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Abstract

Most current state-of-the-art haptic devices render only a single force, however almost
all human grasps are characterised by multiple forces and torques applied by the fingers
and palms of the hand to the object. In this chapter we will begin by considering the
different types of grasp and then consider the physics of rigid objects that will be needed for
correct haptic rendering. We then describe an algorithm to represent the forces associated
with grasp in a natural manner. The power of the algorithm is that it considers only
the capabilities of the haptic device and requires no model of the hand, thus applies to
most practical grasp types. The technique is sufficiently general that it would also apply
to multi-hand interactions, and hence to collaborative interactions where several people
interact with the same rigid object. Key concepts in friction and rigid body dynamics
are discussed and applied to the problem of rendering multiple forces to allow the person
to choose their grasp on a virtual object and perceive the resulting movement via the
forces in a natural way. The algorithm also generalises well to support computation of
multi-body physics

1 Introduction

Our ability to manipulate our environment underlies our intelligence, and the role of hands
in this manipulation is self evident. The machinery behind the hand, both mechanical
(muscular skeletal) and computational (neuronal) has been an inspiration for research
and design. Hooks and artificial hands are the currency of upper-limb prosthetics and an
early example was the iron hand made for the soldier Götz von Berlichingen in the 15th
Century. In the early part of the 20th Century the value of remote handling was realised
with the first master-slave telemanipulators[41].

The early master-slave telemanipulators were directly coupled so the forces encoun-
tered in the environment were reflected into the hands. Modern telemanipulators are now
coupled though an information channel but the value of the force reflection is still realised
in modern implementations to give the operator greater control (Fig. 1). These ideas were
combined with the concepts of simulated environments and virtual realities and led to the
idea of telepresence. The interest in haptics then emerged as a mechanism to facilitate
our interaction with computers and visual information[7, 6], but with a much devalued
concept of manipulation. Multi-finger concepts provide a means to realise manipulation
in virtual and simulated environments.

Most modern haptic devices associate interactions between the person’s hand and
a virtual environment which can be optionally colocated (an example of co-location is
shown in Fig. 14). The high cost of haptic device technology has resulted in most of
these interactions occurring via a single point of contact which could be a thimble as in
the Phantom1, or via a tool surrogate. Surrogates include primitive shapes such as the
spheres used by the Falcon2, HapticMaster3, and Omega.34; or tools such as pens/styli,
dental and laproscopic instruments, catheters and needles. Although interaction with
surrogate tools may simplify hand-world interactions, the problem is that the tool may
need to be changed for each context. So, for example, a training workstation used to teach

1Sensable.com, USA
2Novint, USA
3Moog FCS, The Netherlands
4ForceDimension, Switzerland
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Figure 1: Remote handling master hand interface mechanism, Oxford Technologies Ltd
(www.oxfordtechnologies.co.uk)

dentistry skills may use a surrogate of the dental hand piece to remove filling or decayed
tooth (caries), but this tool surrogate will need to be exchanged for a thinner and lighter
stylus to represent a probe for diagnosing decay, a periodontal probe to measure pocket
depth or a periodontal scaler for removing calculus[44, 12].

Allowing force or force+torque (wrench) interactions to happen at the level of the
individual contacts between the person and the virtual object allows more flexibility in
the individual applications, in particular it eliminates the need for application dependent
surrogate objects. There are two reasons that this is a less favoured approach, firstly cost
since it increases the number of degrees of freedom needed, and second the complexity,
since problems emerge in terms of reducing the effective workspace over a simpler device
and the unintended self collisions between the linkages of the haptic device, or between
the device and the person’s fingers, palm etc.

However there is a growing interest multi-finger and multi-contact haptics. Work has
been done on kinematic design of multi-finger interactions[48, 4], and on providing multi-
contact haptics in large workspaces [5, 50, 35]. Work reported elsewhere in this book
includes the Spidar8 and Spidar-hand by Kumazawa and Sato [21]. The latter project
succeeded in providing 8 contact points to 4 fingers on each hand using a total of 24 cables
(3 per finger). The HIRO series of robot hands [15] is also reported elsewhere in this book
and provides an innovative method to deliver forces to the fingers and thumbs of each
hand. Reach and grasp has been studied also in terms of stroke rehabilitation and work
by Loureiro et al.[27, 28] has shown that there are benefits in retraining a reach-grasp-
transport-release cycle for people with upper limb hemiplegia. The Gentle/G system used
for the study relied on the HapticMaster admittance controlled haptic device for the gross
movements, and a custom built three-axis admittance controlled hand exoskeleton for the
grasp-release cycles.

There has been less work on assessment of multi-finger contacts, but McKnight[29]
has shown that the addition of multi-finger haptic feedback leads to better positioning
accuracy in 5 degrees of freedom.

2



Haptics WSH

Figure 2: Typical grasp while texting with the thumb

Table 1: Principal degrees of freedom within the hand
Joint DoF
Metacarpal proximal phalengeal (fingers) 8
Proximal to mid phalengeal (finger) 4
Mid to distal phalengeal (finger) 4
Carpal to metacarpal (thumb) 2
Metacarpal to proximal phalengeal (thumb) 1
Proximal to distal (thumb) 1

2 Grasp analysis

Although the algorithm now reported does not require knowledge of hand anatomy, phys-
iology or motor control, these concepts form an important backbone for the design and
evaluation of any haptic device so are discussed here in outline.

