The bold line shows the meridional average of pseudomomentum (kg K−1 m−1 s−1) poleward of 70◦N at 311 K (multiplied by −10−4). Labels A–F
refer to events in wave activity at tropopause level used to relate to other time-series plots (see text). The other curves show pseudomomentum at six isentropic levels
(labelled in K) spaced every 5 km in pseudoheight (see section 5). The measure shown is the meridional average of pseudomomentum poleward of 30◦N, rescaled by
dividing by the density

√
r00ro.

(a) (b) (c)

(d) (e) (f)

Figure 4. The atmospheric state at 1800 UTC on 22 January 2010, during a major stratospheric warming, shown over the full domain used for the calculation. The
pseudoheight, ẑ(θ), is calculated from θ using (33). ẑ = 0 corresponds to θ = 380 K. (a) Background-state Ertel PV (PVU) using Lait (1994) scaling for ẑ > 0 (34).
(b) MLM zonal wind. (c) Eulerian zonal mean zonal wind. (d) Pseudomomentum divided by the density scaling

√
r00ro (CI = 10 m s−1). (e) Pseudomomentum flux

divergence scaled by
√

r00ro (CI = 5 × 10−4 m s−2; blue to green is negative). (f) Pseudomomentum flux vector (see text for scaling of its components).
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E and F are all to some extent associated with amplification
of the subtropical jet. The relation between the polar jet and
tropopause-level pseudomomentum is not immediately clear.

5. Stratospheric winter

5.1. Structure of the background state from the surface to the
mesosphere

Figure 4(a)–(c) presents latitude–height cross-sections of the
MLM PV and zonal flow alongside the Eulerian zonal mean zonal
wind. The vertical coordinate used is a pseudoheight, which is a
function of potential temperature alone, given by the formula

ẑ(θ) = H

κ
ln

(
θ

θ00

)
, (33)

where H is the pressure scale height (taken to be 6.5 km) and
θ00 = 380 K. The function equals height only for an isothermal
profile. This is a good approximation in the lower stratosphere,
but poor in the troposphere. The coordinate is 0 at the reference
level θ00, which has been chosen to be just above the tropical
tropopause.

The Ertel PV has been rescaled above 380 K (ẑ > 0) using the
method of Lait (1994), designed to factor out the increase in PV
associated with the density decrease in an isothermal atmosphere:

q̂ = q

(
θ

θ00

)−9/2

, (34)

where q stands for Ertel PV. Since the scaling factor is a function
of θ only, the shape of the PV distribution on every isentropic
surface is unaffected by the transformation. The transformation
enables a regular contour interval (1 PVU) to be used throughout
the stratosphere. The lower part of the plot (ẑ < 0) covers the
domain already shown in Figure 1(a). Note that the abrupt change
in ∂qo/∂ ẑ at 380 K or ẑ = 0 (Figures 4(a) and 1(a)) corresponds
to the change from Ertel PV to Lait PV used in determining the PV
levels for the calculations. The inverter results are not sensitive to
the change, since the inversion grid itself is regular in latitude and
the gradient in Ertel PV on the inverter grid does not have a step
change across ẑ = 0. The stratosphere extends up to ẑ ≈ 30 km
(recall that this is a height above the 380 K surface). Throughout
the stratosphere, PV is dominated by the winter polar vortex,
which has a maximum meridional PV gradient at about 65◦N at
all levels in the background state. In the mesosphere above the
polar vortex there is a rapid fall in Lait PV with altitude.

Figure 4(b) shows the zonal wind, uo, obtained by the ELIPVI
calculation. It is strongest (> 105 m s−1) at high latitudes near the
stratopause (ẑ(θ) ≈ 30 km). The stratospheric polar night jet is
vertically aligned following the latitude of maximum PV gradient.

In contrast, the Eulerian zonal mean zonal wind (Figure 4(c))
is easterly in the upper stratosphere near the pole. This is the
signature of a major stratospheric sudden warming (SSW), which
had just begun at this time. The contrast with the MLM state
in the extratropics is striking and has been shown previously by
Nakamura (1995). It arises because the stratospheric polar vortex
has a very strong circulation but it is distorted and displaced a
long way off the pole. Recall that it has already been argued in
section 4.3 that it is usually the case that uo ≥ [u] and the greater
the disturbance on a vortex, the greater the difference.

In the Tropics, above the tropopause, there is a clear alternation
between easterlies and westerlies with height associated with
the quasi-biennial oscillation (QBO) pattern. The MLM state
is similar to the Eulerian zonal mean in this region, because
PV contours in the analyses are nearer zonal symmetry than
in the extratropics. However, PV has been modified in the
equatorial regions of the MLM state (section A7). The inversion
of background-state PV requires that it is everywhere positive

in the Northern Hemisphere (so that the inversion equation is
elliptic) and so any negative PV in the background state is set
to be near 0. The modified region occupies most of qo < 1 PVU
in Figure 4(a) and easterlies are strongest where it protrudes
further away from the Equator, because Qy < df /dy and therefore
the relative vorticity ξo = roqo − f is negative, which implies a
positive meridional gradient in U .

5.2. Structure of wave activity in the stratosphere

Figure 4(d) shows the pseudomomentum calculated relative to
the MLM state using the large-amplitude expression (29) and
then zonally averaged.‡ It is necessary to use an appropriate
density weighting. If it is assumed that the density scale height is
a constant, it can be shown from linear Rossby-wave theory (in
height coordinates) that the pseudomomentum (A = 1

2ρQyη
2) is

expected to be constant with height for the vertically propagating
Rossby waves of the Charney–Drazin spectrum (e.g. James, 1994).
Therefore, this would predict that the Rossby-wave component of
pseudomomentum Pw (equivalent to A in isentropic coordinates)
is approximately constant. However, Esler and Scott (2005) have
shown that a barotropic mode exists in addition to the vertically
propagating Charney–Drazin spectrum. Their approach was
analytic, using simple contour dynamics theory for a polar
vortex represented by a uniform patch of PV on every level.
The barotropic mode possesses a pseudomomentum structure
that falls with height as mass density does (P/ro ∼ constant).
A compromise between these two regimes for scaling density
dependence is to divide the pseudomomentum P by the factor√

r00ro, where r00 is a constant density, here taken to equal
10 kg K−1 m−2, approximately the value at 380 K (see Figure 1(b)).
The density-weighted wave activity, P/

√
r00ro, has units of m s−1.

In this measure, a packet of Charney–Drazin waves might be

expected to increase with height as r
−1/2
o , while the barotropic

mode would decrease with height as r
1/2
o . There is a distinct axis of

maximum pseudomomentum that slopes upwards through the
stratosphere from 55◦N to the North Pole.

Figure 4(e) shows that the divergence of pseudomomentum
flux (divided by the same density weight) is dominated by a
dipole structure with a zero node aligned along the wave-activity
maximum. The ramifications of this structure are discussed in
section 5.4. Figure 4(f) shows the meridional and cross-isentropic
components of the pseudomomentum flux depicted as (pseudo-
)vectors in the meridional plane. The magnitude and direction of
each vector is determined by the rescaled values (Fφ/Y , Fθ /�θ)
evaluated at the point coinciding with the vector base. They are
shown at every eighth latitude point and every fourth isentropic
level on the inverter grid (ẑ > 0 only). Here, Y = πa and
�θ = (θtop − θbot)/2 are related to the outer dimensions of
the global domain and also serve to give the components the
same units as flux divergence. The magnitude scaling is indicated
by the vector at 5◦N, the length of which represents an upward
flux of 10−3 kg K−1 m−1 s−2. There is clearly a strong upward
pseudomomentum flux at 60N above the 380 K surface and the
vectors are directed polewards just below the level of strong
flux convergence. The weaker flux divergence immediately above
is associated with the poleward tilt of the fluxes and the fact
that they are untilted above this level. The zonally averaged flux
vectors shown are calculated using almost the same expression
as for Eliassen–Palm fluxes in isentropic coordinates. Indeed,
the expression for the vertical component is the same and the
meridional component differs only from the addition of nonlinear
advection of pseudomomentum by the meridional flow (32).
However, the key distinction is that the vectors shown here are
calculated from perturbations relative to the MLM state, rather

‡The values in the troposphere and spanning the tropopause saturate in the
plot, since the focus is on wave activity in the stratosphere (ẑ > 0).
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than the Eulerian zonal mean. Since the MLM state is much more
slowly varying during the SSW, the flux vectors are also much
more consistent in time.

