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ABSTRACT

We systematically compare the performance of ETKF-4DVAR, 4DVAR-BEN and 4DENVARwith respect to two

traditionalmethods (4DVARandETKF) and an ensemble transformKalman smoother (ETKS) on theLorenz 1963

model.We specifically investigated this performance with increasing non-linearity and using a quasi-static variational

assimilationalgorithmas a comparison.Using the analysis rootmean square error (RMSE) as ametric, thesemethods

have been compared considering (1) assimilationwindow length and observation interval size and (2) ensemble size to

investigate the influence of hybrid background error covariancematrices and non-linearity on the performance of the

methods. For short assimilation windows with close to linear dynamics, it has been shown that all hybrid methods

showan improvement inRMSEcompared to the traditionalmethods. For long assimilationwindow lengths inwhich

non-linear dynamics are substantial, the variational framework canhavedifficulties finding the globalminimumof the

cost function, so we explore a quasi-static variational assimilation (QSVA) framework. Of the hybrid methods, it is

seen thatunder certainparameters, hybridmethodswhichdonot use a climatological backgrounderror covariancedo

not need QSVA to perform accurately. Generally, results show that the ETKS and hybrid methods that do not use a

climatological background error covariance matrix with QSVA outperform all other methods due to the full flow

dependency of the background error covariance matrix which also allows for the most non-linearity.

Keywords: data assimilation, hybrid methods, flow dependence

1. Introduction

Hybrid data assimilation methods are becoming more

widely used in Numerical Weather Prediction (NWP).

These methods combine ideas from successful variational

methods such as 4DVAR (Talagrand and Courtier, 1987)

and sequential methods such as the ensemble transform

Kalman filter (ETKF, Bishop et al., 2001) and the ensemble

Kalman smoother (e.g. Evensen and Van Leeuwen, 2000;

Yang et al., 2012). The motivation behind hybrid methods

is to make use of a flow-dependent background error covari-

ance matrix (Pb) in a variational setting. Although some of

these hybrid methods are being used operationally now,

several basic questions on their performance are still open.

Hybrid methods were introduced by Zupanski (2005)

when they produced themaximum likelihood ensemble filter

(MLEF) which obtains a maximum a posteriori estimation

(MAP) in ensemble space. Gu and Oliver (2007) explore a

method called randomised maximum likelihood which is a

3DVAR in ensemble space with each ensemble member

based on stochastic EnKF. Both of these papers are

examples of using variational methods within an ensemble

Kalman filter. Other methods which use ensemble methods

to update variational methods have also been popular.

Wang et al. (2008) looked into a hybrid ETKF-3DVARdata

assimilation method for the Weather Research and Fore-

casting (WRF) model. The ETKF-3DVAR uses ensemble

information within a variational framework. The Pb from

the ETKF is combined with the climatological background

error covariance matrix in 3DVAR (Bc), at the start of each

assimilation window. This is our motivation for the ETKF-

4DVAR which is the same but uses 4DVAR framework

instead of 3DVAR. Other examples such as Fairbarn et al.

(2014) and Liu et al. (2008) looked at the four-dimensional

ensemble variational method, 4DENVAR. 4DENVAR

uses the four-dimensional covariance from an ensemble of

model trajectories which alleviates the need for the tangent

linear and adjoint model in the 4DVAR. In Fairbarn et al.

(2014), both deterministic and stochastic versions ensemble

of 4DENVARs (EDA-D and EDA-S) are tested against

4DVAR, deterministic-EnKF [DetEnKF, which is an ap-

proximation of the ETKF for small background error
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covariances, Sakov and Oke (2008)] and 4DVAR-BEN.

4DVAR-BEN is similar to ETKF-4DVAR but uses the

ETKF generated background error covariance matrix. The

root mean square error (RMSE) is then calculated for

different observation densities and a different range of

ensemble sizes on the Lorenz 2005 model (which uses 180-

variables). Liu et al. (2008) compare 4DENVAR to 4DVAR

on a one-dimensional shallow water model. They show

that 4DENVAR needs more iterations over the 4DVAR to

reach the same value of the cost function. This is because

the sample background error covariance in 4DENVAR,

calculated by the ensemble, has a higher condition number

than the fixed background error covariance matrix used

in 4DVAR. The ensemble Pb is a sample estimator that

may contain spurious long-distance correlations (a result of

finite sample size); this can increase the condition number.