There are many taxonomies for hand grasps and work has been done in areas such
as prosthetics[26], psychology[16], occupational and physical therapy[45], ergonomics,
robotics[14], haptics [8], accessibility education and employment.

One classification is shown in Fig. 3 (US access board) which shows a broad classifi-
cation mechanism into pinch, lateral pinch, power, etc. However if you consider the palm
as a reference frame it is possible to identify 16-20 DoF as described in Table 1. Degrees
of freedom are often linked, or the range of movement is only a few degrees hence the
uncertainty in defining the independent degrees of freedom. However as shown in Fig. 4,
even the simple act of holding a pencil or stylus can elicit a range of acceptable grasps.
More recently in-hand actions have become prominent due to the rise of mobile phone
texting, and a typical grasp would lay the keyboard of the phone across the fingers to
allow texting with the thumb as shown in Fig. 2.

We consider grasp taxonomy in terms of the physics needed for a stable grasp, that is
a set of contact points or areas between the person’s hand and the object that allow the
object to be accelerated without danger of losing control over the trajectory of the object.
An approximate hierarchy of complexity is

• Single point of contact: Static stability requires object mass to lie below point of
contact. Example would be a finger hooked to hold a cup or mug by its handle.

• Single area of contact: Stability requires the object centre of mass to rise if the
object is perturbed. Example would be holding a plate on the palm.

• Multiple points of contact on the finger(s) and thumb. Stability is discussed below.
Examples are pinch grips, and stylus grips.
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Figure 3: Some typical Grip configurations (from monograph by Edward Steinfeld, Hands-on
Architecture[42])

Figure 4: The classic stylus or pencil grasp is called a ’tripod grasp’. In practice there is a large
variation of stylus grasps. Adapted from[40]

• Multiple points or areas of contact that could include finger(s), thumb and palm.
All grasps could be considered in terms of areas of contact that might change over
the duration of the grasp. The definition would now include manipulating a mobile
phone to do texting, as well as what are some times known as power grasps, where
the hand encloses the object, for example the handle of a hammer, or a can of
soft-drink.

A further requirement is that the contacting fingers have the span to reach to the consid-
ered contact points as well as the capacity to exert the necessary force. This is sometimes
defined as grasp isotropy[14].

Assuming that grasp isotropy can be achieved for a particular individual the require-
ment for a stable grasp is then force closure. Force closure is the condition where the net
forces on the object from the fingers, gravity, any other objects or constraints, and due
to any accelerations must be zero. The robustness of the grasp can then be considered
as the perturbation of all the forces applied to the object that still maintain the object
within the person’s grasp. This condition will be used as the basis for the multi-finger
haptic rendering described below.

A second, and related condition required for a stable grasp is torque closure. Point
forces applied via the fingers to the object result in a torque around the object’s centre
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of gravity. Where a contact area is involved in the grasp then an additional torque is
applied as being the sum of the integral of the pressure taken as a moment around the
centre of force. The discussion below will only consider the torques due to point forces,
and will assume that the torque due to the pressure distribution over the contact area can
be ignored, however extending this algorithm to include the latter should not be difficult.

If a contact area is being considered then the point equivalent force F can be calculated
as

F =

∫
A
P (r) da

where P is the pressure field at point r integrated over contact area A. The location of
this force is the centroid of the pressure distribution. This force must be combined with
a torque calculated as

T =

∫
A
P (r) r × da

The concepts of force closure and torque closure can be used to define a stable grasp.
The concept is modified slightly in haptic rendering so the residual forces and torques
applied to the (virtual) object are used to compute an acceleration and hence to update
the location of the object. Constraints such as a working surface like a table top are
managed either as a force applied through a stiff element or as an impulse condition.

For most grasps friction forms an important and stabilising component of the force
closure. Without friction the grasp would have to be naturally stable. This can be done
by hanging a cup or mug by the handle with a hooked finger so that the centre of gravity
can rest below the point of contact. In the absence of a convenient handle then at least
4 contact points are required to ensure that the object is restrained in three dimensional
space. (Four points are a necessary condition given that the fingers can only apply a
compressive force on the object). By including a consideration of the frictional forces of
a grip, it is possible to manipulate the object with 5 degrees of freedom using only two
points of contact. The degree of freedom that is not controlled is the rotation around an
axis joining these two points of contact. A three finger grasp then becomes sufficient to
constrain motion of the object within all 6 degrees of freedom.

2.1 Internal models of movement - perceptions and grasp

An important aspect of haptic rendering is the person’s perception and how that can be
used to promote realism. The concept of visual dominance is well documented [37, 36].
Giving visual and auditory cues can do much to add to the illusion of permanence in a
haptic situation, for example, the authors noted that in the dental training workstation
developed for the Haptel project (www.haptel.kcl.ac.uk) the variation of the pitch of the
hand-piece as pressure was increased on the burr was a strong surrogate for the vibrations
(that were missing) that would have been present in an operational drill.