5.3. Evolution on isentropic surfaces in the stratosphere

The contrast between the MLM background state, uo, and the
traditional Eulerian zonal mean, [u], is greatest in the upper
stratosphere during SSWs. Figure 5 compares the MLM zonal flow
and the Eulerian zonal mean on the 1411 K surface (ẑ = 29.8 km;
p ≈ 1.5–2.5 hPa) throughout the six-month period. SSWs are
traditionally identified with periods when there are rapid
decreases in the zonal mean zonal wind. In the case of major
warmings, [u] becomes easterly (negative). The brief dip in [u] in
early December (event A) is identified as a minor SSW. Prior to
the minor SSW, there was a continuous acceleration of the MLM
flow, representing the polar vortex circulation, and its strength
did not dip during the SSW.

The abrupt appearance of zonal mean easterlies ([u] < 0) on
21 January 2010 (2 days before D) is the hallmark of a major SSW.
This is the period of the most prominent difference between the
MLM and Eulerian zonal mean states. Initially, the circulation
did not decrease at all during the SSW. It took 8 days before the
MLM maximum flow dropped below 90 m s−1 (Figure 5(a)). The
MLM continued to decrease at 70◦N for 30 days after this SSW
onset; meanwhile, the flow spun up at 40◦N as the polar vortex
re-established itself.

The evolution of pseudomomentum at 1411 K (Figure 5(c)) is
overlaid with background-state PV contours on the same surface
to illustrate the nature of wave–mean flow interaction during the
two SSW events. Pseudomomentum, before the minor SSW, first
increased at 50◦N and then amplified and migrated polewards,
reaching the North Pole at the time (A) of the strong dip in
[u]. This behaviour appears to mirror the amplification and
poleward migration of pseudomomentum at the tropopause level
(Figure 3(a)), which will be discussed further in section 5.5. As the
pseudomomentum increased, the background-state PV contours
on the equatorward flank of the pseudomomentum migrated
polewards. The signature of PV filaments advected into the
subtropics can be seen in the zonally averaged pseudomomentum
at 25◦N at time A (Figure 5(c)). The poleward migration of
background-state PV stopped abruptly with the cessation of wave
activity. This is a sign of the vortex erosion process, resulting
in a more compact polar vortex with a tighter PV gradient and
stronger circulation surrounding it.

The precursor build-up to the major SSW in January (D) was
rather similar, although with the wave activity focused at higher
latitudes, reflecting the position of the polar vortex PV gradients.
As the wave activity amplified and reached the polar regions,
mass was peeled away from the vortex edge into the surf zone
by Rossby-wave breaking and mixing in the surf zone, resulting
in the systematic poleward progression of the PV contours and
tightening of the PV gradient on the polar vortex edge. The MLM
flow, obtained through PV inversion, also exhibits a maximum
that progresses polewards with the PV gradient (Figure 5(a)).
The deceleration of the MLM flow only occurs when some of the
highest PV values are mixed away completely at this level (the
maximum PV at the pole reducing from 26 to 12 PVU during
the SSW). PV poleward of 35◦N builds up again after event E
as a result of non-conservative processes, presumably long-wave
radiative cooling. This accounts for the spin-up of the MLM flow
and the zonal mean flow in the midlatitudes.

In the mid-stratosphere at 730 K (ẑ = 14.8 km; p ≈ 9–16 hPa),
the influence of the major SSW is dramatic (Figure 5(d)).
Following the onset of the warming (D), the background-state
PV contours progress polewards, with the maximum gradient
moving from 65 to 80◦N. Two major PV filamentation events are
seen before markers E and F. The PV does not build up again
at this level and the vortex circulation is not re-established. The

(a)

(b)

(c)

(d)

Figure 5. Evolution of the background state in the stratosphere. Time runs
from 0000 UTC on 1 November 2009 to 0000 UTC on 1 May 2010. (a) MLM
zonal wind (CI = 5 m s−1) on the 1411 K surface, which lies ∼ 3 km below the
stratopause. (b) Eulerian zonal mean wind. (c) Pseudomomentum at 1411 K (CI =
2 kg K−1 m−1 s−1) with background-state PV contours (PVU) overlaid using Lait
scaling. (d) Pseudomomentum (CI = 10 kg K−1 m−1 s−1) and background-state
PV at 730 K. A–F refer to events in pseudomomentum at tropopause level (see
Figure 3(b)).

minor SSW in December 2009 (A) is not as pronounced at this
level as it was in the upper stratosphere.

5.4. Downward migration of wave activity associated with SSWs

One advantage of the partition of the full flow using the MLM as
the background state is that the diagnosed pseudomomentum and
its flux are also coherent in time. Figure 6(b) shows the vertical
(cross-isentropic) component of the pseudomomentum flux in a
time–height diagram (zonal and meridional average poleward of
30◦N). The flux is almost always upwards (positive) and typically
decays with height above 380 K (ẑ > 0). The upward flux is
greatest and extends to highest altitudes in the period before and
during SSWs (A and D). Correspondingly, the flux is convergent
throughout the lower stratosphere during most of the time shown
(Figure 6(c)) and is strongly convergent just above the stratopause
before and during SSWs. During the major SSW, there is a strong
signal of repeated downward migration of the locations of greatest
flux convergence with local maxima in pseudomomentum density
(Figure 6(d)). In contrast, the MLM zonal flow (Figure 6(a))
changes more slowly without the rapid downward migration
signal during SSWs. The spin-down of the MLM flow through
non-conservative effects is much greater during the major SSW
(D to E) than the minor one (following event A). There is evidence
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(a)

(b)

(c)

(d)

Figure 6. Evolution of background state and perturbation quantities versus
pseudoheight (shown above 380 K; ẑ > 0) averaged poleward of 30◦N on each
isentropic surface. Time runs from 0000 UTC on 1 November 2009 to 0000 UTC
on 1 May 2010. (a) MLM zonal wind (CI = 5 m s−1). (b) Vertical component of
pseudomomentum flux (CI = 2 × 10−6 kg K−1 m−1 s−2). (c) Pseudomomentum
flux divergence rescaled by density

√
r00ro (CI = 2 × 10−5 m s−2; blue and green

are negative). (d) Pseudomomentum rescaled by density
√

r00ro (CI = 4 m s−1).

for a much slower downward migration of the MLM flow during
the final warming in spring.

The terms in the budget for conservation of pseudomomentum
(28) are examined more closely during the major SSW in Figure 7.
The tendency of pseudomomentum is often close to balancing
flux convergence –as would be expected for a conservative
fluid. However, the non-conservative term, S, calculated as a
residual of the budget (Figure 7(c)) exhibits systematic behaviour.
It is negative just above the stratopause (ẑ ≈ 35 km) in the
build-up to the SSW and strongly negative during the SSW
event, indicative of the dissipation of pseudomomentum. In this
region, the flux convergence and dissipation almost balance,
such that the wave activity tendencies fluctuate about zero
and the pseudomomentum is maintained at a high amplitude.
Towards the end of the SSW, the dissipation wins and the
pseudomomentum decays at stratopause level. Following 30
January 2010 (t = 22 days in Figure 7), the residual is negative
throughout the stratosphere, showing wave dissipation at all
levels until the pseudomomentum (Figure 7(d)) decays almost to
0 (E) in the upper stratosphere (when there are no longer any
disturbances to dissipate).