However, as the adjoint model is not needed in the mini-

misation, the computing time for each iteration is smaller.

To evaluate the performance of 4DENVAR, the absolute

errorwas calculated (comparingwith the truth) and compared

with that of 3DVAR, 4DVAR and the EnKF. 4DENVAR

outperforms all methods on this model with only a small

absolute error. This paper shows some encouraging results

for 4DENVAR. It suggests that this method may be a good

choice for real atmosphere data assimilation.

On the operational side, Wang (2010) introduced a

hybrid background error covariance formulation into the

3DVAR-GSI (gridpoint statistical interpolation) system.

Since then, there have been many ideas to use hybrid

methods to try and decrease forecast error. Kuhl et al.

(2013) give an example of hybrid methods in operational

models. Their implementation is very similar to the ETKF-

4DVAR which we used in this paper. They use a weak

constraint 4DVAR system (named NAVDAS-AR), but

their implementation of the background error covariance

matrix is a combination of a static error covariance matrix

with a flow-dependent error covariance matrix based on an

ensemble transform technique of 80 members. They found

that a hybrid blend of static and flow-dependent error

covariances significantly reduces forecast error in compar-

ison to just using a static error covariance.

In this work, we systematically compare the ETKF and

the proposed ETKF-4DVAR from Wang et al. (2008), the

4DENVAR and 4DVAR-BEN from Fairbarn et al. (2014)

with 4DVAR and the smoother described in Yang et al.

(2012), which we will refer to as the ensemble transform

Kalman smoother (ETKS) on the Lorenz 63 model. We

use different window lengths with different observation

periods and different ensemble sizes for all methods. We

focus on the influence of non-linearity. By using the Lorenz

1963 model, we avoid issues related to localisation in

the methods that use an ensemble. While localisation is an

important factor in the performance of data assimilation

methods in large-dimensional systems, and, in the con-

text of hybrid methods, especially the time-dependence

of localisation in an assimilation window, we isolate the

influence of hybrid background covariances and the non-

linearity of the data assimilation problem in this study.

On our longest assimilation window experiments, we also

use a quasi-static variational assimilation algorithm [QSVA

(Swanson et al., 1998), for the variational-based methods].

QSVA attempts to find the minimum of a non-convex

cost function coming from a long assimilation window by

solving a series of minimisations in shorter assimilation

sections of increasing length.

The layout of this paper is as follows. In Section 2, we

give a description of each one of the methods used in

this paper. In Section 3, using the analysis RMSE as a

metric, these methods have been compared considering

assimilation (1) window length and observation interval

size, and (2) ensemble size and observation interval size.

The final section concludes the paper and gives plans for

future work.

2. The hybrid methods

2.1. 4DVAR

The four-dimensional variational assimilation (4DVAR)

is a method of estimating a set of state variables (or

parameters). This is done by adjusting the model variables

until the analysis trajectory balances the observations with

the first guess. As the name would suggest, the 4DVAR

method not only uses three-dimensional space, but also

includes the time domain; i.e. the solution is a trajectory.

If we consider the model to be perfect (strong constraint),

this problem reduces to finding an initial condition x from

the minimisation of the following cost function:

JðxÞ¼ 1

2
ðx�xbÞ

T B�1
c ðx�xbÞ

þ 1

2

Xp

i¼0

ðyi �HiðMiðxÞÞÞ
>R�1

i ðyi �HiðMiðxÞÞÞ
>

(1)

which measures the difference in the model trajectory and

the observations. Here, for p observations, Mi ¼M0!i is

the non-linear model operator for time 0 to time i, Ri

represents the observation error covariance matrix at time

i, x 2 R
N is the initial state, yi 2 R

L is an observation set at

time i, xb is the background state, and Hi represents the

non-linear observation operator at time i. The background

error covariance matrix is given as Bc. To find a minimum
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value, one can set the gradient of J(x) to zero and find the

root of this equation iteratively

rJðxÞ¼B�1
c ðx�xbÞ�

Xp

i¼0

M>
i H>i R�1

i ðyi�HiðMiðxÞÞÞ
>¼0;

(2)

with M being the linearised model around the current

iteration and M
i its adjoint. If J(x) is not convex, this

can be a local minimum and not global. Once the optimal

initial conditions are reached, the model is run through-

out the assimilation window to produce a forecast into

the next window. This future forecast will provide the

next assimilation windows background state. The ver-

sion of 4DVAR which we use in our experiments is non-

incremental 4DVAR.

