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Abstract  

Background and Aims:  We have reported that adverse effects on flow-mediated dilation of an 

acute elevation of non-esterified fatty acids rich in saturated fat (SFA) are reversed following 

addition of long-chain (LC) n-3 polyunsaturated fatty acids (PUFA), and hypothesised that these 

effects may be mediated through alterations in insulin signalling pathways. In a subgroup, we 

explored the effects of raised NEFA enriched with SFA, with or without LC n-3 PUFA, on 

whole body insulin sensitivity (SI) and responsiveness of the endothelium to insulin infusion. 

Methods and Results: Thirty adults (mean age 27.8 y, BMI 23.2 kg/m2) consumed oral fat loads 

on separate occasions with continuous heparin infusion to elevate NEFA between 60-390 min.  

For the final 150 min, a hyperinsulinaemic-euglycaemic clamp was performed, whilst FMD and 

circulating markers of endothelial function were measured at baseline, pre-clamp (240 min) and 

post-clamp (390 min).  NEFA elevation during the SFA-rich drinks was associated with impaired 

FMD (P=0.027) whilst SFA+LC n-3 PUFA improved FMD at 240 min (P=0.003).  In males, 

insulin infusion attenuated the increase in FMD with SFA+LC n-3 PUFA (P=0.049), with SI 

10% greater with SFA+LC n-3 PUFA than SFA (P=0.041). 

Conclusion: This study provides evidence that NEFA composition during acute elevation 

influences both FMD and SI, with some indication of a difference by gender.  However our 

findings are not consistent with the hypothesis that the effects of fatty acids on endothelial 

function and SI operate through a common pathway. 

Trial registered at clinicaltrials.gov, NCT01351324. 
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Introduction 

Non-esterified fatty acids (NEFA) have been proposed to be a mediator of insulin signalling 

defects in both skeletal muscle and endothelial tissue (1,2).  Elevation of NEFA in healthy 

subjects by co-infusing Intralipid (a commercial lipid preparation) and heparin has been reported 

to impair glucose uptake and the phosphoinositide 3 kinase (P13K) signalling pathway in 

skeletal muscle (3-5), as well as reduce endothelial function. This pathway in endothelial cells 

regulates vascular tone via activation of endothelial nitric oxide synthase (eNOS) with 

production of the vasodilator, nitric oxide (NO). Lind et al reversed the NEFA-induced 

impairment of forearm blood flow in response to methacholine (5) by infusion of insulin , 

supporting the notion that elevated NEFA impair endothelial function via induction of insulin 

resistance in this tissue.  Dietary fat quality may be a contributory factor in both impaired insulin 

sensitivity (6) and endothelial function (7).  In vitro studies report more adverse effects of 

saturated (SFA) than unsaturated fatty acids on the endothelial PI3K insulin signalling pathway 

and NO production (8-10). In human studies, the impact of SFA is less clear, however, chronic 

supplementation with the long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) found in 

fish oil has been consistently shown to improve endothelial function in a variety of populations 

(11-13).  We have previously reported that adverse effects of acute elevation of NEFA rich in 

SFA on flow-mediated dilatation (FMD) are reversed following addition of LC n-3 PUFA (14).    

Here using an experimental protocol, we test the hypothesis that SFA and LC n-3 PUFA 

differentially affect both whole body insulin sensitivity (SI) and the responsiveness of the 

endothelium to insulin infusion. For this study, we chose to focus on the eNOS Glu298 subgroup 

only, thereby excluding subjects carrying the less common allele, and providing a more 

homogeneous and representative population for carrying out this intensive experimental 

investigation. 
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Methods 

Study population 

From a larger cohort genotyped for a common polymorphism in the eNOS gene (rs1799983, 

Glu298Asp), fifteen males and fifteen females homozygous for Glu298 were matched for age 

(mean ± SD, 27.8 ± 11.9 y) and BMI (23.2 ± 3.0 kg/m2).  All subjects were healthy non-smokers 

who were not taking greater than 1 g eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA) per day, or any medication known to influence blood clotting, lipids or blood pressure. 

The subjects were screened for fasting cholesterol (mean ± SD 4.62 ± 0.76 mmol/L), triglyceride 

(TG) (1.06 ± 0.28 mmol/L) and glucose (5.15 ± 0.64 mmol/L).  Subjects were recruited between 

March 2009 and January 2010. 