During the SSW, the repeated downward migration of
flux convergence is associated with downward migration
of pseudomomentum. The curves in Figure 7 (red in the

(a)

(b)

(c)

(d)

Figure 7. Evolution of terms in the pseudomomentum budget averaged poleward
of 30◦N on each isentropic surface and rescaled using the density

√
r00ro (CI

= 2 × 10−5 m s−2; blue to green is negative). Time runs from 0000 UTC on 9
January 2010 to 0000 UTC on 13 February 2010. (a) Local time derivative of
pseudomomentum. (b) Pseudomomentum flux divergence. (c) Residual from the
pseudomomentum budget (see text). (d) Pseudomomentum rescaled by density√

r00ro (CI = 4 m s−1).

online article) have been drawn through the minima in
∇.F and copied on to the other panels to highlight the
relationship between variables. Flux convergence and positive
pseudomomentum tendency occur immediately below local
maxima in pseudomomentum, as required for a downward
migration of the maxima. Although the residual signal is fairly
noisy, in part due to the centred difference in time used to calculate
the tendency from six-hourly data, wave dissipation is strongest
where the wave activity is greatest (below ẑ = 30 km). Therefore,
the downward migration is associated with non-conservative
wave dissipation at the level of maximum wave activity,
where the Rossby waves are breaking and strong filamentation
occurs.

Vertical wave tilt is important to the upward flux. Equation
(32) shows that Fθ = (1/ga)p′v′

g, where vg is the geostrophic
meridional wind. In an undular Rossby wave without vertical tilt,
pressure perturbations are in quadrature with vg and therefore
Fθ = 0. The strong vertical flux in the build-up to the major
SSW (Figure 6(b)) is associated with the prominent westward tilt
of the distorted polar vortex, dominated by zonal wavenumber
1. Near the onset (event D) the vortex exhibits a westward tilt
with its trough axis, turning from 90◦E near 400 K to 90◦W near
the stratopause (a height separation of 35 km), very similar to
the composite of vortex-displacement SSWs shown in figure 8
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of Matthewman et al. (2009). This implies a vertical wavelength
of 70 km or depth scale H ≈ 70/(2π) ≈ 11 km. Wave breaking
and the associated PV stripping disrupt this coherent vertical tilt
and weakens the upward pseudomomentum flux. Consequently,
there must be flux convergence below the wave-breaking level,
which results in local amplification of wave activity there, and the
signal propagates downwards.

Although the situation is complex, it is instructive to consider
a simplified model where the pseudomomentum is assumed
to peak at some level, zm, and across the region below,
zm − H < z < zm, it is assumed that the flux falls linearly
from value Fup at height zm − H to 0 at zm, giving rise to
the vertical flux convergence Fup/H. Fup is associated with
westward-tilting, upward-propagating Rossby waves and the tilt
is disrupted across the region of wave breaking approaching
zm. Wave dissipation is assumed to result in a decay at rate
Pτ−1 everywhere, but below zm − H the pseudomomentum, Pup,
associated with upward propagating waves is maintained by a
weak flux convergence, (F(0) − Fup)/(zm − H) = Pup/τ , so that
it is steady and uniform. Non-dimensionalizing P by Fupτ/H, the
pseudomomentum conservation law (28) becomes

∂ P̂

∂t
≈ G(zm − H, zm)

τ
− P̂

τ
(35)

in the region z > zm − H, where the top-hat function G(zm −
H, zm) is unity across zm − H < z < zm and zero elsewhere. The
maximum in P(z) must move downwards, since P only increases
below the maximum and dissipation occurs everywhere. The
crucial assumption of the model is that the flux convergence
layer moves downwards too, staying situated below the level
of maximum pseudomomentum, zm(t). The justification is that
wave breaking occurs where the pseudomomentum is greatest and
the depth of the breaking region, H, is related to the vertical scale
of the upward-propagating Rossby wave, which is assumed to
be approximately invariant. Solving (35) numerically reveals that
any initial pseudomomentum distribution P̂(z) with a single peak
evolves to a sharply peaked structure, described approximately by

Pme−(z−zm)/H for z > zm, (36)

Pup + (Pm − Pup)
z − (zm − H)

H
for zm − H < z < zm,

Pup for z < zm − H,

which propagates downwards without change in form. If this
structure function is assumed, it can be shown that its rate of
downward migration is (H/τ )(1 − Pm)/(Pm − Pup). Typically,
the maximum, Pm, is found to be just less than 1/2 when
Pup � Pm, yielding a downward migration rate slightly exceeding
H/τ .

In the period immediately following the SSW, when the
pseudomomentum flux from below shuts off (4 days before E),
the pseudomomentum decay rate ∂P/∂t is given approximately
by the non-conservative term S. Averaging over a five-day period
from 0000 UTC on 30 January 2010 when the pseudomomentum
experiences dissipation at all levels, it is found that the average
dissipation time-scale (τ = −P/S) is 3 days in the mesosphere
(ẑ > 32 km) and increases approximately monotonically to
15 days at ẑ = 0 (just above the tropical tropopause level). Fels
(1982) estimated scale-dependent radiative damping rates for
temperature waves in the middle atmosphere associated with
ozone and carbon dioxide, using a radiative transfer model. For a
vertical wavelength of 12.6 km, he calculated a damping time-scale
of 2 days at 50 km above ground, increasing to 6–7 days at 30 km.
For an infinitely deep temperature anomaly, the time-scales are 6
and 25 days at the same two levels. Therefore the wave dissipation
rate calculated here is faster than radiative damping alone.
However, the dissipation rate for waves in potential vorticity
will differ from the damping of the temperature field, depending

on the PV anomaly aspect ratio (Haynes and Ward, 1993). The
dissipation rate, S, also includes the effects of PV mixing and
mechanical dissipation.

The downward migration speeds obtained from the slope of the
curves in Figure 7(b) (red in the online article) are 6.7 km day−1

in the upper stratosphere, slowing monotonically to 1.3 km day−1

approaching the tropopause. This is consistent with descent at
rate αH/τ , where τ (z) is obtained from the pseudomomentum
budget residual and αH ≈ 20 km is constant. If H is taken as
the height scale from the structure of the zonal wavenumber
1 disturbance (11 km), this implies α ≈ 1.8. This is consistent
with the mechanism described above, given that solutions to the
simple model (35) give α ≥ 1 and there are major approximations
regarding the structure of wave breaking.

Andrews and McIntyre (1976) used a similar pseudomomen-
tum argument to discuss the importance of wave dissipation for
the downward propagation of zonal mean easterlies forming part
of the QBO. They also highlighted the difference in the action
of thermal and mechanical dissipation on the zonal mean flow.
Here, the downward propagation signal is identified with a local
maximum in wave-activity density, although this is coincident
with a reduction in the Eulerian zonal mean zonal wind.

There are some important points relating to this downward
migration mechanism.

(1) It does not involve downward wave-activity flux. The
downward migration cannot be interpreted as the group
propagation of a Rossby-wave packet.

(2) The mechanism does not invoke the zonal flow of the
mean state, as is used in critical line arguments. Indeed,
the relevant background zonal wind in this theoretical
framework is the MLM flow, which is everywhere positive
and therefore likely to be greater than the phase speeds
of planetary Rossby waves. There are no critical lines with
respect to this flow. Anomalies in the Eulerian zonal mean
flow are a direct reflection of the wave-activity density,
due simply to the disturbance of the vortex from zonal
symmetry about the pole.

The mechanism deduced here from the ERA-Interim data is
consistent with the argument of Plumb and Semeniuk (2003)
based on a version of the Holton and Mass (1976) model and also
idealized simulations using a 3D primitive equation model. In
their experiments, by construction, the pseudomomentum flux
is always upwards from the mechanically forced lower boundary
and downward migration could not result from reflection of
the upwelling Rossby-wave activity. It also does not result from
‘downward control’ via induced meridional circulations. They
argue that downward migration results from ‘the purely local
interaction between the upward-propagating wave and the zonal
mean flow’ in a manner analogous to the QBO. They go further to
state that ‘these results imply that the similar downward migration
observed in the Arctic Oscillation should not be taken to indicate
any controlling influence of the stratosphere on the troposphere’.
The fact that the pseudomomentum flux is upwards almost all
the time in the stratosphere (Figure 6(b)) and the downward
migration rate is well described by the dissipation rate calculated
from analyses indicates that their argument applies here.

