
Observational and energetics constraints 
on the non-conservation of 
potential/Conservative Temperature and 
implications for ocean modelling 
Article 

Accepted Version 

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0 

Tailleux, R. ORCID: https://orcid.org/0000-0001-8998-9107 
(2015) Observational and energetics constraints on the non-
conservation of potential/Conservative Temperature and 
implications for ocean modelling. Ocean Modelling, 88. pp. 26-
37. ISSN 1463-5003 doi: 
https://doi.org/10.1016/j.ocemod.2015.02.001 Available at 
https://centaur.reading.ac.uk/39239/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.ocemod.2015.02.001 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


Observational and energetics constraints on the
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Abstract

This paper seeks to elucidate the fundamental differences between the non-

conservation of potential temperature and that of Conservative Tempera-

ture, in order to better understand the relative merits of each quantity for

use as the heat variable in numerical ocean models. The main result is that

potential temperature is found to behave similarly to entropy, in the sense

that its nonconservation primarily reflects production/destruction by surface

heat and freshwater fluxes; in contrast, the nonconservation of Conservative

Temperature is found to reflect primarily the overall compressible work of

expansion/contraction. This paper then shows how this can be exploited

to constrain the nonconservation of potential temperature and entropy from

observed surface heat fluxes, and the nonconservation of Conservative Tem-

perature from published estimates of the mechanical energy budgets of ocean

numerical models. Finally, the paper shows how to modify the evolution

equation for potential temperature so that it is exactly equivalent to using

an exactly conservative evolution equation for Conservative Temperature,

as was recently recommended by IOC et al. (2010). This result should in

Preprint submitted to Ocean Modelling January 29, 2015



principle allow ocean modellers to test the equivalence between the two for-

mulations, and to indirectly investigate to what extent the budget of derived

nonconservative quantities such as buoyancy and entropy can be expected to

be accurately represented in ocean models.

Keywords:

ocean modelling, conservation equations, heat non-conservation, energy

conservation, potential temperature, Conservative Temperature

1. Introduction1

The issue of whether potential temperature θ is the most appropriate heat2

variable to be used in numerical ocean general circulation models (OGCMs)3

has recently come under scrutiny following McDougall (2003) and IOC et4

al. (2010) suggestion that θ should be replaced by Conservative Tempera-5

ture (CT or Θ). The main argument, originally made by McDougall (2003),6

is that the current practice of treating θ as a conservative quantity is signif-7

icantly inaccurate, and to the extent that one should insist in treating heat8

as conservative in OGCMs, it appears to be significantly more accurate to9

do so by using CT instead. Since CT is a relatively new quantity, its formal10

properties have yet to be fully understood, so that the full implications of11

switching from θ to CT in OGCMs are not all entirely clear. The alternative12

option — to accept that potential temperature is fundamentally nonconser-13

vative and to modify its model formulation accordingly — has not received14

attention so far, but needs to be understood to inform the debate about15

whether to switch or not. The main purpose of this paper is to achieve a16

deeper understanding of the fundamental differences between the nonconser-17

2



vation of potential temperature and that of Conservative Temperature, in18

order to help ocean modellers better understand the pros and cons of each19

modelling choice.20

From a fundamental viewpoint, the nonconservation of heat (arising from21

irreversible processes) as measured by potential temperature, Conservative22

Temperature or entropy is now well understood to be a natural consequence of23

energy conservation, in the sense that were heat to be conservative, total en-24

ergy would be nonconservative and conversely, as shown in Tailleux (2010a).25

Tailleux (2010a) proposed to extend this idea to coarse-grained primitive hy-26

drostatic Boussinesq models as a practical way (and somewhat ad-hoc) to27

evaluating the nonconservation of θ and CT in such models. Specifically, the28

method works as follows. Starting from the hydrostatic Boussinesq primitive29

equations formulated in terms of either potential temperature, Conservative30

Temperature or entropy, one writes down the evolution equation for the total31

energy assuming that the evolution equation for any of the heat variables is32

the sum of a conservative part (expressed as the divergence of some flux)33

plus an a priori unknown nonconservative part. Both conservative and non-34

conservative terms appear in the equation for total energy thus obtained. As35

discussed by Tailleux (2010a), each nonconservative term is associated with36

some inconsistency in the model formulation, such as using the total hydro-37

static pressure instead of the Boussinesq pressure in the equation of state38

for instance. One of the nonconservative terms in the total energy equation39

is directly related to the heat nonconservation term. Imposing such a term40

to be zero, as required by the principle of energy conservation, provides an41

explicit expression for the heat nonconservative term in terms of the heat42
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and salt fluxes, which depends on the assumed form of the turbulent ocean43

mixing processes. Graham and McDougall (2013) uses a similar approach44

to quantify heat nonconservation, but which relies on the existence of a dif-45

ferent conservative quantity (a locally referenced potential enthalpy) than46

total energy. Their approach yields a different expression for the noncon-47

servative terms than that of Tailleux (2010a), which among other things,48

lacks pressure gradient terms. Although their approaches rely on different49

assumptions, it is important to point out that Tailleux (2010a) and Graham50

and McDougall (2013) nevertheless agree that the expression for the non-51

conservation of θ and Θ in terms of the turbulent fluxes follows directly from52

the particular quantity that one assumes to be conservative for the averaged53

equations of motion. As an alternative to Tailleux (2010a), who assumed54

the latter to be total energy, and to Graham and McDougall (2013), who55

assumed it to be a locally defined form of potential enthalpy, one may sim-56

ply assume CT to be exactly conservative, as recommended by IOC et al.57

(2010), and derive the implied form for the nonconservation of θ. Such an58

idea will be exploited in Section 5.59

The main objective of this paper is to clarify the nature of the non-60

conservation of potential/Conservative Temperature and of entropy. Building61

upon the results by Tailleux (2012), we argue that the nonconservative62

production of Conservative Temperature or potential enthalpy fundamentally63

measures the thermodynamic work of expansion/contraction. In other words,64

in the same way that McDougall (2003) argues that potential enthalpy is65

the most appropriate variable to measure “heat” into the oceans, we argue66

that the non-conservation of potential enthalpy measures the “work” done67
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by compressible effects. We also argue that the nonconservative production68

of potential temperature is of a fundamentally different nature, and actually69

measures the production of potential temperature by surface heat fluxes (and70

to a lesser extent freshwater fluxes), in the same way that irreversible entropy71

production reflects the entropy production by surface fluxes in a steady-state72

system.73

This paper is organised as follows. Section 2 recalls the general con-74

struction of the nonconservative production terms and their link to energy75

conservation initiated in Tailleux (2010a) and Tailleux (2012), and fur-76

ther shows how to link the non conservation of potential temperature and77

entropy to ocean surface properties; such a link is well known for entropy,78

but not for potential temperature. Section 3 discusses a priori estimates for79

the non conservation terms, as well as some of their theoretical properties.80

Section 4 uses observations to illustrate and quantify empirically the results81

of Section 3. Section 5 offers a summary and discussion of the implications82

of our results for ocean modelling, which leads us to propose a modification83

of the evolution equation for θ that is meant to be equivalent to a strictly84

conservative evolution equation for Θ and hence that we propose as a basis85

for informing the debate about switching or not.86

2. Non-conservation of “heat” variables for the fully compressible87

Navier-Stokes equations for seawater88

2.1. Compressible Navier-Stokes equations and “heat” variables89

The nonconservativeness of different measures of heat is discussed in the90

context of the full compressible Navier-Stokes equations (NCS) in a rotating91
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frame, viz.,92