These phenomena are explained by the fact that humans do a large degree of a-
priory modelling about the nature of the object they are about to grasp, and in addition
anticipate the loads during the manipulation[25]. Thus explaining perceptual phenomena
such as
A-priory modelling

• Preshaping of grasp [20]
• Grasp illusions such as size-weight, texture-weight, grasp aperture-weight illusions

(judgements of an objects weight are made well before movements start)

During manipulation

• Anticipation of object dynamics (grip force adjusts on lifting vs lowering an object)
[49, 17]

• Correlation between grip force and load force. The grip force is modulated to be
’just enough’ [23]
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3 Friction models for one point contacts

Friction is a complex and nonlinear phenomena with a corresponding plethora of ap-
proaches to modelling its effect. Most undergraduate engineering textbooks will only
discuss linear (viscous) friction in any depth where the force due to the relative movement
of the frictional surfaces is assumed to be proportional to the relative velocity. That is
f = Bv where B is the constant of proportionality. Although this model allows techniques
such as Laplace transforms to be applied to the analysis, it is not a sufficiently accurate
model of friction to describe grasp and support the haptic rendering of multi-finger sys-
tems requiring object manipulations.

The classic Coulomb friction model (shown in part in Fig. 5) provides a better rep-
resentation of friction for haptic rendering. The model is characterised by a single value
and is most commonly expressed as

F = Fc sgn(v)

where the function sgn v computes the sign of the relative velocity. The frictional force F
is assumed to oppose relative movement and the defining constant, Fc may, in practice,
differ for positive and negative directions of sliding.

In certain situations it becomes necessary to consider the discontinuity of Coulomb
friction around the origin. Thus for example, the frictional force is indeterminate at v = 0
lying somewhere between −Fc and Fc. The LuGre friction model [1] includes microslip
states to model microslip phenomena when there is an applied force that is less than
the limit of static friction. The LuGre model is a relatively sophisticated model and a
more intuitive realisation is the bristle model [9] which considers micro movements during
periods of zero relative velocity, to be modelled as the interaction of two bristle surfaces.
The bristle model reduces to a simpler stress model known as the Dahl model [19].

A well known method for computations involving coulomb friction is to generate a
friction cone (fig 6) based on the limits of static friction and to consider the resultant
force on an object that is subject to friction. The cone of friction provides a easy method
to determine if the object is sliding by observing the resultant force with respect to the
cone. If the resultant is contained within the cone then the object is assumed to be at
rest, if outside then it is assumed to be sliding. This concept is developed with respect to
rendering of multi-finger contact systems in the following two sections.

Figure 5: Friction models shown as a function of velocity with a discontinuity at the origin to
illustrate position phenomena
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Figure 6: Use of a cone of friction to determine if the object is sliding

4 Friction cone algorithm

The friction cone algorithm allows simple modelling of the friction between the fingers
and the object to be built into the haptic rendering algorithm. It has the benefit of
sufficient simplicity to be quick and efficient to implement, and sufficiently detailed to
give the individual a good perception of manipulating common objects based on the
friction needed to form simple multi-fingered grasps.

The algorithm is based on the Salisbury and Zilles ’god-object’ concept [51] which uses
a point based god-object to maintain the history of contact between the person’s fingers
and the object.

The algorithm is described in detail in [30, 31] so is given in outline here.
A haptic interface point (HIP) is defined as the representation of the end-point of the

haptic interface in the virtual environment. (The overline convention is used where several
letters are used to represent a vector variable such as HIP.) In the case of finger contacts
this is assumed to be one of the fingers involved in the manipulation of the object. A
collision detection algorithm is needed to identify when the HIP is within an object, and
at this stage it may be assumed that contact has been made. On first contact between
the HIP and the object a notional god-object (GO) is placed on the surface of the object
and from thereon a force vector is assumed to be opposing the contact with a spring like
characteristic. That is a force is created on the haptic interface that is proportional to
the vector v = GO − HIP. The position of the god-object is then used to model friction
and this can be best described by considering the traditional friction cone with an apex
half angle of tan−1 µ but inverted so the apex is at the HIP. This representation can be
seen in Fig. 6. The god-object remains on the surface, but the additional constraint is
now that it must also remain within the boundary of the circle formed by the intersection
between the surface polygon and the friction cone.

As the HIP moves within the object the god-object may move outside the circle bound-
ary. At this point the object is sliding over the fingers and this is handled within the
algorithm by moving the god-object to the closest point on the circumference of the circle
Fig. 7. A subsequent calculation may move the object with respect to the HIP and this
would cause the surface point and the circle to move. Slip may then continue if this
movement causes the god-object (GO) to move outside the friction circle.
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Figure 7: Relationship between the god-object (GO) and the bounding circle defined by the
friction cone[30]. Left: shows the god-object within the circle and thus it remains static on
the surface. Right: shows the god-object outside the bounding circle so it should be moved to
the nearest point on the perimeter

4.1 Extended friction cone algorithm (xFCA)

Our initial work used a customised algorithm to identify collisions between the haptic
interface point (HIP) and the contacted object. The advantage of the god-object (GO)
method, and therefore the friction cone algorithm (FCA), is that once a collision is identi-
fied, and for as long as contact remains (the HIP is inside the object), no further collision
detection passes are required as the GO can traverse the surface of the object. If the
topology of the object is known (for the common triangle mesh this is a pre-computed
edge/vertex connectivity graph) then on each update of the HIP position, the GO is
moved along the surface in the direction which will minimise the distance between GO
and HIP. With efficient data structures the complexity of the mesh which can be tra-
versed is bounded only by the available memory, and not by the processing speed. This
method assumes that the initial collision is detected sufficiently quickly so that the HIP
has not penetrated too deeply into the object. Often this calculation can occur at update
rates significantly lower than typical for haptic rendering (.8-1 KHz). See Melder and
Harwin[31, 32, 33] and Melder[34] for a description of such a surface traversal algorithm.