This does raise the question as to why Rossby waves break
first near the stratopause, resulting in a local P maximum
and the flux convergence below necessary for the mechanism.
Dritschel and Saravanan (1994) constructed a contour dynamics
quasi-geostrophic model of the stratospheric polar vortex,
represented by a distorted PV patch (with a sharp edge) on
every level and forcing by orography at the lower boundary. They
showed two types of wave-breaking behaviour: wave breaking
close to the lower boundary for strong orographic forcing
and remote wave breaking occurring near the top boundary
in regimes of weaker forcing. Compressibility (finite density
scale height) was important to the remote wave breaking.
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An argument for wave breaking near the vortex top is that
pseudomomentum P is invariant following a Rossby-wave packet
upwards, but density decreases exponentially, implying that
meridional displacements of air parcels grow as η ∼ exp(z/2H).
Eventually, wave amplitude must saturate nonlinearly through
the wave-breaking process, involving horizontal overturning of
PV contours and irreversible deformation (McIntyre and Palmer,
1983). Dritschel and Saravanan (1994) imposed a rigid lid, which
is clearly unrealistic. However, above the stratopause the (Lait)
PV and circulation of the vortex fall with height (see Figure 4).
In their theoretical analysis of displacement warmings, Esler and
Matthewman (2011) used a model where the PV of the vortex
stopped abruptly at the stratopause, but they did not impose a
rigid lid using an unbounded domain instead. They also found
wave breaking at the top of the vortex.

Note that inference of the wave-activity dissipation rate directly
from data is only possible using the large-amplitude formulation
of wave activity, which does not have any residual terms associated
with nonlinear aspects of the adiabatic motions. This is especially
important during a SSW, where the polar vortex is extremely
distorted. The pseudomomentum conservation law requires the
background state to be a zonally symmetric solution of the
governing equations (without an eddy flux term forcing it) and
the MLM state meets these criteria.

5.5. Troposphere–stratosphere interaction

5.5.1. Upward pseudomomentum fluxes

The last section has shown that the pseudomomentum flux is
almost always upwards from the tropopause into the mesosphere.
Typically, there is convergence of pseudomomentum throughout
the stratosphere, but before and during SSWs the flux is deeper
and converges strongly at the stratopause.

Figure 3(b) shows the meridional average of pseudomo-
mentum poleward of 30◦N at six isentropic levels in the
stratosphere: 586, 730, 909, 1133, 1411 and 1758 K, cor-
responding to a regular spacing of 5 km in pseudoheight
(ẑ = 9.8, 14.8, 19.8, 24.8, 29.8, 34.8 km). The minor SSW (event
A) shows as a clear peak in pseudomomentum at the top three
stratospheric levels shown. At 1411 K (near the stratopause), there
was evidence of a build-up from 15 days beforehand, which is
associated with the poleward extension of pseudomomentum at
this level (Figure 5(c)), but also simultaneously at tropopause
level (Figure 3(a)). The bold curve in Figure 3(b) shows that the
arrival of pseudomomentum poleward of 70◦N at the tropopause
(A) coincides with the minor SSW onset at the stratopause. The
poleward migration lags by several days in the mid-stratosphere
(Figure 5(d)).

During the 20 day period before the major SSW, pseudomo-
mentum is again seen to build up (Figure 3(b)) and extend
polewards at stratospheric levels (Figure 5(c) and (d)), while at
the tropopause there is a sequence of four events where pseudo-
momentum migrates into the Arctic (the last of which is event
D). During this period, the density-scaled wave activity P/

√
r00ro

is approximately uniform with height in the stratosphere (Fig-
ure 3(b)), indicative of a vertically propagating Charney–Drazin
spectrum. After the onset of the major SSW, a decreasing profile of
P/

√
r00ro with height emerges, which is consistent with the influ-

ence of a barotropic mode (see section 5.2). This vertical depen-
dence continues throughout the remainder of the time series,
including the final warming. In their idealized study, Dritschel
and Saravanan (1994) also found that the vortex becomes
more barotropic when wave forcing from the lower boundary
is switched off, which they described as a vortex alignment effect.

Although not shown here, the peaks in pseudomomentum
during the onset of the minor SSW (A) and in event E
at tropopause level were dominated by m = 2. In contrast,
the onset of the major SSW (D) was dominated by m = 1.

Esler and Scott (2005) have shown that the m = 1 barotropic
mode is unlikely to be excited and the vertical dependence of
pseudomomentum during the early stages of the major SSW is
consistent with a westward-tilted m = 1 structure. The strong
fall in pseudomomentum with height emerges as the m = 2
pseudomomentum progresses polewards at the tropopause
(reaching the Arctic at event E), indicative of the excitation
of the m = 2 barotropic mode, as described in the theory of
Matthewman and Esler (2011).

5.5.2. Influence of the stratosphere on the troposphere

Baldwin and Dunkerton (1999) diagnosed downward migration
of Eulerian zonal mean zonal wind anomalies following SSWs.
Zonal mean wind anomalies are primarily a marker for wave
activity and therefore can migrate downwards with wave activity,
as described in section 5.4. However, on longer time-scales, signals
in zonal mean wind also reflect changes in the MLM background
state (e.g. Figure 5). The evolution of the MLM state implies
that mass crosses isentropic surfaces and/or PV contours on
isentropic surfaces, so that the mass contained within PV contours
in isentropic layers can change. The mass transport can be
regarded as the meridional overturning circulation associated with
the evolving background state (Nakamura, 1995). A persistent
zonal torque in the upper stratosphere associated with Rossby-
wave breaking will enable a meridional mass flux and then the
‘downward control’ theory of Haynes et al. (1991) indicates that
the meridional circulation would burrow downwards in response,
enabled by cross-isentropic mass flux associated with radiative
processes.
Therefore, it is possible that the irreversible spin-down of the polar
vortex circulation by the erosion mechanism, as seen cleanly in
the MLM state (Figure 6(a)), is the factor that influences the
troposphere below on longer time-scales. There have been many
studies examining links to tropospheric circulation by imposing
stratospheric perturbations. For example, Polvani and Kushner
(2002) established that a zonally symmetric cooling perturbation
to the polar lower stratosphere results in a robust poleward shift
in the tropospheric jet. Haigh et al. (2005) conducted a suite
of experiments to demonstrate that anomalous heating in the
equatorial lower stratosphere also results in a poleward shift
of the tropospheric jet. Reichler et al. (2005) used experiments
with a GCM in idealized configurations to show that the rate
of downward migration and appearance of the tropospheric
signal were dependent on the radiative damping rate for thermal
anomalies.

Song and Robinson (2004) argued that baroclinic eddies play
a central role in transferring the signal to the troposphere via
changes in Rossby-wave breaking behaviour and termed the
mechanism ‘downward control with eddy feedback’ (DCWEF).
Since the wave-breaking direction has a major influence on jet
latitude via the vortex erosion mechanism, this could be the
way in which small changes in the stratospheric state could
have a major influence on the tropospheric circulation. Several
mechanisms have been proposed for the influence of the lower
stratosphere on baroclinic wave breaking. Wittman et al. (2007)
demonstrated the sensitivity of the baroclinic wave breaking
direction to stratospheric shear. Simpson et al. (2009) argued
that the change in refractive index for the propagation of small-
amplitude Rossby waves can explain the response arising from
eddy feedback. They also found that changes in the meridional PV
gradient, rather than the zonal mean flow, dominate the changes
in refractive index. Rivière (2011) examined the link between
increases in upper tropospheric baroclinicity and poleward shifts
in the jet stream. He argued that the effect occurs via preferentially
stronger growth of baroclinic waves with longer wavelengths,
which tend to break anticyclonically and erode the jet polewards.