2.1.1. A quasi-static variational approach. As the assim-

ilation windows lengths increase on the Lorenz 1963 model,

so does the non-linear error growth. This makes calculating

the global minimum of the cost function even more difficult

in the traditional variational framework. Pires et al. (1996)

suggest using quasi-static variational assimilation, and this

is then built upon in Swanson et al. (1998) and Swanson

et al. (2000). This involves taking a smaller section of the

assimilation window, using all observations in that section

to find the minimum, and then gradually increasing the

length of the section using the previous section minima as a

first guess until we have covered the whole window.

2.2. Ensemble Transform Kalman Filter

The ETKF was introduced in Bishop et al. (2001) and

modified in Wang et al. (2004). The latter is the version we

use in our experiments. The ETKF is a type of ensemble

square root filter (EnSRF, Tippett et al., 2003), in which

the background ensemble of perturbations is transformed

into the analysis via post-multiplication by a matrix of

weights as:

Xa ¼ XbWa; (3)

where Xb is given by

Xb ¼ ½x1 � x; :::; xM � x�: (4)

Here, Xa;Xb 2 R
N�M are the analysis and background

ensemble of perturbations respectively, M is the ensemble

size and Wa is a matrix of weights. This weight matrix is

calculated as follows. The ensemble analysis error covar-

iance matrix equation is

Pa
e ¼ ðI� KeHÞPb

e ; (5)

where Ke ¼ Pb
eH>ðHPb

eH> þ RÞ�1
is the Kalman gain

matrix, and Pa
e and Pb

e are ensemble covariances, i.e.

Pb
e ¼

1

M � 1
XbXb>; (6)

Making a substitution of D ¼ YbðYbÞ> þ R, where

Yb ¼ HXb
e , we get the equation

Xa
eðXa

eÞ
> ¼ ðI� Xb

eðXb
eÞ
>H>ðDÞ�1HÞXb

eðXb
eÞ
>
; (7)

¼ Xb
eðI� ðYbÞ>ðDÞ�1YbÞðXb

eÞ
>
; (8)

Xa
e ¼ Xb

eðI� ðYbÞ>D�1YbÞ
1
2: (9)

Use the Sherman-Morrison-Woodbury identity to find

I� ðYbÞ>D�1Yb ¼ ðIþ ðYbÞ>R�1YbÞ�1
: (10)

The ETKF takes the eigenvalue decomposition

ðYbÞ>R�1Yb ¼ CCC>; (11)

where G is an M�M real, non-negative, diagonal matrix

and C is an M�M orthonormal matrix. Using eq. (11),

eq. (10) can now be written as

I� ðYbÞ>D�1Yb ¼ CðIþ CÞ�1C>: (12)

Cð1þ CÞ�
1
2 satisfies eq. (5), but to avoid bias C

T must be

included [see Wang et al. (2004) or any other orthonormal

matrix Livings et al. (2008)]. This gives the weight matrix,

Wa for eq. (3),

Wa ¼ CðIþ CÞ�
1
2C>: (13)

To optimise the performance of ETKFwe use inflation such

that Xb ¼ Xbð1þ qÞ , where q 2 f0; 0:025; :::; 0:375; 0:4g.
For each combination of ensemble size and observation

period, an optimal was found. More information about the

implementation of the ETKF can be found in the appendix

of Amezcua et al. (2012).

2.3. Ensemble Transform Kalman Smoother

While filters modify (update) state variables at observation

times, smoothers modify the whole trajectories of state

variables with the information obtained from observations.

The weights in the ETKF are used only at observation

time. As each ensemble member arises from a forward

integration from the previous observation time, these

weight matrices should describe a closer estimation of the

truth throughout the whole trajectory. So, this smoother

applies the weight at each observation time (from the

ETKF) and applies it to the ensemble trajectories between

the last observation and the current one. This is similar

to the 4D-EnKF by Hunt et al. (2004). This method

does not require any extra model runs as this smoother

simply multiplies the entire ETKF ensemble with an extra

HYBRID DATA ASSIMILATION WITH INCREASING NON-LINEARITY 3



weight matrix. The difference between the original ensem-

ble Kalman smoother (Evensen and Van Leeuwen, 2000)

and the smoother used in this paper is that we do not

perturb the observations.