However, it is often desirable that the HIP is not a single point and in fact has some
volume. This reduces the problems of the point escaping through cracks between poorly
generated surface triangles and facilitates the use of convex-convex collision detection
libraries[38, 46, 11]. In this case surface traversal cannot be easily computed. If the two
colliding objects can be approximated as convex hulls, then fast and predictable solutions
for surface traversal can be implemented. One such method is to compute the Minkowski
Sum of the two convex objects and proceed to traverse this combined surface as a single
point [38], however, computing the Minkowski Sum becomes cumbersome for non trivial
shapes undergoing rotations.

As efficient algorithms for collision detection between convex polyhedral are now widely
available though well supported software libraries, such as SOLID[47] (dtecta.com) and
Bullet[11] (bulletphysics.org) we prefer a more generalisable method of rendering convex-
convex haptic interaction which we refer to as the extended friction cone algorithm xFCA.
While the convenience of not having to perform repeated collision passes during haptic
rendering is lost, convex-convex collision detection is efficient even for very high polygon
count models if the convex hull is computed [46].

The xFCA algorithm can be summarised as follows:

1. When the HIP is in free space, the haptic cursor is mapped to that position, Fig. 8–1.
At each simulation update the haptic cursor is moved to the new HIP position and
a full collision pass is performed looking for any contact between the haptic cursor
and other objects.

2. If a contact is found, Fig. 8–2, the god-object is created for that HIP-Object pair
and the main xFCA loop begins. The haptic cursor remains with the GO on the
surface.
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3. During the same simulation frame, the penetration depth and normal returned from
the collision detection system is used to move the GO to the surface of the object,
Fig. 8–3. The new surface position of the GO is stored, along with the surface
normal and plane at the point of contact.

4. The simulation now proceeds to the next frame. If the HIP has moved with respect
to the previous frame, the position of the GO must be updated to reflect the new
surface position. Before performing a collision pass, the GO is moved along the
surface plane to the point at which it is closest to the HIP, Fig. 8–4, by removing
that portion of v (the GO to HIP vector) which is in the direction of the surface
normal ns:

P
+
GO = PGO − (v · ns)ns

where v = HIP − GO
5. Next, the GO is moved down towards the HIP by a fixed amount, ∆HIP , in order

that the GO should be beneath the object’s surface so the collision pass will return
a positive contact, Fig. 8–5. There is more to this step which will be discussed next.

6. A collision pass is now performed to return a new penetration depth and contact
normal for the GO-Object collision which is then used to reposition the GO on the
surface of the object, Fig. 8–6.

Stages 3-6 continue until either, the HIP crosses the surface plane, or the collision pass
fails to find contact between the GO and the object. Both of these conditions are assumed
to indicate that the HIP has lost contact with the object. At the end of each xFCA cycle,
once the GO is positioned on the true object surface, the distance between the GO and
the HIP is used to calculate a spring force which is applied to the haptic device and the
virtual object.

Figure 8: The progression of the xFCA moving the god-object (GO) along a surface and the
haptic interaction point (HIP) into the object

The reason the GO is not moved the full distance to the HIP is that for thin objects
or large forces this would result in push through. However, if it is too small compared to
the radius of curvature of the surface then the GO may fail to retain contact even though
the HIP is still within the object, Fig. 9–Left.

If the maximum distance that the HIP will move in a single time step, dmax, is known, it
is possible to approximate the minimum ∆HIP necessary to guarantee sustained contact
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Figure 9: Left: Contact may be unintentionally lost if the distance the GO is moved towards
the HIP is too small. Right: The minimum distance the GO should be moved towards the
HIP as a function of surface curvature and the maximum distance the HIP can move in a single
simulation step

on a surface with radius of curvature rc, Fig. 9–Right. This results in the following
relationship:

∆HIP =
√

2r2c − (dmax)2

The value of ∆HIP can also be used, along with the smallest dimension of the haptic
cursor, to define the minimum depth an object can be penetrated before push-through
becomes possible. In practice, the common haptic update rate of 1000KHz or more results
in very small values of dmax, even at high velocities.

4.1.1 Modelling dynamic and static friction

Implementing static friction requires a slight modification from the original FCA. The
main difference is that, if the friction cone is large compared to dmax when it is exceeded,
the requirement for a bounded dmax is broken and subsequently the GO may be moved a
large distance away from the surface causing a loss of contact. To solve this we introduce
the concept of the Surface Object (SO). The SO represents the theoretical position of
the GO if there were no friction, is updated at every time step and is assumed not to
lose contact unless the HIP leaves the surface. However, as it is the GO which represents
the true current surface position, contact is only lost if the HIP crosses the GO’s plane
and not that associated with the SO. Should the SO lose contact at any time, it remains
positioned at the last known point of contact on the surface until either another surface
position is found or the HIP transitions the GO’s contact plane.