Study design 

This was a single-blind crossover study; subjects attended the Hugh Sinclair Unit of Human 

Nutrition on two occasions separated by four weeks for females (to control for possible effects of 

the menstrual cycle on FMD) or at least one week for males.  Subjects were randomly assigned 

to one of the fat loads on each day using an online number generator.  Investigators responsible 

for performing and analyzing the FMD and insulin clamp measures were blinded to the 

allocation and were not involved in the preparation or serving of the fat loads.   

Protocol 

The study protocol has been described elsewhere (14).  Briefly, on each study day participants 

arrived fasted and following a baseline FMD measurement, a cannula was inserted at the wrist 

for venous blood sampling.  A bolus fat load (66 g) was consumed at 0 min, followed by smaller 
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volumes (22 g) every 30 min for a further 390 min.  At 60 min, a second cannula was inserted 

into the antecubital vein in the sampling arm for the infusion of heparin.  A bolus of heparin (500 

IU) was followed by a continuous infusion (0.4 IU/kg body weight/min) for the remainder of the 

study day.  At 240 min, a 150 min hyperinsulinaemic-euglycaemic clamp was performed; both 

insulin and glucose were co-infused into the same cannula as the heparin. Measurements of FMD 

were also performed immediately prior to (240 min) and at the end (390 min) of the insulin 

clamp. 

The procedures followed in the current study were in accordance with the ethical standards of the 

University of Reading Research and Ethics Committee.  Written informed consent was obtained 

from all subjects.  This trial is registered at clinicaltrials.gov as NCT01351324. 

Test drinks 

Oral fat loads were prepared according to bodyweight (Table 1) using palm stearin 

(Aarhuskarlshman Ltd, UK) with or without the addition of DHA-rich fish oil (Croda 

Healthcare, UK), 30 g skimmed milk powder (Premier International Foods Ltd, UK), 15 g 

chocolate powder (The Spanish Chocolate Co Ltd, UK) and 0.5 g monoglyceride emulsifier 

(Danisco, Denmark).  Water was added to achieve a final weight of 352 g. The SFA and 

SFA+LC n-3 PUFA test drinks were identical in protein (11.2 g) and carbohydrate (27.1 g) 

content. 

FMD 

FMD of the brachial artery was measured by trained researchers using an ATL Ultrasound 

HDI5000 broadband ultrasound system (ATL Ultrasound, Bothell, Washington) and a procedure 

based on standard guidelines, as previously described (16).  Briefly, following baseline imaging, 
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a blood pressure cuff was inflated to 220 mmHg to occlude blood flow for 5 min.  Analysis of 

the images was performed using wall-tracking software (MIA-llc).  FMD response was 

calculated using change from baseline to peak diameter divided by baseline and reported as a 

percentage value.   

Hyperinsulinaemic-euglycaemic clamp 

Venous blood glucose was sampled immediately prior to the commencement of the 

hyperinsulinaemic-euglycaemic clamp at 240 min (17) to provide the target concentration for the 

duration of the clamp, before insulin (Actrapid, Novo Nordisk, Copenhagen, Denmark) was 

infused at 100 mU/kg body weight (bw) for the duration of the 150 min clamp.  At 2 min, 20% 

(w/v) dextrose infusion was initiated, the rate of which being determined by blood glucose which 

was analyzed at 5 min intervals (HemoCue Glucose 201+, HemoCue AB, Ängelholm, Sweden).  

The steady state glucose infusion rate over the final 30 min of the clamp provided an index of 

whole body SI and was expressed as mg · min-1 · kg-1 of fat-free mass (FFM).  FFM was 

measured using a bioimpedance device (BC 418 MA, Tanita Europe, Amsterdam, The 

Netherlands). 