2.4. ETKF-4DVAR

Wang et al. (2008) was the pilot study of the ETKF-

3DVAR hybrid data assimilation method. In that paper,

they conducted an identical-twin OSSE (Observing System

Simulation Experiment) with a coarse grid spacing (200 km)

of the WRF model, comparing the ETKF-3DVAR to

traditional 3DVAR. They show that the hybrid provides an

approximately 15�20% more accurate analysis than the

3DVAR. It was shown that the improvement in RMS

analysis error of the hybrid over the 3DVAR was larger

over data-sparse regions. They suggest that future work

should involve looking into ETKF-4DVAR.

The ETKF-4DVAR uses a similar cost function to

eq. (1) written as

JðxÞ ¼ 1

2
ðx� xbÞ

>~
B
�1ðx� xbÞ

þ 1

2

Xp

i¼0

ðyi �HiðMiðxÞÞÞ
>R�1

i ðyi �HiðMiðxÞÞÞ;
(14)

where all variables are the same as in the 4DVAR version

except the background error covariance matrix, Bc is

replaced by
~
B which is given by the equation,

~
B ¼ bBc þ ð1� bÞPb: (15)

The climatological background error covariance matrix Bc

is the same as the one used in 4DVAR, but Pb represents

the background error covariance matrix generated by the

ETKF as in eqs. (6) and (4) and b 2 ½0; 1� represents a

weighting scalar. When b is set to 1 in eq. (15), we find the

traditional 4DVAR. When b�0, only the ensemble error

covariance matrix is used, and this method is known as

4DVAR-BEN, and when b�0.5, the method will be

referred to as the ETKF-4DVAR.

2.5. 4DENVAR

4DENVAR is a variational method in which an ensemble

of model trajectories is used to estimate space and time

correlations, avoiding the need for an adjoint model fol-

lowing original ideas of Van Leeuwen and Evensen

(1996). Further details on this method can be found in Liu

et al. (2008), Fairbarn et al. (2014), Lorenc (2003, 2011),

Buehner et al. (2010a, 2010b),Wang andLei (2014) andTian

et al. (2008). Thismethod seeks tominimise the cost function

JðxÞ ¼ 1

2
ðx� xbÞ

>ðPbÞ�1ðx� xbÞ

þ 1

2

Xp

i¼0

ðyi �HiMiðxÞÞ
>R�1

i ðyi �HiMiðxÞÞ;
(16)

which is similar to the four-dimensional variational data

assimilation method (4DVAR) except Bc has been replaced

by Pb, which is identical to the 4DVAR-BEN cost function.

4DENVAR differs in the minimisation, and the gradient of

eq. (16) is almost identical to 4DVAR’s without the need

for a model adjoint. Our background covariance matrix is

calculated by

Pb
t ¼

1

M � 1
XtX

>
t : (17)

where

Xt ¼ ½x1
t � ext; :::; x

M
t � ext�; (18)

with xj
t represents the value of ensemble member j at time

t and ex represents the recentred 4DVAR analysis. Thus, the

cost function gradient can be written as

rJðxÞ ¼ ðPb
0Þ
�1ðx� xbÞ

�
Xp

i¼0

ðPb
0Þ
�1Pb

0M>i H>i R�1
i ðyi �HiMiðxÞÞ: (19)

Using the transformation,

Pb
0 ¼ X0X>0 ; (20)

Pb
0M>i H>i ¼ X0X>0 M>i H>i (21)

¼ X0ðHiMiX0Þ
>

(22)

¼ X0ðHiXiÞ
>; (23)

we can replace P0M>
i H>i with X0ðHiXiÞ

>
to remove the

need for the model and observation operator adjoints. This

ensemble of model trajectories at the initial time step, t0, is

set to the same distribution as the analysis background

error covariance matrix of our ETKF at the end of the

previous assimilation window, this is then centred around

the end point of the 4DENVAR analysis at the end of

the previous assimilation window. From this description,

it becomes clear that the method closely resembles an

iterative variant of the ensemble smoother as presented in

Van Leeuwen and Evensen (1996).