Following the end of the major SSW and the final downward
migration of wave activity (a few days after event E), a steady
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increase in PV is seen at high latitudes, both in the upper
stratosphere and on the stratospheric side of the tropopause. The
most notable tropospheric feature is that strong gradients in lower
boundary θ at high latitudes progress over 10 days to the mid-
latitudes (Figure 2(a)) and the polar jet in thermal wind balance
with it dissipates (Figure 2(c)). Mass increases in isentropic layers
at lower potential temperature, associated with an equatorward
shift of the lower boundary in isentropic coordinates (e.g. below
265 K in Figure 1(b)). In pressure coordinates, this corresponds
to an equatorward expansion of the dome of cold Arctic air. This
is plausibly the result of stronger radiative cooling associated
with less transient wave activity in the Arctic (Figure 3(a)) and
large, persistent clear-sky regions. Methven (2013) also shows
the existence of persistent m = 2 wave activity at this time and
Figure 3(b) indicates the prevalence of barotropic modes.

After the lower boundary θ gradient becomes strongest at
60◦N, there appears to be a change in regime for baroclinic wave
breaking from cyclonic to anticyclonic at event F. The PV gradient
at the tropopause is sharpened and migrates polewards as a
result of the anticyclonic breaking (Figure 2(b)). The only time
when the meridional average of the vertical pseudomomentum
flux is substantially negative is immediately prior to event F
(Figure 6(b)). This is associated with the structure of a baroclinic
wave with an eastward zonal tilt of meridional wind structure with
height above the tropopause. This is a signature of baroclinic wave
trapping and is consistent with the argument of Song and Robin-
son (2004) that trapping of long baroclinic waves is important in
the tropospheric response to stratospheric perturbations.

6. Conclusions

An atmospheric background state has been defined in such a
way that it can be calculated as a diagnostic from a single
global atmospheric analysis and yet is inherently slowly varying.
This is achieved by defining it using the integral quantities
–mass and circulation –that would be conserved under adiabatic
and frictionless conditions. The state is classified as a modified
Lagrangian mean (MLM), following McIntyre (1980), because
it is defined relative to potential vorticity (PV) contours on
isentropic surfaces. Although this would be a Lagrangian mean
for adiabatic, frictionless flow, in a real flow PV contours are
not exactly material contours (for example as a result of small-
scale mixing). The MLM state is defined to be zonally symmetric
and can be regarded as an adiabatic rearrangement from the
disturbed atmospheric state to one, where all PV contours are
aligned along latitude circles. The mass and circulation enclosed
within PV contours on every isentropic surface describe the
functionals M(Q, �) and C(Q, �), which by construction are
the same for the background state as in the full 3D data. Since PV
and potential temperature are materially conserved for adiabatic,
frictionless flow, the functionals would also be invariant under
these conditions and the background state steady.

A new method to obtain such a state has been developed, paying
particular attention to the intersection of isentropic surfaces with
the lower boundary. The latitudes of points along the lower
boundary in isentropic coordinates are obtained as part of the
solution procedure. This enables, for the first time, extraction of
an MLM state from global data, which is suitable for examining
the variation in background tropospheric baroclinicity associated
with non-conservative processes. The state is obtained using
an exact zonally symmetric PV inversion relation (13) and its
numerical solution, including an iteration of equivalent latitudes
describing the position of PV contours (on isentropic surfaces)
and the location of the lower boundary in the background state.
The method is named ELIPVI, standing for ‘equivalent latitude
iteration with PV inversion’.

The background state obtained is similar to the ‘reference
state’ obtained by Nakamura and Solomon (2011), since both are
derived from the mass and circulation functionals of atmospheric

datasets. However, the key difference relates to the solution for the
lower boundary of the background state. Nakamura and Solomon
(2011) specify the lower boundary location using the Eulerian
zonal mean θ on a pressure surface.

It is necessary to exclude some features of the atmospheric
state from contributing to the background state. The lower
boundary of the data is taken to be a particular terrain-following
model level from the ERA-Interim reanalysis data. However,
orography introduces local anomalies in potential temperature
and geopotential at the lower boundary. These cannot be part of
a zonally symmetric background state, so the approach taken is
to redefine the geopotential height of the surface to be mean sea
level and extrapolate variables below ground before calculating
the mass and circulation integrals (1). The height above mean
sea level of the lower boundary for the inversion domain is set
equal to the height of the original lower boundary of the 3D data
above the orography (approximately 30 m). Special consideration
is also given to boundary-layer isentropic density and narrow
PV anomalies such as those at fronts, which are regarded as
perturbations. The method has been implemented so far only on
the Northern Hemisphere domain and it is necessary to apply a
boundary condition at the Equator and to eliminate negative PV
values, which could prevent solution of the PV inversion equation
by introducing hyperbolicity.

The MLM state at tropopause level is slowly varying and
the most prominent feature is the seasonal cycle, as found by
Nakamura and Solomon (2011). Non-conservative processes are
central to the observed cycle. It was shown that Rossby-wave
breaking, filamentation and subsequent dissipation are important
in sharpening the PV gradient on isentropic surfaces crossing
the tropopause. Moving into winter, the PV in the lowermost
stratosphere increases through long-wave radiative cooling.
Consequently, the polar vortex expands and the tropopause moves
slowly equatorwards on every isentropic surface, continually being
sharpened by wave breaking. After January, the tropopause begins
to move polewards as the maintenance of the stratospheric PV
reservoir by radiative cooling lessens and wave breaking results
in inexorable poleward erosion of the vortex edge. Methven
(2003) explored the parameter space in a single-layer model
with orographic forcing and radiative damping and showed that
regimes exist where wave activity erodes the polar vortex faster
than it can be maintained until the vortex is eradicated. This
erosion behaviour continues into late summer (e.g. Methven,
2009), when the Northern Hemisphere polar vortex at tropopause
level has its minimum extent before the maintenance by radiative
cooling builds again, moving into autumn.

All variability associated with adiabatic, frictionless motion is
reflected in the perturbations relative to the MLM state. Since the
MLM state is zonally symmetric, the evolution of perturbations
can be described by the conservation law for pseudomomentum
obtained by the zonal angular momentum–Casimir method of
Haynes (1988). The conservation law expresses a relation between
the local rate of change of pseudomomentum, pseudomomentum
flux divergence and non-conservative effects. It is exact even
for large-amplitude perturbations, when using the MLM as the
background state. Both the pseudomomentum and 3D flux are
defined at every point in physical space (λ, φ, θ). The zonal
average of the flux has the same form as the Eliassen–Palm flux in
isentropic coordinates, except that there is an additional nonlinear
term expressing the meridional advection of pseudomomentum.
However, a key difference is that perturbations are defined relative
to the MLM state rather than the Eulerian zonal mean. This results
in flux vectors that are much more smoothly varying in time.
Indeed, it was found here that in the stratosphere the vertical
component of the flux is almost always positive (upwards), even
during the periodic events during a sudden stratospheric warming
(SSW), when there is the characteristic downward migration of
zonal mean zonal wind anomalies. This implies that the signal
is not related to a downward flux of wave activity. Indeed, the
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new diagnostic framework enables one to discern the physical
mechanisms behind the phenomenon.

During the build-up to the SSW events, pseudomomentum
migrates polewards on each isentropic surface, starting first at
levels just above the stratopause, followed by similar behaviour
at successive levels below. It is evident in the new diagnostics that
this behaviour is associated with the descent of a pronounced
maximum in pseudomomentum that slopes upwards in the
meridional plane from approximately 55◦N to the North Pole
(Figure 4(d)). Rossby-wave breaking begins first above the
stratopause. Filamentation in PV resulting from wave breaking is
subject to strong dissipation, through both radiative damping of
temperature anomalies and small-scale mixing.