ρ
Dv

Dt
+ 2Ω× (ρv) +∇P = −ρ∇Φ + ρ∇ · S (1)

93

Dρ

Dt
+ ρ∇ · v = 0 (2)

94

ρ
DS

Dt
= −∇ · (ρFS) (3)

where v = (u, v, w) is the three-dimensional velocity field, D/Dt = ∂t+v ·∇95

is the substantial derivative, P is the pressure, ρ is the density, Φ = g0Z is the96

geopotential, g0 is the acceleration of gravity, Ω is Earth’s rotation vector,97

S is the stress tensor, Φ = g0Z is the geopotential formulated in terms98

of a constant gravitational potential acceleration g0 and geometric height99

Z = z, with z the regular height increasing upwards. Chemical composition100

is described by the salinity S (which in practice one may assume to be the101

Absolute Salinity defined in IOC et al. (2010)), and FS is the diffusive102

salinity flux.103

2.2. Heat variables104

As in Graham and McDougall (2013), we focus on the classical measures105

of heat based on specific entropy η and potential temperature θ, as well as106

on the more recent Conservative Temperature Θ. As these variables are107

all nonconservative, they can all a priori be assumed to satisfy evolution108

equations of the form109

ρ
Dη

Dt
= −∇ · (ρFη) + ρη̇irr, (4)

110

ρ
Dθ

Dt
= −∇ · (ρFθ) + ρθ̇irr, (5)

111

ρ
DΘ

Dt
= −∇ · (ρFΘ) + ρΘ̇irr, (6)

6



where Fη, FΘ, and Fθ are the fluxes of each quantity, involving radiative112

effects, molecular diffusion, and latent heat release, while η̇irr, θ̇irr and Θ̇irr113

are the non-conservation terms for each quantity that are the main focus of114

the present paper.115

Physically, potential temperature θ represents the temperature that a116

parcel would have if brought to the surface adiabatically at constant com-117

position, and is therefore fundamentally linked to entropy, being implicitly118

defined by the relation119

η(θ, S, P0) = η(T, S, P ) (7)

where P0 is a reference mean atmospheric pressure, and T the in-situ temper-120

ature. Note that throughout the manuscript, both θ and T denote absolute121

temperatures expressed in kelvin, as some of the quantities discussed below,122

such as the ratio T/θ would not make sense if T and θ were expressed on123

the Celsius scale. In contrast, Conservative Temperature is defined as being124

proportional to potential enthalpy hθ, such that c0
pΘ = hθ, with the potential125

enthalpy being defined as the enthalpy that a parcel would have if brought126

adiabatically to the surface, and thus implicitly defined by the relation127

hθ = h(η, S, P0), (8)

or equivalently as η(h, S, P ) = η(hθ, S, P0), where c0
p is a constant defined in128

McDougall (2003) and IOC et al. (2010).129

2.3. Passage relations for “heat” variables130

How entropy, potential temperature and Conservative Temperature are131

related to each other has been previously discussed in Tailleux (2010a) build-132

ing upon previous work by Bacon and Fofonoff (1996) and McDougall (2003)133
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(see also IOC et al. (2010)). All the necessary relations are usually obtained134

from the total differential of the specific enthalpy h (also often referred to as135

the fundamental relation of thermodynamics), viz.136

dh = Tdη + µdS + υdP, (9)

e.g., IOC et al. (2010), which can alternatively be written in terms of137

temperature, salinity and pressure as follows:138

dh = cpdT +

(
µ− T ∂µ

∂T

)
dS + υ(1− αT )dP, (10)

where cp is the specific heat capacity at constant pressure, µ is the relative139

chemical potential of seawater, υ = 1/ρ is the specific volume and α is the140

thermal expansion coefficient. The passage from (9) to (10) follows from the141

fact that the total differential of specific entropy in terms of temperature,142

salinity and pressure is given by:143

dη =
cp
T

dT − ∂µ

∂T
dS − α

ρ
dP, (11)

e.g., Tailleux (2010a). How the term Tdη+ µdS in the enthalpy differential144

(9) transforms in the (θ, S) and (Θ, S) representations is given by Eqs. (B.2)145

and (B.3) of Tailleux (2010a) and in Appendix A.12 of IOC et al. (2010),146

specifically147

µdS + Tdη =

(
µ− T ∂µR

∂θ

)
dS +

TcRp
θ

dθ, (12)

148

µdS + Tdη =

(
µ− TµR

θ

)
dS +

Tc0
p

θ
dΘ, (13)

where µR = µ(θ, S, P0) and cRp = cp(θ, S, P0). These relations were first de-149

rived by Bacon and Fofonoff (1996) and McDougall (2003) respectively.150
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Also useful are relations allowing to pass from the (θ, S) to (Θ, S) represen-151

tation, which can be obtained by eliminating η between (12) and (13), which152

yields:153

dΘ =
1

c0
p

(
µR − θ

∂µR
∂θ

)
dS +

cRp
c0
p

dθ, (14)

154

dθ =
c0
p

cRp
dΘ− 1

cRp

(
µR − θ

∂µR
∂θ

)
dS. (15)

These two equations correspond to Eqs. (A.14) and (A.15) in Tailleux155

(2010a).156

157

2.4. Implications for the evolution equations of the heat variables158

The simplest way to obtain explicit expressions for the fluxes and non-159

conservative terms entering the evolution equations for entropy, potential160

temperature and Conservative Temperature (4)-(6) is to deduce the latter161

from the evolution equation for enthalpy, which energy considerations im-162

pose to be of the following form163

ρ
Dh

Dt
= −∇ · [ρ (Fh + Frad + Foa)︸ ︷︷ ︸

Fhtot

] + ρεK +
DP

Dt
. (16)

In the above, Fh represents the enthalpy flux due to the molecular diffusive164

fluxes of heat and salt, Frad represents represent the enthalpy flux due to165

incoming shortwave radiation and outgoing/downwelling long wave radiation,166

and Foa is used to represent the decrease in ocean enthalpy following latent167

heat release associated with evaporation. Eq. (16) is similar to that given168

in IOC et al. (2010), except for the term Foa. By comparing (16) with the169

expression for the total derivative of enthalpy, viz.,170

Dh

Dt
= T

Dη

Dt
+ µ

DS

Dt
+ υ

DP

Dt
, (17)
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it follows that171

ρ

(
T
Dη

Dt
+ µ

DS

Dt

)
= −∇ · [ρ (Fh + Frad + Foa)] + ρεK , (18)

where εK is the viscous dissipation rate, which is related to the work against172

the stress tensor in the classical way, e.g., see Landau and Lifschitz (1987);173

Tailleux (2010b). Now, by combining (18) with the passage relations derived174

above and Eq. (3) for salinity, it is easy using elementary manipulations to175

obtain the results presented in the following paragraphs.176

Flux and non conservation of entropy. First, (18) shows that the evolution177

equation for entropy can be written as178

ρ
Dη

Dt
= −∇ · (ρFhtot)