Biochemical measures 

Venous blood samples were collected every 30 min into K3 EDTA (for NEFA, ET-1, insulin and 

C-peptide) or serum tubes (TG, NOx).  To limit in vitro lipolysis, the EDTA samples were 

placed immediately on ice and processed within 30 min (18).  For analysis of C-peptide, 500 

KIU of apoprotinin (Fisher Scientific, Loughborough, UK) was added per ml plasma to protect 

against proteolysis.  NEFA and TG were quantified using an ILAB 600 (Instrumentation 

laboratory, Warrington, UK) with kits by Alpha Laboratories (Eastleigh, UK) and 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
8 

 

 

Instrumentation Laboratory respectively. ET-1 was measured by ELISA (R&D systems Europe 

Ltd, Abingdon, UK) and NOx using a NO quantification kit (Actif Motif, Rixensart, Belgium). 

Plasma C-peptide and insulin were quantified using a multiplex assay system (Luminex 100, 

Invitrogen, Paisley, UK) with a Milliplex Endocrine Panel (Millipore Corp, Watford, UK).  

NEFA composition analysis was performed by extracting lipids from 800 µl of plasma collected 

at baseline (the two baseline samples were pooled) and 240 min (14). 

 

Statistical analysis 

At 95% power and 5% significance, the minimum number of subjects required to detect a 

difference of 1.5% in FMD response between the two oral fat loads was calculated to be 22. 

Additional subjects were recruited (n = 30) to allow for possible dropouts 

SPSS version 17.0 (SPSS Inc., Chicago) was used for all statistical analyses.  Summary measures 

calculated for the time-course data included area under the curve (AUC) and incremental AUC 

(iAUC).  Data were tested for normality; it was necessary to log transform NEFA and TG values 

and use non-pararmetric tests for the fatty acid composition of NEFA. Independent and paired t-

tests (or non-parametric equivalent) were used to compare baseline and summary measures 

between genders and fat loads, respectively.  For postprandial time-course data, repeated 

measures ANOVA were performed using a mixed model approach.  Bonferroni correction was 

applied to control for multiple pair wise comparisons.  P≤0.05 was considered significant. 

 

Results 
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The fat loads were well tolerated by the subjects.  Initial analysis of the results revealed some 

differences by gender; therefore data are also presented separately for males and females where 

appropriate. 

Insulin sensitivity and markers of insulin metabolism 

There were no differences in fasting values or metabolic responses as measured by iAUC for 

insulin, C-peptide, or C-peptide: insulin ratio (a marker of insulin clearance) by fat load or 

gender (Table 2). Males had a 10% higher SI during the SFA+LC n-3 PUFA compared to SFA 

regime (P=0.041) whereas SI was similar in females between the two fat loads (P=0.420).   

Endothelial function 

FMD response and circulating markers of endothelial function are shown in Table 3. There was 

no significant difference in velocity, flow, or shear rate between fat loads at baseline or at the 

end of the study period (data not shown).  At baseline, males had a significantly lower FMD 

response than females (-29%, P=0.03).   

Impact of NEFA elevation (0-240 min) on FMD response and circulating markers of 

endothelial function  

For the group as a whole, compared with baseline, the SFA load resulted in an impairment 

(P=0.027) whilst SFA+LC n-3 PUFA improved (P=0.003) the FMD response at 240 min.  The 

mean absolute difference in change from baseline between the two fat loads was 1·35 ± 0·22 % 

(P<0.001).  There were some indications of differential effects by gender for the change in FMD 

following the fat loads (Table 3); the beneficial effect of SFA+LC n-3 PUFA was significant in 

females (P=0.004) but not males (P=0.179); conversely the impairment of FMD associated with 
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the SFA load was evident in males (P=0.017) but not in females (P=0.387).  Serum NOx 

declined to a similar extent during both fat loads (P<0.001) and did not differ by gender.  Plasma 

ET-1 did not change during either fat load in males or females. 

 Impact of insulin infusion on FMD and circulating markers of endothelial function (240 

min- 390min) 

 In males, insulin infusion significantly reduced the post fat load FMD value by 0·89 ± 0·41% 

(P=0·049) during the SFA+LC n-3 PUFA regime (Figure 1a).  The decrease in NOx observed 

between 0-240 min was also reversed following insulin infusion in males only (Figure 1b); this 

was only statistically significant during SFA (P=0.017).  For females, there was no effect of 

insulin infusion on FMD or NOx for either fat load (Figure 1a and b).  For females only, insulin 

infusion was associated with a decrease in plasma ET-1 (Figure 1c), with statistical significance 

only reached during SFA (P=0.044); no effect was seen in males. 