The new ELIPVI background-state calculation, combined
with the pseudomomentum conservation law of Haynes (1988),
enables estimation of the non-conservative wave dissipation rate
as a residual. The observations motivate a simple model (35) that
describes the downward migration of wave activity and zonal
mean zonal wind anomalies. It is sufficiently accurate to predict
the slow-down of the migrating signal as it descends from the
stratopause towards the lower stratosphere as a result of the
increase in the time-scale of wave damping τ (z). The downward
migration rate is αH/τ , where H is the depth scale associated
with the tilted distortion of the polar vortex (zonal wavenumber
1 Rossby wave) and α is a constant slightly bigger than unity.
Rossby-wave breaking disrupts the coherent westward-tilting
structure of upward-propagating Rossby waves associated with
the upward pseudomomentum flux. Therefore, there must always
be strong convergence of the flux immediately below the wave-
breaking region. The flux convergence results in a local rate of
increase in pseudomomentum. Since this is below the maximum,
the pseudomomentum signal must migrate downwards.

Note that it is not necessary to invoke a change in the
background state to describe the migration. Indeed, the MLM
zonal flow does not exhibit these almost periodic events. The
MLM state changes on a slightly slower time-scale associated with
the vortex erosion mechanism (see Figure 5(c) and (d)). In the
minor SSW, although Rossby-wave breaking and a downward
migration event occur, the wave breaking stops before the
circulation of the polar vortex has been substantially depleted
by the vortex erosion mechanism. In contrast, during the major
SSW, continued upward pseudomomentum flux and repeated
Rossby-wave breaking eventually halve the MLM zonal flow
around the vortex and the strong PV gradient region is eroded
right to the pole at the stratopause (Figure 5(c)). This change
is irreversible and the PV reservoir cannot be replenished fast
enough by radiative cooling before the end of winter. Note that the
downward migration of the weakening in MLM flow can be linked
to the meridional overturning circulation, which is dependent on
non-conservative processes in the MLM framework (Nakamura,
1995). The rate of downward burrowing of the circulation was
found to depend on the radiative damping time-scale in the GCM
study of Reichler et al. (2005).

The interaction between the troposphere and stratosphere was
explored using the new MLM framework. In the build-up to the
major SSW in January 2010, the pseudomomentum density falls
more slowly with height than during other periods (Figure 3(b)). It
is argued that this is in part a signature of the upward-propagating
Charney–Drazin spectrum of Rossby waves, dominated by a zonal
wavenumber one structure showing a westward tilt with height
throughout the stratosphere, closely resembling the composite of
Matthewman et al. (2009).

During the build-up to the minor SSW in December 2009,
there was a clear progression of pseudomomentum polewards
from the midlatitudes almost simultaneously near the tropopause
(Figure 3(a)) and stratopause (Figure 5(c)). The minor SSW
occurred as the pseudomomentum maxima reached poleward of
70◦N (event A). These are both related to the meridional transport
of air over vast distances from the subtropics into the Arctic and
then the diabatic modification of those air masses. In this event,

the wave activity was dominated by zonal wavenumber 2 at both
tropopause and stratopause levels, which is consistent with the
description of wavenumber 2 warmings in terms of a barotropic
mode (Esler and Scott, 2005).

An aspect warranting further study is the change to the
troposphere following the major SSW. Following event E, when
the upper stratospheric wave activity has dissipated and the MLM
zonal flow reaches a minimum as a result of vortex erosion, there
is a marked equatorward progression of θ contours at the lower
boundary of the background state (Figure 2(a)). This must be
associated with an increase in mass within lower tropospheric
isentropic layers doming over the polar cap, but intersecting the
lower boundary poleward of 60◦N. One plausible explanation is
greater diabatic descent into these layers associated with radiative
cooling and the mean meridional circulation. As well as the rapid
build-up of MLM PV in the polar upper stratosphere associated
with downwards diabatic mass transport from the layer (and the
fast radiative time-scale there), the lower stratospheric PV also
increases at this time. This is consistent with net diabatic mass
transport out of that layer (and concentration of PV substance
there) and mass convergence into the lower troposphere.

The new calculation of a slowly evolving background state
(ELIPVI) and perturbations to it presented in this article opens
the way for many investigations of atmospheric dynamics and
aspects such as the interaction between storm tracks and climate.
The advantage of the partition is that it makes a clear distinction
between the roles of adiabatic, frictionless motions and non-
conservative processes. It avoids the use of spatial or temporal
filtering, which cannot be supported in the absence of a spectral
gap in the wave number or frequency domain. Furthermore, the
MLM background state enables the use of the large-amplitude
pseudomomentum conservation law and the partition of non-
local influence via wave-activity fluxes from the local effects of
non-conservative processes.
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Appendix A: Numerical details for PV inversion

A1. Calculation of isentropic variables

The data used here are obtained from the ERA-Interim analyses
in their most fundamental form: spherical harmonic coefficients
for surface pressure plus vorticity, horizontal divergence and
temperature on terrain-following hybrid-pressure η levels
(Simmons and Burridge, 1981). The spectral truncation is T255 on
60 levels from the Earth’s surface to a pressure of 0.1 hPa. Inverse
associated Legendre transforms and fast Fourier transforms are
used to obtain surface pressure, temperature, U = u cos φ/a and
V = v cos φ/a on a full Gaussian grid at η levels with 4 × JG
longitudes by 2 × JG latitudes where the integer JG = 128 for
the linear transform grid corresponding to T255. These fields are
interpolated on to 131 isentropic surfaces. The level spacing is
�θ = 1.5 K from 218–320 K and then is regular in pseudoheight
above 450 K with �ẑ = 1 km. A linearly increasing �θ is used
across the intermediate range 320–450 K.

The PV consistent with the finite-difference discretization used
by the PV inverter to solve (13) (for Montgomery potential) is
calculated as follows.

(1) U , V , T and p are found from the spectral transform
at the same grid points, (λi, μj), on a Gaussian grid on η
levels. Then Uj+ 1

2
= (Uj + Uj+1)/2 andθj+ 1

2
are found and
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assigned to the half-latitudes μj+ 1
2

= (μj + μj+1)/2 for

1 ≤ j ≤ 2 × JG − 1, where μ 1
2

= 1 is the North Pole and

μ2×JG+ 1
2

= −1 is the South Pole. The boundary condition

U = 0 at the poles is used. Similarly, Vi+ 1
2

and θi+ 1
2

are

assigned to the half-longitudes λi+ 1
2

and periodic boundary

conditions are used.
(2) Ui,j+ 1

2
, Vi+ 1

2 ,j and pi,j are linearly interpolated in θ

coordinates to the set of isentropic levels θm. If, at some
location, θm is less than θNL (value at the lowest η level),
then U = UNL and V = VNL are assigned to that latitude
and longitude for level θm.

(3) ζi,j is calculated from (4) by the centred finite-difference of
winds Ui,j+ 1

2
and Vi+ 1

2 ,j along isentropic levels.

(4) The top of the domain for the PV inversion algorithm
is defined by an isentropic surface at pseudoheight
ẑ(θtop) = ẑ(θM) + �ẑ/2 where θM is the top data level
and �ẑ is the spacing above 450 K. The pressure at θtop is
found by interpolation from η levels (linearly in θ).

(5) Geopotential at the highest level, θM , is found by integrating
the hydrostatic relation in η coordinates from the Earth’s
surface (η = 1) and then interpolating linearly in θ to
location θM . The Montgomery potential there is found
from (7) using pressure and geopotential.

(6) Hydrostatic balance (8) is integrated downward, using
pressure, from the top boundary to the Earth’s surface,
yielding M at isentropic levels θm.