T
+
µ∇ · (ρFS)

T
+
ρεK
T

. (19)

This can be written in the generic form179

ρ
Dη

Dt
= −∇ · (ρFη) + ρη̇irr, (20)

provided that Fη and η̇irr are given by180

Fη =
Fhtot − µFS

T
, (21)

181

η̇irr = −FS · ∇
(µ
T

)
+ Fhtot · ∇

(
1

T

)
+
εK
T
. (22)

Flux and non conservation of Conservative Temperature. By using (13) and182

(18), it follows that we have183

ρ

[
Tc0

p

θ

DΘ

Dt
+

(
µ− TµR

θ

)
DS

Dt

]
= −∇ · (ρFhtot) + ρεK . (23)

After some manipulation, it is possible to rewrite this equation in the generic184

form185

ρ
DΘ

Dt
= −∇ · (ρFΘ) + ρΘ̇irr, (24)
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provided that FΘ and Θ̇irr are given by186

FΘ =
θ

c0
pT

[
Fhtot −

(
µ− TµR

θ

)
FS

]
, (25)

187

Θ̇irr =
θ

Tc0
p

[
−FS · ∇

(
µ− TµR

θ

)
− FΘ · ∇

(
Tc0

p

θ

)
+ εK

]
. (26)

Flux and non conservation of potential temperature. By using (12) and (18),188

it follows that we have189

ρ

[
TcRp
θ

Dθ

Dt
+

(
µ− T ∂µR

∂θ

)
DS

Dt

]
= −∇ · (ρFhtot) + ρεK . (27)

After some manipulation, it is possible to rewrite this equation in the generic190

form191

ρ
Dθ

Dt
= −∇ · (ρFθ) + ρθ̇irr, (28)

provided that Fθ and θ̇irr are given by192

Fθ =
θ

cRp T

[
Fhtot −

(
µ− T ∂µR

∂θ

)
FS

]
, (29)

193

θ̇irr =
θ

TcRp

[
−FS · ∇

(
µ− T ∂µR

∂θ

)
− Fθ · ∇

(
TcRp
θ

)
+ εK

]
. (30)

It is of interest to examine the implications of the above relations for the194

form of the fluxes of θ and Θ at the surface. Evaluating (25) and (29) at195

z = 0 yields respectively:196

FΘ =
1

c0
p

(Fh + Frad + Foa) , at z = 0, (31)

197

Fθ =
1

cRp
(Fq + Frad + Foa), at z = 0, (32)

where198

Fq = Fh −
(
µ− T ∂µ

∂T

)
FS (33)

11



is a reduced heat flux that is discussed extensively below, by noting that199

µ = µR at z = 0. The implications for the appropriate boundary conditions200

for θ and Θ are discussed in Section 5.201

3. Linking heat non-conservation to ocean surface properties202

An important difficulty with the form of the nonconservative terms for203

potential temperature, Conservative Temperature and entropy derived by204

Tailleux (2010a) and Graham and McDougall (2013) is that they rely on205

using explicit turbulent mixing parameterisations, which remain poorly con-206

strained. The purpose of this section is to show that η̇irr, θ̇irr and Θ̇irr can207

be related to measurable or derived properties provided that the oceans can208

be regarded as being in quasi steady state, which provides an independent209

mean to estimate such terms. To that end, it is important to first review210

the formulation of boundary conditions for heat, salt and freshwater for the211

ocean under the most general conditions.212

3.1. Boundary conditions for salt and freshwater213

The standard formulation of boundary conditions for salt and freshwater214

assumes that the latter move with different velocities vs and vw respectively,215

and that each satisfies a conservation equation of the form216

∂ρs
∂t

+∇ · (ρvs) = 0, (34)

217

∂ρw
∂t

+∇ · (ρvw) = 0. (35)

where ρs = ρS and ρw = ρ(1 − S) are the partial densities for salt and218

freshwater respectively, e.g., Warren (2006). According to non-equilibrium219
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thermodynamics, molecular diffusion of salt in solution arises from the dif-220

ference between vw and vs. The effect can be isolated by introducing the221

barycentric velocity v = Svs + (1 − S)vw, which allows one to rewrite the222

above conservations equations as follows223

∂ρs
∂t

+∇ · (ρsv) = −∇ · (ρFS),
∂ρw
∂t

+∇ · (ρwv) = ∇ · (ρFS) (36)

where the salt flux FS is defined by224

ρFS = ρs(vs − v) = ρS(1− S)(vs − vw), (37)

which establishes that salt flux is only nonzero when vs and vw are different.225

The boundary conditions for vs and vw have been discussed by several au-226

thors, e.g., Warren (2006), IOC et al. (2010); if one assumes the sea surface227

height to be given by an equation of the form z = ζ(x, y, t) (which neglects228

spray and gravity waves overturns), they take the form229

∂ζ

∂t
+ us · ∇hζ − ws = 0, (38)

230

ρw

[
∂ζ

∂t
+ uw · ∇hζ − ww

]
= ρf (P − E), (39)

where ρw = ρ(T, S, p)(1− S) is the partial density of freshwater in seawater,231

while ρf = ρ(T, 0, p) is the density of freshwater. Physically, the condition for232

salt assumes that no salt leaves the ocean, which is an idealisation, while that233

for freshwater assumes that the latter enters and leaves the ocean through234

precipitation P and evaporation E. Also useful is the boundary condition235

for the velocity difference vs−vw, obtained by taking the difference between236

(38) and (39),237

(us − uw) · ∇hζ − (ws − ww) =
ρf (P − E)

ρw
, (40)
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which in turn implies the following boundary condition for the salt flux238

ρFS · ndΣ = ρS(1− S)(vs − vw)·ndΣ = −ρfS(E − P ) dA, (41)

where dA = dxdy is the flat areal surface element, while dΣ =
√

1 + ‖∇hζ‖2dA239

is the elemental area normal to the outward unit vector n, e.g., see Beron-240

Vera et al. (1999).241

3.2. Boundary conditions for heat242

The formulation of the boundary conditions for the surface enthalpy flux243

due to radiation and latent heat release is straightforward, and given by244

−ρFrad · n dΣ = (Qsw +Qlw) dA (42)
245

−ρFoa · n dΣ = Qlh dA (43)

whereQsw is the incoming shortwave radiation, Qlw is the sum of the outgoing246

and incoming downwelling long wave radiation, and Qlh = −LE < 0 is the247

latent heat flux, where L = hv − hw is the latent heat flux, defined as the248

difference between the partial enthalpy of water vapour in moist air minus249

the partial enthalpy of freshwater in seawater, e.g., see Eq. (3.39.7) of IOC250

et al. (2010).251

The proper formulation of the boundary condition for the diffusive flux252

of enthalpy Fh requires some care, as the latter is a priori affected by both253

salt and heat diffusion, but only the thermal part is related to the sensible254

heat flux. The way to remove the effects of salt diffusion can be achieved255

by introducing the reduced heat flux Fq that captures the effects of heat256

diffusion alone (assuming cross diffusive effects such as the Soret and Dufour257