In the group as a whole, there were no significant differences in FMD or circulating markers of 

endothelial function after the insulin infusion (390 min) for either fat load. 

Serum NEFA and plasma TG  

Baseline NEFA and TG did not differ by fat load or gender.  The oral fat-heparin protocol 

resulted in a two-fold elevation of serum NEFA at 240 min as compared to baseline (Figure 2a).  

Concentrations of NEFA declined steadily following initiation of the insulin infusion (240 min), 

almost returning to baseline values at 390 min, with a significant effect of time only.  NEFA 

response as measured by iAUC0-390min was 70% greater in males than females (110.3 ± 14.2 

mmol/l x 390 min  vs. 64.6 ± 11.3 mmol/l x 390 min), P=0.015.   
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The TG response remained within a narrow range (Figure 2b) but was significantly higher during 

the SFA than SFA+LC n-3 PUFA regime (P=0.016).  TG iAUC0-390min revealed a greater 

reduction in TG over the study day in males (-64.4 ± 14.3 mmol/l x 390 min) than females (-20.5 

± 13.2 mmol/l x 390 min) (P=0.029), with no difference by fat load. 

Plasma NEFA composition  

There was a significant increase in the percentage weight of SFA in the NEFA fraction of plasma 

from baseline (median 38.8%, IQ range 36.5-40.1%) to 240 min during both fat loads (SFA; 

46.0% (44.8-49.1); SFA+LC n-3 PUFA; 43·7 % (42.0-45.9); both P<0·001). A significant 

increase in the proportion of LC n-3 PUFA during the SFA+LC n-3 PUFA load (from 1.3 % 

(1.0-1.8) to 6.8 % (5.8-7.2)) was observed at 240 min, consistent with a three-fold increase in 

EPA and a five and a half-fold increase in DHA (all P<0.001).  

 

Discussion 

We have previously shown acute ingestion of SFA with LC n-3 PUFA to reverse impairment in 

FMD observed with SFA alone (14).  Findings from the eNOS Glu298 subgroup indicate that the 

fatty acid composition of elevated NEFA is an important factor influencing both endothelial 

function and insulin sensitivity.  There was also some evidence of gender effects, suggesting that 

males were more responsive to both the negative effects of SFA on FMD response, and the 

positive effects of LC n-3 PUFA on insulin sensitivity.  Conversely, there were indications that 

females were more responsive to the beneficial effects of LC n-3 PUFA on FMD.  Differences in 

lipid metabolism during the protocol were also observed, with males having significantly higher 

NEFA concentrations than females. 
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Contrary to our hypothesis of a positive effect of insulin infusion on endothelial function, 

attenuation of the FMD response following exposure to NEFA rich in SFA did not improve after 

insulin infusion in the group as a whole, or in either gender.  For the SFA+LC n-3 PUFA fat load 

the effects observed were complex as in males, insulin infusion following this fat load was 

actually associated with a decrease in FMD response. As FMD has been shown to be dependent 

on NO bioavailability (19), it was expected these various changes in FMD responses would be 

mirrored by changes in circulating NOx but this was not the case in our study.  Unlike the FMD 

response, elevated NEFA led to a reduction in circulating NOx after both fat loads, with insulin 

attenuating this reduction in males, but not in females. We interpret these complex findings as 

indicating that in the presence of elevated NEFA enriched in LC n-3 PUFA, a reduction in 

circulating NOx does not result in a decrease in FMD.  However, the lack of association between 

these two measures may be attributed to the plasma NOx measurement which represents not only 

NO production but also its degradation and excretion. We propose that LC n-3 PUFA enhance 

endothelial function through a number of mechanisms, some of which may be independent of 

NO production and/or insulin signalling.  For example, in vitro studies show that cytochrome 

P450 epoxygenases (CYP450) present in endothelial cells can metabolise LC n-3 PUFA such as 

DHA to fatty epoxides, which promote vasodilation through activation of calcium-activated 

potassium channels present in smooth muscle cells (20).  Of interest to the present analysis, 

CYP450 enzymes have been shown to be transcriptionally upregulated by estrogen (21). 