Note that the methods used here are consistent with the
boundary conditions derived by Andrews (1983) for variables
where θ surfaces go underground. Let �(λ, μ, t) and �(λ, μ, t)
denote the location of the lower boundary. At each point
(λ, μ, t), where θ < �, the variables p, U , V are constant (i.e.
p(λ, μ, θ , t) = p(λ, μ, �, t)) but the isentropic density r = 0.

In the interior, a second-order finite difference in M is used to
find � from (10) and isentropic density from (9). At the θ level
closest to the lower boundary, a quadratic interpolation is used
to find the derivatives of M (as in section 2.2.3). At the ‘model
top’, θtop, the pressure there is used to define ∂M/∂θ using (8)
and then (9) and (10) can be evaluated at the highest level, θM .
Finally, (3) is used to calculate the Ertel PV.

A2. Treatment of orography

Mountain ranges can outcrop through θ surfaces to altitudes
where potential temperature is higher, forming isolated hot spots
of θ on the Earth’s surface and on the terrain-following lower
boundary. It does not make sense to rearrange the orographic
height or potential temperature of the lower boundary. Therefore,
such ‘hot spots’ cannot be regarded as part of the background
state.

Data are adjusted by extrapolating below the geopotential
height of the lower boundary in the 3D data, zLB, down to
z = 0, which denotes mean sea level. Since the data defining the
background state are in isentropic coordinates, the approach taken
is to assume constant static stability (N) for the extrapolation
below the orography across the height range 0 < z < zLB:

θ(z) = θLB − ∂θ

∂z
(zLB − z); ∂θ

∂z
= θ00

g
N2, (A1)

where N = 1.25 × 10−2 s−1 and θ00 = 300 K. This equation
is then used to find the heights, z(θm), corresponding to all
the θ levels in the range θ(z = 0) < θm < θLB. Integration of
hydrostatic balance (8) downwards from the lower boundary
yields pressure on these levels and therefore temperature.
Horizontal wind and PV are assumed to be constant across
the range 0 < z < zLB. The adjusted lower boundary height
is z̃LB = zLB − zs, where zs(λ, φ) denotes surface orographic

height. The adjusted lower boundary potential temperature is
θ̃LB = θ(z̃LB) from (A1). As mentioned in section 2.2.3, the lower
boundary used here corresponds to an average height above the
surface of only 30 m. The zonal average of z̃LB is used in the lower
boundary condition (21).

A3. Atmospheric boundary-layer PV anomalies

On the lowest few model levels, there are often very large values
of PV (positive and negative) associated with shallow stable
boundary layers, especially in Arctic winter, where the surface can
become extremely cold and ro small. The estimation of isentropic
density is also poor where it varies rapidly in the vertical. The
approach taken is to modify the density to be uniform across
these layers with a value that ensures that the column mass is
consistent with the pressure drop from bottom to top.

Specifically, the density is modified on the lowest mband θ levels
lying above the lower boundary at that location, defining the
range θLB < θ < θupper. The parameter mband = 2 was used for
the results shown. Numerical integration with respect to θ is used
to calculate the mass integral, Iupper, in the column above these
levels (θm > θupper) to the top of the inversion domain. The mass
(per unit area) of total column is (pLB − ptop)/g. The difference
gives the mass that should reside across the lowest levels and this
is used to redefine isentropic density there, assuming that it is
uniform:

ro = (pLB − ptop)/g − Iupper

θupper − θLB
. (A2)

The influence of this modification on the background state can
be seen in the thin wedge of high ro nearest the lower boundary
in Figure 1(b).

In addition, within the polar lower troposphere some extra
constraints are placed on the 3D PV field before calculating the
integrals for the background state. The polar lower troposphere
is defined as the region polewards of a fixed position μmod, but
only on isentropic surfaces where the background state intersects
the lower boundary within this polar zone: μmod < μes(θm) < 1.
At latitudes poleward of μmod, the first PV minimum searching
upwards from the lower boundary in the polar lower troposphere
is identified (if there is a minimum). The isentropic density at
the level of the minimum and below is modified as described
for the boundary layer (A2) and then the PV is recalculated.
This is required to eliminate very variable density and PV in
close proximity to high-latitude orography. Also, for μ > μmod,
the relative vorticity on isentropic surfaces in the 3D data is
constrained to ζ − f < 2	, limiting the effects of strong vorticity
at fronts.

Finally, once the first-guess background state has been
calculated, the background PV is capped at the value PVpolar,
which is taken to be 0.75 PVU, close to the climatological value
of f /ro for the region. In the results shown, the parameter
μmod = 0.76 and the region subject to modification is readily
seen in Figure 1(a) as the region of almost uniform PV on the
lowest isentropic surfaces (next to the pole).

A4. Calculation of mass and circulation integrals

The integrals (1) and (2) are evaluated by assuming that isentropic
layers are shallow relative to structure in the PV field, so that the
horizontal coordinates defining the PV contour do not vary across
the layer. In this limit, it is not necessary to perform the vertical
integral and the quantities within the integrands are interpreted
as depth averages for the layer at locations (λ, μ).

The integrals over the areas enclosed by PV contours on each
isentropic surface are evaluated by searching for all grid points
where q ≥ Q and then summing these points weighted by the
associated grid-box area multiplied by r or ζ , respectively.
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A5. Interpolating from equivalent latitudes to the inverter grid and
vice versa

The area, mass and circulation functionals are calculated for
discrete values of PV, Qk, on isentropic surfaces θm. The zonally
symmetric background state is obtained by calculating the
equivalent latitudes of every PV contour, μe(Qk, θm), together
with the equivalent latitudes of the points where each isentropic
surface intersects the lower boundary, μes(θm). The first-guess
equivalent latitudes are found from the area integrals using (6),
but these latitudes are refined as part of the ‘outer iteration’
described in section 2.3. Every step in the outer iteration requires
the following.

(1) A forward mapping of the PV levels, Qk, and the functionals
from the equivalent latitudes to the regular latitude grid,
μj, used for PV inversion.

(2) Inversion of PV to obtain the Montgomery potential and
therefore pressure, temperature, isentropic density and
zonal flow. Note that the first guess for the zonal flow is
obtained from (5) and that for the isentropic density is
obtained from ∂M/∂A evaluated along each isentropic
surface θm. The inversion algorithm uses a first guess for
M calculated by inverting (9).

(3) The density and zonal flow from the inverter are used
to calculate the new mass and circulation integrals
M2D(Qk, θm) and C2D(Qk, θm).

(4) The new integrals are used to calculate the equivalent
latitude shifts δμM

e (24) and δμC
e (26).

(5) The shifts are used to calculate the new equivalent latitudes,
as described in section A10.

(6) The outer step repeats from point 1 above, unless the
convergence criterion described in section A10 is met.

The forward mapping to find the PV distribution on the
regular latitude grid μj used for inversion is found by cubic spline
interpolation of PV values Qk between the equivalent latitudes
μe(Qk, θm). As discussed in section A7, the PV is assumed to be 0
on the Equator and q ≥ 0 where isentropic surfaces intersect the
lower boundary μes(θm). The maximum value of PV from the
3D data is used as the boundary condition for the spline at the
North Pole, unless the PV has been modified there by removal of
a sharp PV spike (see section A6).

The mass functional is interpolated using M(Qmax, θm) = 0
as the spline boundary condition at the North Pole. The lower
latitude boundary condition on the cubic spline is given by
M(0, θm) = Ms(θm). This corresponds to the mass of the entire
isentropic layer above the lower boundary.

Zonal wind U(Qk, θm) is found from the circulation integral
using (5) and then interpolated on to the inversion grid to
avoid errors associated with interpolating the planetary vorticity
contribution (which is known exactly). U = 0 is used as the
boundary condition on cubic spline interpolation at the North
Pole. The lower latitude boundary condition on the spline is taken
to be Us(θm), obtained from the ‘surface circulation integral’
Cs(θm).