14



effects can be neglected), defined by258

Fq = Fh −
∂h

∂S

∣∣∣∣
T,P

FS = Fh −
(
µ− T ∂µ

∂T

)
FS ≈ −κcp∇T, (44)

where κ is the molecular diffusion of heat, e.g., Landau and Lifschitz (1987).259

It is therefore Fq, rather than Fh, whose boundary condition is related to260

the sensible heat flux, viz,261

−ρFq · n dΣ = Qsens dA, (45)

where Qsens is the sensible heat flux.262

263

3.3. Remarks on the conservative form of heat evolution equations264

The study of volume-integrated budgets if facilitated by writing down265

evolution equations in conservative form, which usually result from combining266

the advective form of the equations with the mass conservation equation,267

which is illustrated by the transformation268

ρ
Dq

Dt
→ ∂(ρq)

∂t
+∇ · (ρqv). (46)

We argue, however, that the above conservative form (46) for the mass flux of269

q is not optimal, since boundary conditions are more naturally formulated for270

the salt and freshwater velocities vs and vw rather than for the barycentric271

velocity v; moreover, a process such as evaporation distillates the salt from272

the freshwater part of seawater, which motivates us to write q in terms of its273

partial salt and freshwater parts qs and qw as q = Sqs + (1− S)qw, where qs274

and qw are defined by275

qs = q + (1− S)
∂q

∂S
, qw = q − S ∂q

∂S
, (47)
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e.g., IOC et al. (2010). This in turn implies276

qs − qw =
∂q

∂S
, (48)

where the partial derivative with respect to salinity is done at constant tem-

perature and pressure. Making use of the above, as well as of the definition

for the salt flux FS = S(1−S)(vs− vw), allows one to rewrite the advective

enthalpy flux as follows

hv = [Shs + (1− S)hw]v =

= Shsvs + (1− S)hwvw + Shs(v − vs) + (1− S)hw(v − vw)
277

= Shsvs + (1− S)hwvw −
∂h

∂S
FS. (49)

Using a similar approach allows one to rewrite the advective entropy flux as278

follows279

ηv = Sηsvs + (1− S)hwvw −
∂η

∂S
FS. (50)

The main advantage of (49) and (50) is to elucidate the fact that the clas-280

sical advective fluxes of enthalpy and entropy are actually made up of both281

mass and diffusive fluxes, which is not a priori obvious and rarely discussed282

(Warren (2006) alludes to it, but not very clearly). Next, we make use of283

standard thermodynamic relations to link ∂h/∂S and ∂η/∂S to the relative284

chemical potential µ and its temperature derivative as follows285

∂h

∂S

∣∣∣∣
T,P

= µ− T ∂µ
∂T

,
∂η

∂S

∣∣∣∣
T,P

= − ∂µ
∂T

, (51)

which we then use to rewrite the sum of the advective and diffusive fluxes of286

enthalpy and entropy as follows287

hv + Fh = Shsvs + (1− S)hwvw + Fq, (52)
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288

ηv +
Fh − µFS

T
= Sηsvs + (1− S)ηwvw +

Fq

T
. (53)

These relations are important and more useful, because they more clearly link289

the advective and diffusive parts of the fluxes to their boundary conditions by290

removing salt diffusion effects entirely. As a result, it is possible to rewrite291

the conservative form of the enthalpy and entropy evolution equations as292

follows293

∂(ρη)

∂t
+∇ · [ρsηsvs + ρwηwvw] +∇ ·

[
ρ

(
Fq + Frad + Foa

T

)]
= ρη̇irr, (54)

294

∂(ρh)

∂t
+∇· [ρshsvs+ρwhwvw]+∇· [ρ(Fq + Frad + Foa)] = ρεK +

DP

Dt
, (55)

which, as discussed below, greatly facilitates the understanding of the global295

budgets of the heat variables.296

3.4. Insights from global budgets297

Having clarified the nature of the boundary conditions for freshwater,298

salt, and heat, it is straightforward to show that the temporal evolution299

of the volume-integrated entropy, Conservative Temperature and potential300

temperature must be given by301

d

dt

∫
V

ρη dV =

∫
S

Qnet

T
dA+

∫
V

ρη̇irr +

∫
S

ρfηw(P − E) dA, (56)

302

d

dt

∫
V

ρΘ dV =

∫
S

Qnet

c0
p

+

∫
V

ρΘ̇irr dV +

∫
S

ρfhw(P − E)

c0
p

dA, (57)

303

d

dt

∫
V

ρθ dV =

∫
S

Qnet

cRp
dA+

∫
V

ρθ̇irr dV +

∫
S

ρfTs(P − E) dA, (58)

where Ts is the ocean surface temperature, Qnet = Qsens + Qsh + Qlw + Qlh304

is the sum of all heat flux components. Note also that the symbol S in the305
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integral refers to a surface integral and is not to be confused with salinity306

as in most of the paper. These expressions show that the volume integral of307

each quantity involves a term related to the net downward heat flux Qnet, a308

nonconservative term related to irreversible diffusive and viscous effects, and309

a mass flux term related to evaporation and precipitation (run-off is assumed310

to be included into precipitation, and will not be explicitly mentioned again).311

By considering a sufficiently long time average of the above budgets that312

approximately statistically steady-state conditions can be assumed to hold,313

the following constraints on the nonconservative terms are obtained314 ∫
V

ρη̇irr dV ≈ −
∫
S

Qnet

T
dA−

∫
S

ρfηw(P − E) dA (59)

315 ∫
V

ρΘ̇irr dV ≈ −
∫
S

Qnet

c0
p

dA−
∫
S

ρfhw(P − E)

c0
p

dA (60)

316 ∫
V

ρθ̇irr dV ≈ −
∫
S

Qnet

cRp
dA+

∫
S

ρfTs(P − E) dA. (61)

Assuming that precipation (including run-off) balances evaporation globally,317

each of the term involving (P − E) can be written in the form318 ∫
S

ρfQ(P − E) dA ≈ ∆QME (62)

where ME is the total mass flux due to either precipitation or evaporation319

(assuming the two balance) in kg/s, and ∆Q = QP − QE is the difference320

between a representative value of Q for precipitation and QE a representa-321

tive value for evaporation. As mentioned in Griffies et al (2009), the term322

involving precipitation and evaporation is usually found to be subdominant323

in the heat budget, and is therefore neglected in the rest of the paper, but324

could be easily retained in a more rigorous analysis (although not necessarily325
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easy to estimate precisely). As a result, we approximate the above integrals326

as follows327

∫
V

ρη̇irr dV ≈ −
∫
S

Qnet

T
dS, (63)

328 ∫
V

ρΘ̇irr dV ≈ −
∫
S

Qnet

c0
p

dS. (64)

329 ∫
V

ρθ̇irr dV ≈ −
∫
S

Qnet

cRp
dS, (65)