An easy adaption to this algorithm allows a simplified version of Stribeck’s effect to
be implemented. If the finger is not sliding with respect to the object the algorithm
is computed based on a static coefficient of friction, but if slipping is occurring then a
dynamic coefficient of friction is used. The finite state machine shown in Fig. 10 is used
to track the friction state and considers only the two conditions, slipping or static.

When the angle θHIP exceeds the static friction angle the GO is moved to the edge of
the Coulomb friction cone defined by µd where µd < µs, Fig. 11–Left. At each subsequent
time step, if the GO is outside the Coulomb friction cone it is moved back to the nearest
edge. If the GO is found inside the Coulomb friction cone, it is left in place. This gives a
stick-slip effect with a force proportional to normal force during surface slip.
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Figure 10: Finite state machine to track transitions between slipping (dynamic coefficient of
friction) and static conditions

Figure 11: Left: If using Coulomb friction, when the GO exits the static friction cone it is
placed on the edge of the, smaller, Coulomb friction cone. Right: To create a force proportional
to speed (viscous friction) the GO is moved a maximum distance proportional to penetration
depth at each time step bounded by the Coulomb friction radius.

Viscous friction can also be neatly integrated into the same framework. Viscous friction
is proportional to the surface velocity as well as normal force and requires that the GO is
moved a fixed distance relative to its own position, not the SO position. From the friction
model in Fig. 7 it is clear that Coulomb friction defines a base level of friction during
surface slip and viscous friction increases it above this level relative to velocity. To mimic
this, during the slip phase of the friction model, the GO is moved towards the edge of the
Coulomb friction circle but only as far as the edge of the viscous friction circle centred on
the GO. This means that, at each time step, if the SO is moved away from the GO by
less than the radius of viscous friction only Coulomb friction will be felt. If the surface
velocity increases, the position of the GO will begin to trail behind creating a greater
frictional force, Fig. 11–Right.

The algorithm is simple and effective. Simple because changing between static and
dynamic coefficients of friction simply alters the diameter of the bounding circle formed
by the intersection between the friction cone and the object surface. Effective because it
allows the person to reduce their grip force to a minimum needed to support and move
the object.

4.1.2 Handling non-convex hulls

As efficient algorithms exist to decompose non-convex objects into separate convex pieces
any non-convex object can be rendered haptically in this manner by treating it as multiple
separate HIP-Object contacts, each with its own local GO stored to calculate forces arising
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due to penetration depth. However, it should be noted that it becomes possible to slide
into gaps between convex pieces due to the force from opposing GOs cancelling each other
out, though this can be minimised with careful convex-decomposition.

Certain classes of object do not decompose easily into large convex pieces, smooth
concave curves for example (coffee mug handle). If rendering quality is to be preserved
in such cases, or discontinuities such as slipping into cracks between convex pieces are
to be removed entirely it is necessary to perform rendering directly between non-convex
objects. For the xFCA this would mean computing the penetration depth of intersecting
non-convex polyhedra, a non-trivial task which can be, in the worst case, O(nm) for the
number of polygons in each mesh [22].

It is possible to make use of the fact that distance calculation between non-overlapping
non-convex objects is achievable in real time and hence some researchers employ a haptic
rendering algorithm based on repulsion rather than penetration to avoid the situation of
overlapping non-convex objects [24]. Without very high stiffness, this technique results in
the haptic cursor not visibly contacting the object which may not be desirable in realistic
simulation.

The technique used by the authors for general non-convex haptic rendering is similar
to this repulsive technique but is in fact closer to the constraint based methods used in
animation and games physics engines and in fact may be considered an intermediary step
between simply coupling haptic interfaces directly into constraint based physics engines
and removing a separate haptic rendering stage entirely. Although this is straightforward
algorithmically it is not yet widely employed because, at the time of writing, computing
power is not yet sufficient to allow common game physics engines, such as the Bullet
library, to run at real time speeds with haptic time steps (< 1mS) even for a seemingly
simple virtual environment.

The principle of the technique is now briefly described. Using this method, the haptic
cursor is treated as a very light mass object coupled to the HIP by a spring with a high
stiffness and a damper and its position is updated each time step based on standard
Newton dynamics equations as described in section 5.1. As the mass is so light, and the
spring stiffness comparatively high, when in free space no forces are perceived by the user
as the haptic cursor does not lag far behind the HIP (some tuning of the damping constant
is required to prevent vibrations). The haptic cursor is continually checked against other
objects in the environment for a collision. Should a collision occur, a frictionless constraint
based linear complimentary problem (LCP) model is formed and solved to calculate the
forces and torques which, when applied to the haptic cursor, will exactly cancel out
acceleration in the direction of further penetration and effectively cause the objects to slide
over each other. Formulation of this type of LCP for object dynamics is a well studied
problem, see the original work by Baraff [3] for a simple explanation and formulation,
though many more efficient implementations have since been proposed [43, 2].

Depending on the requirements of the simulation, the force based interaction between
the haptic cursor and contacted object may be entirely decoupled from the wider physics
engine which governs movement of dynamic objects in the scene. From the point of view
of the haptic rendering constraint model it is operating on an object which is fixed in
space. From the point of view of the physics engine, the haptic cursor does not exist
except as a disturbance force added into the global force matrix. The result is that even
if the physics engine slows temporarily, the haptic rendering proceeds uninterrupted and
the perception of the user is of the inertia of the contacted object(s) increasing.