Whether hormone dependent enhancement of CYP450 plays a role in the more marked effect of 

LC n-3 PUFA on FMD observed in females in this study remains to be determined but is worthy 

of further investigation given the almost two fold greater response we have seen in our female 

subjects.  
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Whilst experimental elevation of NEFA has been consistently shown to impair whole-body 

insulin sensitivity (3, 22-24), there are very few studies which have examined the impact of 

NEFA composition.  Decreasing the ratio of saturated: polyunsaturated fatty acids in a lipid 

infusion with heparin significantly improved insulin sensitivity in healthy subjects (25), whereas 

no difference was found in insulin sensitivity between infusions of Intralipid with and without 

LC n-3 PUFA in subjects with type II diabetes (26). In the current study, only males had a higher 

insulin sensitivity following SFA+LC n-3 PUFA than SFA alone.   

The sampling of venous rather than arterial or arterialised blood during the insulin clamp is a 

limitation of this study.  With the current protocol, it was not possible to measure the primary 

outcome measure FMD whilst heating the hand as this has been shown to induce changes in 

systemic vasodilation (27).  The use of venous blood sampling is therefore a compromise but 

several studies do support the use of venous blood for this purpose (27,28).  A trend for a slight 

decline in conduit vessel endothelial-independent vasodilatation has been previously reported 

during physiological hyperinsulinaemia attributed to insulin induced noradrenergic activation 

(29). Due to the intensive nature of our protocol, we did not determine the dilatation of the 

brachial artery to glyceryl trinitrate prior to or during the insulin clamp, which could be regarded 

as a potential limitation of our study.  

In conclusion, our study provides evidence for differential effects of SFA and LC n-3 PUFA on 

FMD and on SI during acute NEFA elevation, with some indication of a difference in response 

by gender.  We had postulated that the effects of elevated NEFA composition on impairment of 

FMD might reflect the differential effects of dietary fatty acids on the PI3K/Akt pathway that 

have been reported from in vitro studies (8-10).  Whilst our observations are not consistent with 

this hypothesis, explanation of our findings have led us to suggest novel mechanisms by which 
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LC n-3 PUFA may improve endothelial function and to speculate on differences in insulin 

dependent endothelial pathways in males and females.  The clinical and public health relevance 

of the beneficial effects we have observed of LC n-3 PUFA on FMD and SI are potentially 

significant and need to be substantiated by clarification of the underlying mechanisms involved.  
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Table 1: Formulation of the test drinks  

 SFA SFA + LC n-3 PUFA 

Palm stearin (g/kg bw)* 0.75 0.65 

Fish oil concentrate (g/kg bw)* - 0.1 

Composition of oils (%)   

Palmitic acid; 16:0 59 51 

Stearic acid; 18:0 5 4 

Oleic acid; 18:1 n-9 28 24 

Linoleic acid; 18:2 n-6 6 5 

Arachidonic acid; 20:4 n-6 - 0.3 

Eicosapentaenoic acid; 20:5 n-3 - 1.2 

Docosapentaenoic acid; 22:5 n-3 - 0.4 

Docosapentaenoic acid; 22:5 n-6 - 0.7 

Docosahexaenoic acid; 22:6 n-3 - 10.4 

*A 70 kg individual would receive 53 g palm stearin or 46 g palm stearin + 7 g fish oil concentrate. 
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Table 2: Insulin sensitivity and measures of insulin metabolism 

 Whole group Males  Females 

 SFA SFA + LC 

n-3 PUFA 

SFA SFA + LC n-3 

PUFA 

SFA SFA + LC n-

3 PUFA 

SI (mg · min-1 · kg-1 FFM) 8.33 ± 0.50 8.58 ± 0.42 8.51 ± 0.53 9.41 ± 0.56* 8.16 ± 0.86 7.74 ± 0.47 

Insulin  

   Fasting (pM) 

   iAUC (µM/L x 240 min) 

 

89.5 ± 10.3 

7.61 ± 1.06 

 

79.7 ± 8.6 

8.21 ± 1.63 

 

92.7 ± 16.7 

6.86 ± 1.43 

 

78.7 ± 13.5 

7.55 ± 2.70 

 

86.4 ± 12.8 

8.35 ± 1.59 

 

80.6 ± 11.5 

8.87 ± 1.93 

C-peptide 

   Fasting (pM) 

   iAUC (µM/L x 240 min) 