Before examining the implications of the above results, it is useful to recall330

the constraints on the net heat flux that needs to hold for a steady-state331

ocean following from the global conservation of energy, as well as from the332

balance equation for mechanical energy. To that end, it is first useful to write333

the net flux Qtotal =
∫
S
Qnet dA = Qin−Qout as the difference between a net334

positive input of heat minus a net cooling term. For a steady-state ocean,335

Qout 6= Qin because the existence of mechanical sources of energy (due to336

the wind, tides, atmospheric pressure work, ...) implies that the total energy337

budget is given by:338

Qin −Qout +Wmech = 0 (66)

where Wmech denotes the power input by the mechanical sources of energy,339

see Tailleux (2010b) for more details on how to arrive at this result. Another340

useful constraint is obtained from the budget of mechanical energy (i.e., the341

sum of kinetic energy and gravitational potential energy), which leads to:342

Wmech +

∫
V

P
Dυ

Dt
dm︸ ︷︷ ︸

B

=

∫
V

ρεK dV︸ ︷︷ ︸
D(KE)

, (67)

where the term B represents the classical thermodynamic work of expan-343

sion/contraction, whereas D(KE) denotes the total viscous dissipation.344
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3.5. A priori estimate of nonconservative production of Θ345

Because the nature of its non conservation is quite different from that346

of entropy and potential temperature, we discuss Conservative Temperature347

first. By combining (64) and (66), it follows that:348 ∫
V

ρΘ̇irr dV ≈ −Qtotal

c0
p

=
Qout −Qin

c0
p

=
Wmech

c0
p

> 0, (68)

which states that the total nonconservative production of Conservative Tem-349

perature actually measures the overall power input due to the mechanical350

sources of energy, which is expected to be strictly positive. As established351

previously, the nonconservative production of Θ is the sum of two parts, one352

related to molecular diffusive processes, one related to viscous dissipation.353

We are primarily interested in estimating the former, which is the part pri-354

marily discussed in Tailleux (2010a) and Graham and McDougall (2013),355

and which we denote by Θ̇diff
irr . This leads us to rewrite (68) as follows:356 ∫

V

ρΘ̇diff
irr dV +

∫
V

θ

Tc0
p

ρεK dV =
Wmech

c0
p

. (69)

Now, from the mechanical energy balance (67), we can eliminate Wmech in357

favour of the overall compressible work of expansion/contraction B and total358

viscous dissipation D(KE), which yields:359 ∫
V

ρΘ̇diff
irr dV = −B

c0
p

+

∫
V

(
T − θ
T

)
ρεK
c0
p

dV ≈ −B
c0
p

, (70)

where the term involving viscous dissipation can be neglected owing to the360

fact that (T − θ)/T � 1 is very small in the oceans (This approximation361

also assumes that B is of the same order of magnitude as D(KE), which362

seems confirmed by published results about the mechanical energy budget of363
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numerical ocean models discussed further in the text). It also neglects the364

geothermal flux, which according to Graham and McDougall (2013) could365

potentially significantly alter the result and the estimation of the nonconser-366

vation of CT. Here, it is neglected on the grounds that OGCMs still do not367

systematically include it.. Eq. (70) is an important result, which states that368

the diffusive part of the nonconservative production of Conservative Tem-369

perature is a direct measure of the overall work of expansion/contraction, a370

result previously obtained by Tailleux (2012).371

Although the precise magnitude of B and of compressible effects in the372

oceans is still a matter of debate, e.g., Tailleux (2009a), let us note that in373

the context of ocean Boussinesq modelling, this term is classically approxi-374

mated by substituting the pressure by the Boussinesq pressure P → −ρ0gz,375

the mass element by the Boussinesq mass element dm → ρ0dV , using the376

Taylor series expansion υ ≈ (1/ρ0)− (ρ− ρ0)/ρ2
0 it follows that PDυ/Dt ≈377

(−ρ0gz)(−Dρ/Dt)/ρ2
0, which yields:378 ∫

V

P
Dυ

Dt
dm ≈

∫
V

ρ0gz
1

ρ2
0

Dρ

Dt
ρ0dV =

∫
V

gz
Dρ

Dt
dV. (71)

In Boussinesq ocean models with a realistic nonlinear equation of state, den-379

sity is nonconservative, and obeys an equation of the form:380

Dρ

Dt
= ∇ · Fρ + ρ̇irr, (72)

where Fρ it the diffusive flux of density due to the turbulent mixing of tem-381

perature and salinity, whereas ρ̇irr represents the effects due to the nonlin-382

earities of the equation of state (Including compressibility effects, assumed to383

be small relative to the effects of cabelling and thermobaricity). This term is384

dominated by cabelling in the upper stratified ocean, but by thermobaricity385
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in the weekly stratified abyssal ocean, as discussed by Oliver and Tailleux386

(2013). Inserting (72) into (71) allows the latter to be rewritten as:387 ∫
V

gz
Dρ

Dt
dV ≈

∫
V

ρ0KvN
2 dV︸ ︷︷ ︸

>0

+

∫
V

gzρ̇irr dV︸ ︷︷ ︸
<0

. (73)

The first term is positive and is associated with the classical result that mix-388

ing raises the centre of gravity of a fluid with a linear equation of state. The389

second term is in general dominated by cabelling and associated with contrac-390

tion upon mixing, which plays a dominant role in the ocean energy budget,391

as perhaps first discussed by Gnanadesikan et al. (2005). In a steady-state,392

(71) can equivalently be rewritten in the following three equivalent forms:393 ∫
V

gz
Dρ

Dt
dV = −

∫
V

u · ∇hP dV = −
∫
V

ρgw dV (74)

which can all provide the basis for estimating B using OGCM results, as394

reviewed in Tailleux (2013). The first estimation of B for a realistic ocean395

model configuration is perhaps due to Toggweiler and Samuels (1998), based396

on the last expression in (74), who were the first to suggest that B is negative397

in the ocean, rather than positive, in contrast to what was previously hypoth-398

esised by Oort et al (1994). Specifically, they find for the volume-averaged399

value of B ≈ 1.12× 10−6erg cm−3 s−1 = 1.12× 10−13J× 106m−3s−1 = 1.12×400

10−7Wm−3. The ocean volume is about Voc = 1.3× 106km3 = 1.3× 1018m3,401

resulting in a net energy conversion of 1.456 × 1011W = 0.14 TW. In Gre-402

gory and Tailleux (2011), the value of B in HadCM3 control climate is403

−0.494 TW, based on the second expression in (74), while in the low resolu-404

tion version FAMOUS it is −0.060 TW. In 4×CO2 control climate, estimates405

of B in both FAMOUS and HadCM3 are O(0.12− 0.13 TW) (and negative),406

and hence similar to Toggweiler and Samuels (1998) estimates.407
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3.6. A priori estimates of nonconservative entropy production408

The second law of thermodynamics imposes the nonconservative produc-

tion of entropy by molecular diffusive processes and viscous processes to be

strictly positive. In a steady-state ocean, internal entropy production must

be furthermore balanced by export of entropy by surface heat and freshwater

fluxes. This can be expressed as:∫
V

ρη̇irr dV ≈ −
∫
S

Qnet

T
dS =

Qout

Tout
− Qin

Tin
409

=
Qin +Wmech

Tout
− Qin

Tin
=

1

Tout

[(
Tin − Tout

Tin

)
Qin +Wmech

]
, (75)

where 1/Tin is the weighted average of 1/T restricted to regions where Qnet >410

0, and 1/Tout the weighted average of 1/T over regions where Qnet < 0. In the411

ocean, the mechanical power input Wmech is strictly positive, while heating412

takes place on average at higher temperatures than cooling, as is expected413

from a heat engine (see related discussion by Tailleux (2010b)) so that414

(Tin − Tout)Qin > 0. As a result, the right-hand side of (75) is also strictly415

positive, and therefore in agreement with the second law.416

As for Conservative Temperature, it is useful to separate the diffusive and417

viscous contributions to the nonconservative entropy production, viz.,418 ∫
V

ρη̇irr dV =

∫
V

ρη̇diff
irr dV +

∫
V

ρεK
T

dV =

∫
V

ρη̇diff
irr dV +

D(KE)