Implementing a combined penalty and constraint based haptic rendering algorithm in
this manner is practical because solving the LCP resulting from contact between only two
objects where one is stationary is achievable within the haptic time steps even when many
points of intersection are found.

However the following points should be taken into consideration:

• Calculation of friction between the contacted object and haptic cursor is approxi-
mated using the FCA as the addition of the extra constraints into the LCP contact
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problem results in unpredictable solution times.
• It is believed that newer techniques for approximating friction in LCP based object

dynamics may solve this but it is untested by the authors.
• To maintain haptic update rates it is preferred that the haptic cursor should be

decomposable into convex parts or the collision detection between complex non-
convex objects will be too slow for haptic rendering

5 Haptic rendering and manipulation of virtual

objects

Multi-finger contact in a virtual environment allows complex and direct manipulation of
physical objects. Any haptic rendering algorithm requires a two stage physics engine.
Stage 1 is to identify the forces within the system of objects due to any points of contact
or collisions, stage 2 is to apply the appropriate physical laws to compute the response of
these objects. Stability of the haptic device requires rapid computation of the response
of the simulated physics to the applied forces to those objects with a direct attachment
to the person (through the haptic device). The following discussion will be restricted to
rigid object manipulation where the object shape, mass and inertia remains unchanged
through the manipulation. Extending the work to rendering flexible objects with visco-
elastic properties and the ability to reshape the object through cutting, wearing and
drilling during the rendering remains a difficult challenge. However for the most part this
application area is sufficiently well covered by haptic interfaces using a single point of
contact via a surrogate tool, so has thus far not demanded academic attention.

The friction cone algorithm described naturally provides a key piece of information for
multi-finger manipulation of rigid physical objects, that is the force vector at each contact
point, that is to say each finger. This force vector is directed from the HIP to the GO and
is proportional to the length of this vector. The proportional constant is directly related
to the perceived stiffness of the surface of the rigid object. Manipulation of the object
now becomes, in essence, the application of Newton-Euler dynamics to the virtual object.

Consideration of the manipulation of the object is most conveniently done by separat-
ing translation and rotation of the object, and applying Newton’s law to the former and
Newton-Eulers law to the latter case. If the object is at rest the sum of all force vectors
on the object must be zero. Should any of the forces applied to the object deviate, this
will give rise to a small unbalanced residual force which, once determined, can be used
to calculate the acceleration of the object and hence by integration, the updated velocity
and position. Forces on the object can arise from finger contacts, contact between the
object and other objects, or forces due to gravity. The algorithm will of course still work
if the author chooses to represent gravity as an upward acceleration of the object, but
the normal convention is to consider gravity as a constant force vector with the direction
fixed in the universal frame.

5.1 Computation of translation from the residual forces

Considering the forces shown in Fig. 12 we can sum the forces on the virtual object.
To implement Newton’s law we must give the object a notional (real) mass m, and this
mass can be considered to be entirely located at the object centre of gravity which can
be located within a coordinate frame attached to the object. It is usually convenient to
make the centre of mass the origin of this coordinate frame for both the translational and
rotational calculations. From Fig. 12 it can be seen that the residual force is calculated
as the sum of forces on the object, in this illustration this is

Fresidual =

n∑
i=1

fi + g
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Figure 12: Residual forces and torques on a grasped object

Newton’s equation is now used to compute the acceleration so

a = Fresidual/m

and from the acceleration the velocity and position are readily calculated by Euler inte-
gration as

vnew = vold + a∆t (1)

p
new

= p
old

+ vnew∆t (2)

∆t is the loop time of the control algorithm. In general ∆t needs to be small since
large computational delays result in haptic instabilities [10]. In practice most hardware
dictates that ∆t is of the order 1 to 2 milliseconds.

5.2 Computation of rotations from the residual torques

A similar but slightly more complex approach is used to compute and update the rotation
parameters for the object coordinate frame. A variety of methods are available to specify
the rotation of the object coordinate frame with respect to the base frame. A common
method in computer graphics and robotics is to specify rotations as a 3 × 3 orthogonal
matrix that can be used on a 3 × 1 vector or n vectors expressed as a 3 × n matrix
of vectors. This rotation matrix will rotate the components of vectors expressed in the
object’s coordinate frame into in components in the base frame. This rotation matrix has
a dual use, the first to express this coordinate frame rotation, the second (and related
use) is to convert the objects inertial matrix J from the local to the base frame.

The full Newton-Euler relationship is

T = Jω̇ + (ω × Jω)

where T is the opposed torque, × represents the cross product, and J the object inertia
matrix. However the second term in this equation (ω × Jω) contributes the ’gyroscopic
term’ and in practice can be ignored. Using this simplified Newton-Euler relationship we
can rearrange the equation to compute the angular acceleration from the object inertia
and the computed torque. That is

ω̇ = TJ−1 (3)
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A similar technique to the calculation of the residual forces can be used to compute the
residual torque on the object, that is - to use the vector between the haptic interface point
(HIP) and the god-object (GO) to represent the forces applied to by the fingers. These
forces represent a set of torques, conventionally computed around the centre of gravity,
that can be summed to estimate the residual torque causing the angular acceleration, and
hence the angular velocity and ultimately the rotational terms expressed in the matrix R.