A brief summary of each method can be found in the

Appendix 1.

4 M. GOODLIFF ET AL.



3. Experiments

3.1. Lorenz 1963

For our experiments, we use the Lorenz (1963) model.

This is a simple dynamical model which exhibits chaotic

behaviour for certain choices of parameters. The Lorenz

equations are given by the non-linear coupled ODE system

dx

dt
¼ �rðx� yÞ; (24)

dy

dt
¼ qx� y� xz; (25)

dz

dt
¼ xy� bz; (26)

wherex�x(t), y�y(t), z�z(t) are the state variables ands,r

andb are parameters. In these experiments, they are chosen to

have the values 10, 28 and 8/3, respectively. To ensurewe start

from a point in the attractor, 20 consecutive 4DVARs were

run over 50 time steps (Dt�0.01) and the final analysis point,

xa, was taken to be the initial state, x0, of our experiments.

Thus, in these experiments the initial state is

x0 ¼ �3:12346395;�3:12529803; 20:69823159ð Þ>:

3.2. Generation of the background error covariance

matrix

The climatological background error covariance matrix

was generated by an iterative method using 4DVAR with

one observation at the end of the assimilation window. Each

assimilation window is the same length as the observation

period used in each experiment, and these assimilation win-

dows are run over a 5000 time step cycle starting from an

arbitrary Bc. This was thought to be long enough to let the

system evolve and provide the appropriate correlations

among variables. At the end of the cycle, we calculate a

new Bc matrix using,

Bc ¼ ðxf � xtÞðxf � xtÞ>; (27)

from t�500 to t�5000 to ignore the transient and where

xf is the forecast state and xt is the truth state. With this

new Bc, we restart the cycle for another iteration. This is

done for 10 iterations which is long enough to show

convergence. This method is described in Yang et al.

(2006). Figure 1 shows results from experiments with a

fixed versus non-fixed Bc for both traditional 4DVAR and

4DVAR with QSVA. A fixed Bc means that, for all

experiments, the Bc was generated using the method

described above with observation period of 12 for each

experiment. A non-fixed Bc is generated using the method

described above with the corresponding observation period

taken as in each experiment. It can be seen that 4DVAR

(with and without QSVA) with a fixed Bc does just as well

as with a non-fixed Bc matrix in nearly all observation

period sizes. For all our experiments, all variables (x, y and

z) will be directly observed H ¼ Ið Þ, with an observation

error covariance matrix of R ¼ r2I ¼ I (uncorrelated

observations), with r2 ¼ 1.

3.3. Does the initial point change the result?

Before comparison of the hybrid methods are made, we

test whether initial conditions are important for both

the ETKF and 4DVAR. Four different initial states were

selected from the Lorenz 1963 attractor, and then run over

10 000 assimilation windows, each window is 24 time steps

using 4DVAR and the ETKF (with inflation).

Doing short data assimilation experiments may be mis-

leading and give information of the performance of the

method only in a specific neighbourhood of the attractor.

Thus, we use 10 000 assimilation windows to fully model the

state of the system. The initial points are given as:

x1
0 ¼ �3:12346395;�3:12529803; 20:69823159ð Þ>

x2
0 ¼ �12:2275757;�13:28328434; 28:50731193ð Þ>

x3
0 ¼ 4:87127426; 8:78267131; 11:57329377ð Þ>

x4
0 ¼ 14:7894135; 10:17205532; 39:60479722ð Þ>

Both methods are run with eight different observation

periods [at every 1,2,3,4,6,8,12,24 time step(s)]. The ETKF

has 20 ensemble members with the initial ensemble being

generated from a Gaussian distribution perturbed from the

initial state [with xt þ B
1
2g ,where g � ð0; IÞ]. After running

these methods for this time scale, we notice that the RMSE

are all equivalent for each method. This concludes that,

4DVAR Fixed

4DVAR non-Fixed

4DVAR-QSVA Fixed

4DVAR-QSVA non-Fixed

R
M

S
E

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
12 3 4 6 8 12 16 24

Observation Period

48

Fixed/Non-Fixed QSVA/noQSVA

Fig. 1. Comparison of standard 4DVAR with 4DVAR-QSVA

both fixed and non-fixed background error covariance.
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after a long enough time frame, the initial state of the

experiment does not change the result.