Tε
. (76)

where the ‘viscous’ temperature Tε is defined so as to make the above equality

exact, e.g., see Tailleux (2010b). By using the mechanical energy balance

Wmech +B = D(KE), we can eliminate Wmech from Eq. (75) in favour of B

and D(KE) to obtain the following expression for the diffusive part of the
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irreversible entropy production:∫
V

ρη̇diff
irr dV =

(
Tin − Tout
TinTout

)
Qin −

B

Tout
+

(
1

Tout
− 1

Tε

)
D(KE)

419

≈ 1

Tout

[(
Tin − Tout

Tin

)
Qin + c0

p

∫
V

ρΘ̇diff
irr dV

]
. (77)

To arrive at (77), we neglected the term proportional to the overall viscous420

dissipation D(KE) relative to the term proportional to Qin, while we re-421

placed the compressible thermodynamic work term B by its expression in422

terms of the nonconservative production of potential enthalpy. Eq. (77) is423

a useful result, which helps understand the link between the nonconserva-424

tive production of potential enthalpy and entropy. One important remark of425

McDougall (2003) and Graham and McDougall (2013) is that entropy is426

considerably more nonconservative than potential enthalpy; in order for this427

to be true, Eq. (77) requires that the following inequality be satisfied:428

Tout

∫
V

ρη̇diff
irr ≈

(
Tin − Tout

Tin

)
Qin �

∣∣∣∣c0
p

∫
V

ρΘ̇diff
irr dV

∣∣∣∣ . (78)

We can use published estimates of entropy production by surface heat fluxes429

to convince oneself that this inequality must indeed be satisfied in the ocean.430

For instance, Pascale et al (2011) estimate that the average entropy produc-431

tion is O(1 mW.K−1.m−2) and hence that the total entropy production is of432

the order of 3.1011 W.K−1, using the result that the total area of the ocean433

is approximately 3.1014 m2. Using Tout ≈ 285 K, the consequence is that434

(Tin − Tout)Qin/Tout must be of the order 85.5 × 1012W = 85.5 TW. This435

value is in between one and two orders of magnitude larger than estimates436

for Wmech, which confirms that it is therefore expected to be much larger than437

estimates for B and hence of potential enthalpy nonconservative production.438
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This is consistent with McDougall (2003) conclusion that nonconservative439

production of potential enthalpy is about 2 orders of magnitude smaller than440

the nonconservative production of entropy scaled by Tout. The above shows441

that such a conclusion can be arrived at using much simpler arguments based442

on global budgets. A caveat should be mentioned, however, which is due to443

the fact that in contrast to entropy or Conservative Temperature, whose444

nonconservation is usually sign-definite, the nonconservation of θ can be of445

either sign. Since our approach focuses on global budgets, it will therefore446

underestimates the nonconservation of of potential temperature as compared447

to Graham and McDougall (2013), which focuses on the root-mean square448

of locally estimated nonconservation terms.449

Note that our approach here is very different from Yan et al. (2004),450

who estimate the irreversible entropy production due to radiative heat fluxes451

to be at least two orders of magnitude greater than the one discussed in452

Pascale et al (2011). The difference arises because Yan et al. (2004)453

considers that upon thermalisation with the ocean, the entropy of radiation454

increases from its very low value Fsw/Tsun upon leaving the sun to the very455

high value Fsw/Tocean upon thermalisation with matter (i.e, seawater here),456

where Tsun and Tocean are the temperatures of the sun and ocean surface457

respectively. As a result, their entropy budget is dominated by terms like458

Fsw(1/Tsun − 1/Tocean), but arguably, this irreversible production term is459

better viewed as part of the sun+photons+earth system, rather than as part460

of the ocean. See also Pelkowski (2014) for a recent discussion of the entropy461

of radiation. The viewpoint taken here is that upon thermalisation, photons462

lose their identity, and just contribute to increase the energy levels of the463
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matter with which they interact. This interaction is most easily treated as464

regular ’heating’, and does not require the knowledge of the initial entropy465

of the photons at the time they were emitted by the sun.466

3.7. A priori estimates of nonconservative production of θ467

We now apply the above ideas to the problem of deriving a priori estimates

for the nonconservative production of potential temperature, which leads us

to rewrite (65) as follows:∫
V

ρθ̇irr dV = −
∫
S

Qnet

cRp
dS =

Qout

cRp,out
− Qin

cRp,in
468

=
Qin +Wmech

cRp,out
− Qin

cRp,in
=

1

cRp,out

[(
cRp,in − cRp,out

cRp,in

)
Qin +Wmech

]
, (79)

where cRp,in and cRp,out are the reciprocal of weighted means of 1/cRp averaged469

over the regions of net heating and cooling respectively, and defined so as470

to make the above decomposition exact. Eq. (79) shows that the nature of471

the potential temperature nonconservation is in many ways similar to that472

for entropy, given that (79) is essentially identical in structure to (75) with473

cRp in the former replacing T in the latter. As previously, we separate the474

nonconservative production of θ into a diffusive and viscous part, so that475

(79) becomes:476 ∫
V

ρθ̇diff
irr dV +

D(KE)

cRp,ε
=

(
cRp,in − cRp,out
cRp,inc

R
p,out

)
Qin +

Wmech

cRp,out
, (80)

where we defined the quantity cRp,ε via the relation:∫
V
ρεK

cRp,ε
=

∫
V

θ

TcRp
ρεK dV.
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As a result, we obtain the following expression for the diffusive part of θ̇irr:∫
V

ρθ̇diff
irr dV =

(
cRp,out − cRp,in
cRp,inc

R
p,out

)
Qin −

B

cRp,out
+

(
1

cRp,out
− 1

cRp,ε

)∫
V

ρεK

477

≈ 1

cRp,out

[
c0
p

∫
V

ρΘ̇diff
irr +

(
cRp,in − cRp,out

cRp,in

)
Qin

]
, (81)

where the approximation was obtained by neglecting the term proportional478

to viscous dissipation relative to the term proportional to Qin. Eq. (81) is a479

key result of this paper, for it provides an explicit expression for the difference480

between the nonconservative production of potential and Conservative Tem-481

perature, which appears to be controlled by the net heating Qin, as well as by482

the spatial variations of the heat capacity at the surface. One of McDougall483

(2003) key conclusions is that the overall nonconservative production of Con-484

servative Temperature should be about two orders of magnitude smaller than485

the non-conservation of potential temperature. According to (81), this can486

be the case only if the following constraint is satisfied:487 ∣∣∣∣cRp,out ∫
V

ρθ̇diff
irr dV

∣∣∣∣ ≈
∣∣∣∣∣
(
cRp,in − cRp,out

cRp,in

)
Qin

∣∣∣∣∣�
∣∣∣∣c0
p

∫
V

ρΘ̇diff
irr

∣∣∣∣ . (82)