Other sources of torque such as area of contacts, can be added to the torques due
to the finger contacts, before the computation of angular acceleration is made, thus the
residual torque (Tresidual) is

Tresidual =
∑
i

ri × fi +
∑
i

τi

where r× f are the torques due to individual point contacts, usually assumed to be point
representations of the finger contacts, and τ are the torques applied through area contacts.

An inertia matrix is needed to complete the calculation in equation 3. This is most
conveniently retained as the inertia along the three principal axes of the object, and these
are often aligned with the local object coordinate frame. The inertia is stored in a matrix
form that is

A =

Ixx 0 0
0 Iyy 0
0 0 Izz


A prior estimate of the rotation matrix is needed to convert this inertia matrix into

the matrix representation the instantaneous rotation, that is

AJ = RART

The full calculation for the angular acceleration is thus

ω̇ =A J−1(T − ω ×A Jω)

but is simplified to ignore the ’gyroscopic term’ to be

ω̇ ≈ RJ−1
p RTT

ω̇ represents the angular acceleration around the three axes of the base coordinate
frame, and these can be treated as independent for the first integration to compute the
instantaneous angular velocity. That is

ωnew = ω + ω̇∆t

However the second integration needs to compute the absolute position of the object,
and to this end is calculated in matrix form. The first stage is to compute the skew matrix
S

S =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


S is a convenient method to represent instantaneous angular velocities since it can be

shown that Ṙ = SR.
The derivation of this expression follows by differentiating the definition of orthogonal

matrix RRT = I and a good discussion of this is given in Craig[13]. If integration happens
over a sufficiently small interval then the rotation matrix can be written as

Ṙ ≈ ∆R = I + S∆t

The Euler integration is then

Rnew = R∆R = R(I + S∆t)

where the new rotation matrix is Rnew and the new vector of rotational speeds is ωnew.
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6 Multi-body dynamics for haptic rendering

Realistic simulation of multiple moving bodies for natural object manipulation with hap-
tics is computationally challenging. A full discussion of implementation issues in multi-
body dynamics simulation is out of the scope of this chapter, although the following dis-
cussion is based on Baraff [3], Anitescu and Potra [2] and Stewart and Trinkle [43]. The
following points should be considered when implementing multi-body physics simulation
for haptics:

• At haptic update rates, even the most efficient algorithms are unlikely to be fast
enough to maintain real-time solutions for large numbers of objects

• The haptic sense is highly sensitive to force discontinuities
• The common shortcuts used in games physics engines are likely to be manifested

as force discontinuity and as such will be detected and perceived by the user as an
inconsistency

• The haptic sense is sensitive to all objects in physical contact, thus the haptic render-
ing must consider the energy coupling through all objects connected to the physical
haptic device. An example would be the haptic rendering of a tray carrying a tea
service.

Considering these points, a framework for a multi-body haptics simulation can be formu-
lated to maximise the use of computing resources and minimise discontinuities perceptible
to the user.

The current computing trend towards parallel computing architectures means that
highly multi-threaded software solutions can be effectively employed to help achieve the
real-time needs of a haptically enabled simulation. It is common to separate graphics
rendering into its own or multiple threads and haptics and physics rendering can be
treated in a similar manner. An example multi-threading structure for a multi-body
haptic simulator is shown in Fig. 13.

6.1 Multi-threaded haptic renderer

In this model, a strict threading priority hierarchy is maintained and an important aspect
of the implementation is that during interchange of thread safe information, no thread
is ever made to wait on a lower priority thread for a non-deterministic length of time,
usually the time required to make a copy of a thread safe data structure.

Each haptic device has its own dedicated thread, the highest priority, which communi-
cates with the device, updates the force commanded based on the current stored location
of any god-objects associated with it but does not update the god-objects themselves.
This means that should the haptic rendering ever slow, stability of the haptic device is
not compromised, but an increase in dynamic friction may be perceived.

The next highest priority threads are those associated with haptic rendering, i.e. col-
lision detection between haptic cursors and scene objects and the movement of the god-
object along the surface of a contacted object using the FCA. The haptic rendering threads
may also be tasked with updating a small number of contacted objects, the reasons for
this are discussed next.

6.2 Multi-threaded object manager

The object manager threads are responsible for the motion of dynamic objects. There
are three parts to this: the integrator, which calculates future velocities and positions
of objects based on the accumulated forces and torques acting on them, the collision
detection system, which reports the points of contact, and the constraint handler, which
calculates appropriate forces, torques and impulses so, on the next integrator pass, the
motion of objects does not result in further interpenetration.

The rigid-body dynamics algorithm has the following steps:
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Figure 13: Example threading model and information interchange for a multi-body multi-finger
haptic simulator

1. Apply all external forces acting on objects (haptics, gravity etc.)
2. Process all objects and find all points of contact
3. Group all contacts into collision chains
4. Solve each collision chain to find new accelerations and velocities
5. Update each object’s state vector and repeat

External forces are applied first so that they are taken into account when the contact
matrices are formulated and solved. Once all the points of contact have been identified
they are grouped into collision chains. Contact points are part of the same collision chain
if they are connected via a movable object. Two movable objects sitting apart but on the
same static floor would be part of separate collision chains. If the movable objects were
touching they would be part of the same collision chain.