3.4. Improvements from QSVA

In Fig. 1, the quasi-static variational approach (QSVA) ex-

periments show the influence of QSVA for a 48 time step

window for different observation periods. We first mini-

mise over the first 12 time steps, then the first 24 time steps,

then the first 36 time steps and finally the whole window.

QSVA perform much better than 4DVAR, suggesting that

local minima are present. Note that an observation period

of 48 time steps, which has only one observation at the

end of the window, 4DVAR and 4DVAR-QSVA are the

same. This is because with one observation per window,

the smaller sections which the QSVA method uses have no

observations, thus not improving the first guess.

3.5. Ensemble size versus observation interval

For complex models, ensembles can be expensive to run.

Hence, we first compare each method over 10 000 consecu-

tive assimilation windows (each one being 24 time steps in

length), observation periods of Dt ¼ f1; 2; 3; 4; 6; 8; 12; 24g
using an ensemble size of 5,10,20,50 or 100 members for the

ETKF. This will show if a large ensemble size is needed to

give the most accurate estimation of the true state of the

system. As 4DVAR is unaffected by changing the ensemble

size of the ETKF, it is not necessary for comparison.

Fairbarn et al. (2014) show that an ensemble of at least

five members is needed for EDA-D to have a lower analysis

RMSE over 4DVAR in the perfect and imperfect model.

Here, in Fig. 2, we show how accurate each hybrid method

(along with the ETKF) is when the number of ensemble

members is varied.

The true nature of ensemble methods is that more

ensemble members will more accurately represent the

systems behaviour, giving a smaller RMSE. Without infla-

tion, we do see a decrease in RMSE with more ensemble

members, but as inflation is used in this experimentation, this

is not always the case. Looking at all panels in Fig. 2, it can

be seen that for small observation intervals, ensemble size

above 50 members produces the lowest RMSE for all

methods except for the ETKF-4DVAR (which is the only

method which uses the climatological background error

covariance matrix). With a lot of ensemble members and a

lot of observations, an ensemble size at 50 or above seems to

provide the lowest RMSE until our observation period gets

to six time steps. This is because the trajectory of the system is

very closely observed. As the frequency of observations

decreases, more ensemble members are expected to give a

more accurate estimate of the state of the system. None-

theless, in Fig. 2a we notice that for long observation periods

(e.g. 12, 24 in all panels), the largest RMSE actually cor-

responds to the largest ensemble (M�100). This counter-

intuitive result has been observed (and explained) before in

small models (e.g. Lorenz, 1963) under largely non-linear

error growth (as it is the cast with infrequent observations).

Lawson and Hansen (2004) and Anderson (2010) show that

with large ensemble sizes using a deterministic ensemble

Kalman filter, the system can suffer from ‘ensemble cluster-

ing’. This can be alleviatedwith random rotations (e.g. Pham

et al., 1998; Amezcua et al., 2012) but at the expense of losing

information of the trajectory. After a certain amount of

members, increasing the sizewill not increase accuracy.After

an interval size of 12, ETKF suffers ensemble clustering

causing a higher RMSE for 50 ensemble members. Figure 3

shows the degree of clustering given different observation

periods. This is calculated by

CD ¼ TrðPM�1Þ
TrðPMÞ

; (28)

where PM�1 is the ensemble spread ignoring the furthest

member from the truth. As CD00, we have a higher

clustering of ensemble members. This is because as CD00,

this implies TrðPM�1Þ ! 0; hence, all the variance is coming

from a single member. The figure shows that, as observa-

tion period increases, the probability of the ensemble

clustering increases. With a small observation period, we

have random ensemble clusters this turns into systematic

clustering at higher observation periods. This is also the

case with the ETKS (see Fig. 2b), but as the whole

trajectory between observations is weighted, we see lower

RMSE in comparison to Fig. 2a as the space between

observations increases. Using this increase in accuracy, the

method which seems to be affected the most is 4DENVAR

in Fig. 2e. It can be seen that with a small ensemble size

with the added iterational aspect of the variational frame-

work, we get a decrease in RMSE in comparison to the

ETKF. Lastly, Fig. 2e shows no significant change in

RMSE with increased ensemble size except with single

observation windows. This could be due to the variational

aspect of the hybrid methods and how, in this system, the

ETKF is quite accurate even with small ensemble sizes.