Physically, this constraint requires that the weighted averaged heat capac-488

ity over heating regions be significantly different than the weighted averaged489

heat capacity over the cooling regions. Why this should be the case in the490

ocean is unclear, and the nature of the spatial variations in cRp giving rise491

to such a big difference is addressed empirically in the next section using492

observations. Eq. (81) shows that the exact difference between the net non-493

conservative production of potential and Conservative Temperature depends494

on the particular circumstances of the system studied, and is not entirely495
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an intrinsic property of the conservative versus potential temperature, in the496

sense that for a fluid with nearly constant heat capacity, potential tempera-497

ture would be nearly as conservative as Conservative Temperature. In fact,498

the net nonconservative production of θ could be even less than for Θ if the499

the surface ocean properties were such as to make the two terms within the500

square brackets in (81) cancel out. Whether such a configuration could oc-501

cur as a result of changes in the state of our climate is left as an intriguing502

open question, whose answer could perhaps give us important clues about503

the functioning of the ocean/atmosphere coupling.504

4. Observational constraints on nonconservative effects505

4.1. Data sources506

In this section, we use freely available climatological datasets to estimate507

the two surface integrals508

−
∫
S

Qnet

T
dA, (83)

509

−
∫
S

Qnet

cRp
dA, (84)

which we showed above to dominate the diffusive part of the nonconservative510

production of entropy and potential temperature. The estimation of these511

two integrals requires the knowledge of surface values of temperature and512

salinity (to estimate cRp ), as well as estimates of the net heat flux into the513

oceans. The computations discussed in the following sections were obtained514

by using the annual mean surface temperature and salinity from the World515

Ocean Database 2013, as well as the balanced NOCS net heat flux product516

discussed in Grist and Josey (2003).517
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4.2. Observational constraints on irreversible entropy production518

As mentioned by Grist and Josey (2003), most available heat flux prod-519

ucts are unbalanced. Even the balanced NOCS heat product version 1.1a520

depicted in Fig. 1, which is obtained through an inverse method is still un-521

balanced by −5 W.m−2, which amounts a net cooling of about −1.5 1015W =522

−1.5 PW. Were the oceans to be in a true steady-state and to satisfy the523

global energy balance Qcooling = Qin +Wmech, the net cooling should exceed524

the net heating so as to cancel out the Joule heating arising from the viscous525

dissipation of the power input due to the mechanical sources of energy. The526

net heating is so much larger than the power input by mechanical sources527

of energy (Qin = O(2 PW) versus Wmech = O(1 − 10 TW)) that it is very528

difficult to ascertain that the observed imbalance in available heat flux prod-529

ucts occur because of the need to balance Wmech, or as the result of the530

large uncertainties plaguing the evaluation of the various terms entering the531

heat budget. The NOCS heat flux product comes in two different versions,532

one that is unbalanced, and another one that was balanced using an inverse533

method.534

To assess the role of imbalance in heat flux products, we write the net535

heat flux Qnet = Q+Q̃ as the sum of a constant spatially uniform component536

Q plus a component Q̃ that integrates to zero. The entropy integral (83) thus537

becomes:538

−
∫
S

Qnet

T
dS = −Q

∫
S

dS

T
−
∫
S

Q̃

T
dS = −AocQ

T
− Q̃in

Tin
+
Q̃out

Tout
(85)

where T is the geometric average of the surface temperature, while Q̃in and

Q̃out are now defined to balance exactly, i.e., to satisfy Q̃in = Q̃out, with Aoc
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the surface area of the oceans. Here, the imbalance in the NOCS 1.1a heat

flux product is of the order Q ≈ 5 W.m−2, so that

−AocQ
T
≈ 3.1014 m2 × 5 W.m−2

291
≈ 5.1012 W.K−1.

In the present case, the imbalance in the heat flux product is so large that539

if retained, it would be the term dominating the entropy budget. In reality,540

we expect the contribution from Q̃in and Q̃out to dominate.541

We can try to anticipate the results of observational computation by using542

scaling argument, based on using the following typical values Q̃in = 2.1015 W,543

Tin − Tout = 15◦C, TinTout ≈ 3002K2, which gives us544

Tin − Tout
TinTout

Q̃in ≈
15× 2.1015

3002
= 0.33× 1012 W.K−1. (86)

This value is equal to 1.1 mW.m−2.K−1 when divided by the area of the ocean,545

which is comparable to that estimated in the UK Hadley Centre coupled546

climate model HadCM3 by Pascale et al (2011). Physically, it is also useful547

to decompose the total temperature T = T+T ′ into a mean and perturbation548

part, in order to approximate entropy production as549

−
∫
S

Q̃

T
dS ≈ 1

T
2

∫
S

Q̃T ′ dS, (87)

which shows that the diffusive part of entropy production is primarily con-550

trolled by the degree of correlation between the surface heat flux and the551

surface temperature anomalies. Fig. 2 shows the spatial map of the leading552

order term −Q̃/T and the second order term Q̃T ′/T
2

in entropy production.553

The leading order term is a rescaled version of the net heat flux depicted in554

Fig. 1. Numerical estimates yield 0.3×1012 W.K−1 for the total entropy pro-555

duction, which is nearly identical to the scaling argument above. Multiplying556
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this term by T = 291 K yields 87 TW, which is the number to be compared557

with the non conservation of potential enthalpy, following McDougall (2003)558

and Graham and McDougall (2013).559

4.3. Observational constraints on irreversible production of θ560

Leaving out the unbalanced part of the heat flux, (84) becomes:561 ∫
V

ρθ̇diff
irr dV ≈ −

∫
S

Q̃

cRp
dS =

Q̃out

cRp,out
− Q̃in

cRp,in
=

(
1

cRp,out
− 1

cRp,in

)
Q̃in, (88)

so that fundamentally, the non conservation of potential temperature arises562

principally from the spatial variations of cRp due to the spatial variations of563

surface temperature and salinity. In this paper, we use the climatological564

annual mean values of temperature and salinity depicted in Fig. 3. The565

implied variations in cp are depicted in the bottom panel of Fig. 4, while566

the top panel illustrates the dependence of cp on temperature and salinity.567

The spatial distribution of the leading order contribution −Q̃/cRp (S, θ, P0)568

(where cRp (S, θ, P0) is spatially uniform) is illustrated in the top left panel of569

Fig. 5, while the the second order contribution (due to the departure of cRp570

from its mean), is depicted in the top right panel. As in the case of entropy571

production, the leading order term is merely a rescaled version of the net572

heat flux illustrated in Fig. 1. Only the second order contribution, however,573

contributes to the surface integral, found to be cp
∫
V
ρθ̇diff

irr ≈ 4.6 TW. In order574

to understand the physical origin of this number, it is useful to examine the575

relative contribution of the temperature and salinity dependence of cRp on the576

result. To that end, we can use a Taylor series expansion to write:577

1

cRp
≈ 1

cp
− 1

c2
p

∂cp
∂T

(T , S, P0)(T − T )− 1

c2
p

∂cp
∂S

(T , S, P0)(S − S) (89)
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where cp = cp(T , S, P0), which in turns yields:578