The purpose of separating objects into collision chains is that each chain is an inde-
pendent system and can be solved in parallel. Once all contact points are grouped into
chains they are assigned to separate threads to be solved. A pool of pre-existing threads
is used to remove the overhead associated with creating and destroying them.

As the object dynamics is decoupled from the haptic rendering it can be updated at
a different rate. Ideally, the system will attempt to maintain as high a frame rate for the
physics as possible by using a variable length time step. However, if the contact solver
begins to slow too much, the step size will grow large enough for the user to feel objects
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judder instead of move smoothly, this is likely to happen long before it can be detected
visually. To prevent this, the time step is capped at 0.002ms (500Hz). If the previous
time step took longer, the simulation will fall behind real-time rather than take larger
and larger steps. The advantage of this method is that neither the objects nor the haptic
rendering will become unstable, if the object update slows significantly then the user will
perceive an increase in the apparent inertia of the object but will still be free to haptically
explore the object.

Once a haptic device makes contact with an object, if required the rendering thread can
take over responsibility for updating it. Part of the haptic rendering loop now includes the
same functions as the object manager and any objects assigned to run at the haptic update
rate are processed here. If the object being updated by the haptic thread makes contact
with another object, it too becomes the responsibility of the haptic thread. When the
number of objects in the collision chain assigned to the haptic thread exceeds a predefined
safe limit (usually very low, 1 to 3 objects) for guaranteeing update rate, the whole chain
reverts to the responsibility of the Object Manager.

The further advantage of this technique is that stability problems associated with
grasps involving objects with very low rotational inertia can be minimised by updating
their position at haptic update rates. If multiple objects are in contact so that the chain
cannot be updated at haptic rates, the increased inertia and energy loss due to the stack
of objects are still likely be sufficient to remove and instabilities.

7 Discussion

The evidence for providing good multi-finger multi-contact haptic interactions is clear,
although many technical challenges remain. The transparency of the haptic device is
important, and the approach of using low inertia haptic interfaces helps to achieve this.
However this is at the expense of workspace so it has proved difficult to produce trans-
parency in a large working volume. The approach by Barrow and Harwin [5] partially
addresses the issue of transparency, workspace and high achievable stiffness but further
development along this line would introduce higher costs and greater need to ensure the
operator’s safety. Smaller multi-finger workspaces are more readily achievable, in partic-
ular with the potential fall in cost of high quality devices such as the W3D and W5D
produced by Entact Robotics (entactrobotics.com), the Novint Falcon and the Sensible
Omni, although all three would require the tool surrogate to be replaced by a more appro-
priate interaction point such as a thimble. A strong limitation is self interference of the
multiple haptic interface and although some work has been done in this area, more work
is needed to allow rapid evaluations of the trade-off between the movements required by
a range of tasks, and the capabilities of the device. For example most kinematics would
not allow the operator to ’cross fingers’. In our own work on stroke rehabilitation, the
natural workspace expected by the therapists included a full range of movement that in-
cluded shoulder rotation. No device has yet achieved this capability, while still allowing
individual free movement of the individual fingers and thumbs.

The algorithm discussed in this chapter provides a good method for doing multi-
contact multi-finger interactions that is independent of device kinematics and will work
across a wide range of haptic devices. The threading approach ensures that high update
speeds can occur on those parts of the system that require rapid information for stability,
while still maintaining good visual rendering and object dynamics for the objects that
are not contacted by the haptic device and operator. The method is robust to contact
instability (due to threading) in the sense that dynamics of objects and haptic rendering
are not decoupled but not reliant on one another. Should the object update slow it is
simply perceived as an increase in the inertia. The method requires no models, and is
such that objects held in a grasp with any number of contact points tend to centre in the
grasp via the dynamics of the object. Thus transportation of the objects appears natural.
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Figure 14: Illustration of multi-point contacts using two Phantom 1.5 haptic interfaces

The experimental setup used in this work is shown in Fig. 14 and there are also videos of
the device published on Youtube under the user ReadingTHRIL.

As the technology moves forward these algorithms must be adapted to multi-contact
interactions where there is significant delay, such as Internet delayed signal paths, as well
as allow more complex material interactions such as soft body physics including the ability
to cut, tear, drill and probe simulated materials such as tendons, muscles, bone, teeth,
clays, woods, metals etc.

8 Conclusions

There are still many problems to be addressed in providing good multi-finger multi-contact
haptic interactions. These include cost, workspace, transparency and device stiffness.
However if these can be addressed there are likely to be a wide range of applications,
ranging from education through to data interaction and computer interfacing. There
is a need to understand the mechanisms and neuroscience behind grasp to ensure that
the device is transparent to the tasks the operator is trying to perform and thus a brief
overview of this was presented. As computing advances so must the computer interfaces
and metaphors for user interactions must change. In the words of Gauldie, Wright and
Shillito, 3D modelling is not for wimps[39, 18]. The algorithms discussed in this chapter
allow for interactions to occur in 3D. Indeed the method allows a world where all digits
of both hands can be used to manipulate and interact with rigid objects.
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