Thus, any ensemble size over 5 would be enough for this

method. In the following experiments, we will use 20

ensemble members as this seems to be the maximum

amount before we suffer from clustering. In Lorenz 1963,

we do not need to use localisation.

3.6. Assimilation window length and observation

interval

In this section, a detailed comparison of ETKF-4DVAR

(with b�0.5), 4DVAR-BEN, 4DENVAR, ETKF, ETKS
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and 4DVAR over different assimilation window lengths,

with different observation periods is made. In this experi-

ment, windows of lengths 12, 24, 36 and 48 time steps are

used over 10000 assimilation windows, we also used the

quasi-static variational assimilation method for window

lengths of 36 and 48 time steps (QSVA only needs 1000

assimilation windows, since the variation in RMSE among

cycles is lower than without QSVA). The observation in-

terval sizes used are generated using the multiplication

factors of the window length so as to give us an observation
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at the end of the assimilation window. For example, in a

48 time step assimilation window, we have 10 different

observation periods, those are with an observation at every

1,2,3,4,6,8,12,16,24,48 time step(s). The ETKF will have

20 ensemble members with the initial ensemble being

generated from a Gaussian distribution perturbed from

the initial state [with xt þ B
1
2g where g � ð0; IÞ].

Figure 4 shows the performance of the different methods

for two assimilation window length (12 and 24 steps) and

different observation periods. First, we notice that in a

smaller assimilation window (Fig. 4a), the 4DVAR-BEN

and 4DENVAR have the smallest RMSE. The mean

RMSE is calculated from the equation,

RMSE ¼ 1

T

XT

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxa � xtÞ>ðxa � xtÞ

N

s

; (29)

where xt is the true state of the system and xa is the mean

analysis state. Mean in ensemble methods refers to sample

mean, and in variational methods, it refers to the trajectory

which minimises the cost function and T is the window

length. It can be seen that the two methods which use a

climatological background error covariance matrix per-

form less accurately than the other methods for this small

window length, except in the case where we have an

observation at every time step. As the ETKF provides a

flow-dependent background error covariance matrix (Fig. 5

shows ensemble background error covariance matrices be-

fore and after observation given different observation

periods), 4DENVAR and 4DVAR-BEN give the lowest

RMSE over small observation interval sizes. This is con-

sistent with linear theory, the variational method gives the

best linear unbiased estimator (BLUE) on the time window,

and the Pb part ensures an optimal B matrix.
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Figure 6 shows a comparison of all our methods over 36

and 48 time step windows without QSVA (Fig. 6a and b)

and with QSVA (Fig. 6c and d). In the figures, we show

how both the QSVA and non-QSVA versions of the

variational methods perform. Figure 6a shows the ETKF,

ETKS and 4DENVAR having a much lower RMSE than

the methods which use an adjoint because the non-linearity

of the system render the linearisation around the first guess

via tangent linear and adjoint models no longer suitable.

This is investigated further in Fig. 7, which shows that

variational methods have an optimal window length, given

fixed observation periods, which gives the lowest RMSE of

that method. Looking at each plot, we see that the optimal

window length (in our experiments), with an observation

period of 2, 3, 6 or 12 time steps, is 24 time steps. This

seems to be the point where the variational methods have

enough data from observations (as opposed to 12 time

steps which has less observations) to improve performance

without having the highly non-linear error growth (which

occurs in long windows such as 48 time step windows).

To account for the non-linear error growth, we also ran a

comparison with QSVA on the 36 and 48 time step windows
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(see Fig. 6). Figure 6a and b is compared with Fig. 6c and d

to investigate how well a QSVA version of our methods

compare with our original non-QSVA methods. It can be

seen that QSVA greatly decreases the RMSE, which implies

that QSVA has helped considerably in finding the global

minimum over a local one. It can be seen on the 36 time

step plots (Fig. 6a and c) that 4DENVARperforms very well

with and without QSVA. 4DENVAR has a slightly lower

RMSE without QSVA than 4DVAR-QSVA and ETKF-

4DVAR-QSVA and also has a very similar RMSE to

4DVAR-BEN-QSVA. This tells us that 4DENVAR at this

level of non-linear error growth does not need to use these

advanced techniques in order to achieve lower RMSE over

the traditional methods. At 48 time step windows, the non-

linearity of the error growth is too large for 4DENVAR

and QSVA improves all of our variational methods. It is

noteworthy that the ETKS has the most robust low-RMSE

performance of all methods.