Note that cubic splines generally gave better results than
linear interpolation, because sometimes large distances between
equivalent latitudes points are covered (see Figure 1(a)). However,
overshoots or undershoots are possible. Since the background-
state PV, mass and circulation must vary monotonically with
latitude, the overshoots and undershoots are cut off. An inverse
mapping is applied to the modified profile qo(μj) to obtain a
revised set of equivalent latitudes μ̃e(Qk) which, by construction,
vary monotonically with Qk and do not include a PV spike near
the pole. Linear interpolation between grid points μj is sufficient
for the inverse mapping, due to their close spacing. On the first
step of the outer iteration only, the revised profile is used to
modify the mass and circulation functionals appropriately so that
the PV overshoots do not return in subsequent steps of the outer
iteration.

A6. Removing spikes in background-state PV and θs

Diabatically generated high and low PV anomalies are often
small-scale and particularly active in narrow regions along fronts.
Often, PV dipoles are formed and due to their close proximity
largely cancel in inversion to obtain flow and density anomalies.
However, if they are included in the PV rearrangement, the
highest values on each isentropic surface will be placed next to the
North Pole and the lowest values next to the lower boundary or
Equator. The artificial separation of the anomalies can introduce
a large cyclonic circulation about the pole in the background state
in the polar lower troposphere.

However, from a single snapshot of the atmosphere, it
is not possible to partition PV anomalies that have arisen
rapidly through non-conservative processes from PV anomalies
associated with adiabatic advection from elsewhere. Such a
partition would be dependent upon the recent history of the air.
This introduces a problem for the definition of the background
state. However, isolated spots of very high PV occupy a small
area and contribute to a narrow spike in high PV at the
pole following the calculation of first-guess equivalent latitudes.
The spike is surgically removed from the background-state PV
distribution on θ surfaces, by setting any equivalent latitudes
where μcut < μe < 1 to 1 (i.e. removing the PV contour from the
domain on that isentropic surface). The parameter isμcut = 0.985
in the results shown.

In addition, the numerical stability of the inverter method is
very sensitive to the precise shape of the θs curve approaching
the Equator, because it becomes increasingly difficult to balance a
horizontal temperature gradient as the Coriolis parameter f → 0.
The approach taken is that, once the first-guess background state
has been found via the use of area integrals, the θs curve is
modified equatorward of a chosen position μtropic. A smooth
curve approaching the Equator with a functional form that can
satisfy the balance relation is obtained by fitting the quadratic
function

θs(μ) = θs(μtropic) + 0.99 × �θ

(
1 − μ2

μ2
tropic

)
. (A3)

Note that the parameter μtropic = 0.1 is initially specified,
but the μ position of the first θ surface intersecting the lower
boundary equatorward of this point, μes(θm) < 0.1, is used to
replace μtropic in (A3). The extrapolation to the Equator proceeds
from there. Note that by design, the extrapolated profile hits the
Equator at a θ coordinate just below the next θ surface, so that all
the θ surfaces above θm do not intersect the lower boundary but
run to the Equator. Since the modification results in eliminating
intersections above θm (cutting off a θs spike near the Equator), it
is necessary to modify the interior mass and circulation integrals
at the points that have moved from ‘below ground’ to within
the background-state domain. This is achieved by assuming
that ro = 300 kg K−1 m−2 and Uo = Uos(θm) throughout the
modification region and recalculating the integrals.

A7. Removing negative PV in the background state

The PV inverter can fail to solve (13) for M if the background PV
is negative because the equation is no longer elliptic. Therefore,
the negative PV region between the Equator and the equivalent
latitude of the zero PV contour must be modified. This region
covers a substantial area in the Tropics in the winter stratosphere
and mesosphere (discussed in section 5). Since the q = 0 contour
is moved to the Equator, it is necessary to set the integrals for
area, mass and circulation for q = 0 equal to integrals across the
entire isentropic layer in the Northern Hemisphere: As, Ms and
Cs. Furthermore, since negative PV in the 3D data contributes
to the circulation integral Cs(θm), but does not contribute to
C(Q > 0, θm), it is possible to have a local maximum in C(Q)
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near Q = 0. The region where C(Qk) > Cs is modified by setting
area, mass and circulation integrals equal to the values for the
first PV contour, Qsmall, with smaller circulation than Cs. When
mapped on to the inverter grid (section A5), this results in
a modified region with PV increasing from 0 to value Qsmall at
μe(Qsmall, θm). Mass and circulation then decrease monotonically
with PV from the Equator.

On isentropic surfaces that intersect the lower boundary, the
lowest PV contour is sought where μe(QK , θm) − μes(θm) >
10−3 and QK > 0. The PV at the lower boundary is then set to
QK−1 (< QK ). Therefore, when interpolated on to the inverter
grid, PV is positive and increases monotonically with latitude.

A8. Linear PV inversion algorithm

Using the previous estimate for M, the nonlinear � term in
(13) is evaluated to yield a linear partial differential equation.
The second-order finite-difference representation of this and
the application of the boundary conditions results in a set of
simultaneous equations which are solved with the D03EBF routine
from the Numerical Algorithms Group (NAG) library, using the
Strongly Implicit Procedure (Stone, 1968). This algorithm was
chosen because it can be implemented on a grid with irregular
boundaries.

The maximum number of allowed linear iterations is increased
from 5 to 25 as the count of the nonlinear iterations increases.
The maximum equation residual is set to decrease from no
more than 1 to 0.8 × 10−8, as the residual from the previous
nonlinear iteration decreases (see below). These controls are
designed to prevent too many iterations being performed when
the nonlinear iteration residuals are large. Typically, convergence
to this tolerance occurs in 5–16 linear iterations. The maximum
fractional change in M over the last iteration is < 10−11.

A9. Nonlinear iteration for PV inversion

The linear iteration treats the pressure function � (10) as given,
as well as the values of M below the lower boundary obtained by
extrapolation downwards (section 2.2.3) that are used to evaluate
the meridional second derivatives in (13). A nonlinear iteration
is introduced to update these terms. Nonlinear convergence is
deemed to have been obtained when the maximum equation (13)
residual is smaller than 0.6 × 10−7. Typically, convergence to this
tolerance occurs in 400–500 iterations. The maximum change in
M during the last iteration is several orders of magnitude smaller
than the residual. This iteration is very slow to converge, due
to oscillatory behaviour near the lower boundary, but a faster
method has not been found.

A10. Outer iteration to determine equivalent latitudes

The equivalent latitudes are revised by mixing the shifts calculated
from the mass (24) and circulation (26) methods (section 2.3)
with the shift from the previous outer iteration. This avoids
introducing an alternating pull on equivalent latitudes in the outer
iteration. The iteration is also made smoother by introducing a
relaxation scheme,

μn
k =

(
μn−1

k + 1

2
δμn−1

k + 1

4
δμM

k + 1

4
δμC

k + μn−1
k

Nr

)
Nr

Nr +1
,

μn
k = (

μn−1
k (Nr − 1) + μn

k

) 1

Nr
,

which applies to every PV contour μk = μe(Qk, θm). It is
analogous to a implementing a mixed explicit–implicit time step
with relaxation towards the running mean, μk, on ‘time-scale’
Nr. Larger Nr implies weaker relaxation and the value Nr = 5 was
used.

A similar procedure is used to obtain a new estimate for
the equivalent latitudes of the surface potential temperature
distribution, μes(θm), using the latest MLM θs(μ) estimate.

The convergence criterion for the outer iteration requires
that the mean magnitudes of the shift in equivalent latitudes,
|δμe(Qk, θm)|, and the similar quantity for the surface equivalent
latitudes, |δμes(θm)|, are less that α�μmin, where �μmin is the
smallest grid spacing on the inverter grid (next to the pole) and the
tolerance parameter α was set to 0.5. Note that the inverter grid
is regular in latitude, with spacing 0.703◦, so, in terms of sine of
latitude, �μmin = 1.377 × 10−4 while �μmax = 1.225 × 10−2.
For the dates examined, the outer iteration stopped on this
criterion after 12–15 iterations.
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