 

503 ± 36.5 

38.0 ± 5.7 

 

476 ± 37.8 

31.3 ± 6.1 

 

463 ± 43.2 

34.8 ± 7.0 

 

419 ± 37.1 

32.7 ± 8.2 

 

542 ± 58.5 

41.2 ± 9.1 

 

532 ± 63.4 

29.8 ± 9.4 

C-peptide: Insulin ratio 

   Fasting 

   iAUC  

 

7.1 ± 0.9 

-207 ± 119 

 

7.7 ± 1.1 

-393 ± 181 

 

6.6 ± 1.5 

-243 ± 222 

 

7.1 ± 1.3 

-239 ± 195 

 

7.7 ± 1.2 

-172 ± 100 

 

8.4 ± 1.9 

-546 ± 309 

Data are presented as mean ± SEM; SI, insulin sensitivity.  A significant difference from SFA is 

notated by * (P<0.05).  Outcome measures were available for a minimum of twelve males and 

twelve females.  
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Table 3: Measures of endothelial function from baseline to 240 min 

 Whole group  Males Females 

 SFA SFA + LC n-3 

PUFA 

SFA SFA + LC n-3 

PUFA 

SFA SFA + LC n-3 

PUFA 

FMD (%) 

Baseline 

∆ 240 min 

 

5.36 ± 0.48 

-0.62± 0.27† 

 

5.23 ± 0.46 

0.73 ± 0.23*† 

 

4.35 ± 0.50 

-0.86 ± 0.31† 

 

4.44 ± 0.43 

0.51 ± 0.36* 

 

6.37 ± 0.74 

-0.39 ± 0.43 

 

6.01 ± 0.76 

0.94 ± 0.27*† 

NOx (µM) 

Baseline 

∆ 240 min 

 

24.0 ± 1.4 

-3.8 ± 0.7† 

 

23.3 ± 1.1 

-3.1 ± 0.9† 

 

24.3 ± 2.3 

-4.6 ± 1.0† 

 

22.2 ± 1.4 

-2.4 ± 0.9† 

 

23.7 ± 1.4 

-3.0 ± 0.8† 

 

24.3 ± 1.6 

-3.9 ± 1.6† 

ET-1 (ng/ml) 

Baseline 

∆ 240 min 

 

1.07 ± 0.09 

-0.07 ± 0.08 

 

1.04 ± 0.09 

-0.06 ± 0.07 

 

1.15 ± 0.14 

-0.05 ± 0.10 

 

1.15 ± 0.12 

-0.02 ± 0.08 

 

0.99 ± 0.12 

-0.09 ± 0.12 

 

0.92 ± 0.12 

-0.11 ± 0.11 

 

Data are presented as mean ± SEM.  FMD; flow-mediated dilatation; NOx, total nitrites; ET-1, 

endothelin-1.  A significant difference from SFA is denoted by * whilst a significant difference 

in the measures of endothelial function from baseline is notated by † (both P<0.05).  Outcome 

measures were available for a minimum of fourteen males and fourteen females. 
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Figure Legends 

Figure 1 Change in a) FMD, b) Serum NOx and c) Plasma ET-1 after insulin infusion (240 min 

to 390 min) in females (n≥13) and males (n≥13) following consumption of SFA (white bars) and 

SFA+LC n-3 PUFA (grey bars).  Data are presented as mean ± SEM.  There was no difference in 

any measure between fat loads, significant differences within a gender group is denoted by † 

(P<0.05).  

Figure 2 Plasma a) NEFA and b) TG following consumption of SFA (�) or SFA+LC n-3 PUFA 

(■), solid lines represent the females (n=15) and broken lines the males (n=14).  Data are 

presented as mean ± SEM.  For both analytes, there was a significant effect of time (P<0.001).  
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Highlights 

• The impact of raised NEFA on endothelial function and insulin sensitivity was studied 

• NEFA elevation during the SFA drink reduced FMD while SFA+LC n-3 PUFA improved FMD 

• Men had a 10% higher SI with SFA+LC n-3 PUFA than SFA, with SI similar in women 

• Changes in FMD were not mirrored by changes in circulating NO 

• Gender mediated the effect of NEFA composition on both endothelial function and SI 