Comparisons of future forecasts trajectories with the

truth show similar results. For variational methods, the

forecast trajectory over the next window was generated

by running the model forward in time from the end of the

analysis trajectory in the current window. For sequential

methods, we used the same approach but ran the model for-

ward from the ensemble mean. The ETKF and ETKS both

have the same values at observation time, so they produce

the same forecast trajectories. We find that on shorter fore-

cast windows, the non-climatological hybrid methods out-

perform the other methods, while, in longer windows, the

ETKF and ETKS generally outperform the other methods.

4. Conclusion

In this paper, the traditional data assimilation methods

4DVAR, ETKF and the ETKS were compared against

three hybrid methods, 4DENVAR, ETKF-4DVAR and

4DVAR-BEN. It has been shown that over smaller data

assimilation windows, when the error growth is close to

linear (we used 12 time steps), variational methods which

use the ensemble-generated background error covariance

matrix (4DENVAR and 4DVAR-BEN) outperform all

other methods for all observation periods. We notice that

sequential methods also do well in comparison to the varia-

tional methods. As the window length increases (to 24 time

Fig. 6. Performance of each data assimilation method analysis as a function of window lengths and observation periods (x-axis); y-axis is

the RMSE. These plots show longer windows without (top row) and with (bottom row) QSVA.
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steps, which has weakly non-linear error growth), we see

an improvement in our variational methods which use a

climatological background error covariance matrix, and

this is because there is an optimal window length for clima-

tological 4DVAR (Kalnay et al., 2007). Sequential methods

produce the same RMSE as they assimilate every time

an observation occurs, but for high observation periods, we

see that the ETKF is less accurate than all other methods.

It is almost certain that the optimal inflation in this case

is outside the values we investigated.

Still, it can be seen that variational methods which use a

flow-dependent background error covariance matrix from

the ETKF are more accurate than any other method, and we

also notice that the methods which do not use an adjoint

are the most accurate over all observation interval sizes.

At 36 time steps windows, it was shown that 4DENVAR

provides a very accurate analysis in comparison to the other

variational methods, managing to achieve a lower RMSE

compared to the other methods even after using quasi-static

variational assimilation framework on the other methods.

The longest window size (48 time steps) shows sequential

methods outperforming every variational method (when

using QSVA, 4DENVAR-QSVA and 4DVAR-BEN-QSVA

also comparably well), with the smoother being more

accurate than the filter. The method which does not use an

adjoint (4DENVAR) is the most accurate variational

method over all observation period lengths, although the

ETKS has the best overall performance. It is striking how

much the performance of variational methods improves

when QSVA is used, for longer windows this is related to the

existence of local minima.

NWP models are considerably bigger than the Lorenz 1963

model. There are, however, similarities and conclusions which

we can extract and will apply to both. All models can be tested

in terms of window length and for observation period sizes. In

NWP models, these parameters are hard to test due to the

complexity of the model (such as number of variables, fast and

slow variables etc.), which is where testing these parameters on

a smallermodel comes in handy.Advantages of 4DENVAR in

NWP comes from not having to use an adjoint model and not

having to tune a climatological background error covariance

matrix since an ensemble method can generate this flow

Fig. 7. RMSE (y-axis) for 4DVAR and different variational hybrid methods as a function of window length (x-axis). Each panel shows a

different observation period. Note: (d) has a longer y-axis than the others.
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dependently. This becomes particularly important for long

assimilation windows. As most forecasting centres use varia-

tional methods for NWP, Fig. 7 shows that increasing window

length may not necessarily increase the accuracy of the

assimilation. This can be helpful for plans to optimise assi-

milation parameters. NWP agencies push to increase assi-

milation window length, which increases the non-linearity

for the system. In this case, using an ETKS or 4DENVARwill

be ahuge improvement over othermethods. It shouldbenoted,

however, that these methods will need localisation. Another

issue to take into consideration in NWP is model error. While

the ETKF works rather well, even under the effect of model

error, variational methods with model error have not been

explored extensively. The next logical step forwardwould be to

research the influence of non-linearity in hybrid data assimila-

tion methods in a system with model error, and where

localisation is necessary, this will be the focus of a future paper.
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