−
∫
S

Q̃

cRp
dS ≈ 1

c2
p

∂cp
∂T

∫
S

Q̃T ′ dS +
1

c2
p

∂cp
∂S

∫
S

Q̃S ′ dS. (90)

Fig. 6 shows that cp is more sensitive to salinity than to temperature. How-579

ever, the relative contribution of temperature and salinity anomalies in (90)580

is not a priori obvious, because even though the dependence of cp on tem-581

perature is much smaller than on salinity, salinity anomalies do not correlate582

strongly with heat flux anomalies, in contrast to temperature anomalies.583

The numerical evaluation of the two terms in (90) supports this, with the584

temperature and salinity terms being approximately 3.6 TW and 1 TW re-585

spectively, thus showing that it is actually the cp dependence on temperature586

that ultimately dominates, which differs from McDougall (2003).587

588

5. Summary and implications for ocean modelling589

The results of this paper make it clear that the non conservation of po-590

tential temperature and that of Conservative Temperature are fundamen-591

tally different, since the non conservation of the former primarily reflects592

its production/destruction by surface fluxes, whereas the non conservation593

of the latter is primarily a measure of the thermodynamic work of expan-594

sion/contraction (in a steady-state). A a result, the only way to preserve595

the balance between surface and interior production/destruction established596

for the non-averaged Navier-Stokes equations would require to replace the597

evolution equation and boundary conditions for potential temperature used598
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Figure 1: Net heat flux into the ocean in W.m−2 from the balanced NOCS 1.1a heat

product.

in current OGCM formulations by the following ones599

Dθ

Dt
= −∇ · Fθ → Dθ

Dt
= − 1

cRp
∇ · (cRp Fθ) +N.C., (91)

600

K
∂θ

∂z
(z = 0) =

Qsens

ρ0cp0
→ K

∂θ

∂z
(z = 0) =

Qsens

ρ0cRp
, (92)

where N.C. denotes additional nonconservative effects discussed below, with601

corresponding changes required for the radiative and latent heat fluxes, and602

K a vertical turbulent eddy diffusivity.603

In order to fully specify the form of the potential temperature equation604
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(91), one needs a way to express its nonconservative part in terms of the tur-605

bulent fluxes of heat and salt. Tailleux (2010a) and Graham and McDougall606

(2013) both show that the form of the nonconservative part follows from607

assuming a certain quantity (in addition to salinity) to be conservative, but608

they disagree on which one. Specifically, Tailleux (2010a) assumes it to be609

total energy, as for the non-averaged Navier-Stokes equations, whereas Gra-610

ham and McDougall (2013) use a pseudo-conservative quantity — namely611

a locally-referenced form of potential enthalpy — which they take to vary612

from one grid-point to the next, so that although it is treated as conservative613

for the purpose of estimating the non conservation of θ and CT, it is actu-614

ally nonconservative from a strict mathematical viewpoint (hence referred to615

here as pseudo-conservative). Despite being based on different approaches,616

the expressions obtained by Graham and McDougall (2013) and Tailleux617

(2010a) are quite similar, the main difference being the former lacking the618

terms proportional to the pressure gradient of the latter.619

For lack of definite understanding about how to handle the non conserva-620

tion of potential temperature, IOC et al. (2010) recommended that OGCMs621

should adopt Conservative Temperature and Absolute Salinity as their new622

prognostic variables, on the grounds that the non conservation of such quan-623

tities is sufficiently small to justify treating them as exactly conservative, and624

hence governed by625

DΘ

Dt
= −∇ · FΘ,

DSA
Dt

= −∇ · FS, (93)

(with additional terms required to handle radiation and latent heat release626

in the CT equation). Turbulent fluxes are expressed in terms of a diffusivity627
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tensor K, including diapycnal, mixing and eddy-induced transport, as follows628

FS = −K∇SA, FΘ = −K∇Θ. (94)

It is important to recognise, however, that switching to (Θ, SA) as prognos-629

tic variables necessitates the specification of explicit functional relationships630

T = T (Θ, SA, P ) and θ = θ(Θ, SA, P ) allowing one to invert T and θ from the631

knowledge of Θ, SA and P . Such inverse relations are available in the form of632

Matlab subroutines as part of the Gibbs Sea Water (GSW) Library (available633

at www.teos-10.org) called gsw t from CT.m and gsw pt from CT.m634

for instance. Since such inverse relations are known from basic thermody-635

namic principles, they can be differentiated in order to obtain dθ as a function636

of dΘ and dSA, which are none other than the passage relations (14) and (15)637

derived previously. Thus, Eq. (15) yields the following equation for Dθ/Dt,638

Dθ

Dt
=
c0
p

cRp

DΘ

Dt
− 1

cRp

(
µR − θ

∂µR
∂θ

)
DSA
Dt

, (95)

while (14) yields the following expression for ∇Θ639

∇Θ =
1

c0
p

(
µR − θ

∂µR
∂θ

)
∇SA +

cRp
c0
p

∇θ. (96)

It is now straightforward to combine (93), (94), (95) and (95) to deduce what640

the evolution equation for θ and turbulent flux Fθ should be to be equivalent641

to the proposed IOC et al. (2010) (Θ, SA) formulation, viz.,642

Dθ

Dt
= − 1

cRp
∇ · (cRp Fθ)−

1

cRp
FS · ∇

(
µR − θ

∂µR
∂θ

)
, (97)

643

Fθ = −K∇θ. (98)

As to the surface boundary condition for Θ, (14) shows that it should be

K
∂Θ

∂z
(z = 0) =

Qsens

ρ0c0
p

+
1

c0
p

(
µR − θ

∂µR
∂θ

)
K
∂SA
∂z

(z = 0),
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644

=
Qsens

ρ0c0
p

+
1

c0
p

(
µR − θ

∂µR
∂θ

)
ρfS(E − P )

ρ
(99)

and hence that it should contain a term proportional to the salinity boundary645

condition, which is consistent with the fact that it is the reduced heat flux646

Fq = Fh − (∂h/∂S)FS, rather than Fh, which is linked to the sensible heat647

flux. This is an important point that is mentioned neither in McDougall648

(2003) nor in IOC et al. (2010), but which would require an additional649

modification to existing codes when switching to a (Θ, SA) formulation. In650

order to assess the relative merits of the (θ, S) versus (Θ, SA) formulations,651

we find it useful to separate the conservative and nonconservative part of the652

right-hand side of (97) as follows653

Dθ

Dt
= −∇ · Fθ + θ̇irr. (100)

The expression for the nonconservative term θ̇irr can be further clarified by

expanding the gradients of the different functions of θ and SA, leading to

θ̇irr = A(θ, SA)∇θT · (K∇θ) +B(θ, SA)∇STA · (K∇SA)
654

+C(θ, SA)
[
∇STA · (K∇θ) +∇θT · (K∇SA)

]
, (101)

where A, B, and C are all functions of θ and S alone given by

A(θ, SA) =
1

cRp

∂cRp
∂θ

, B(θ, SA) =
1

cRp

(
∂µR
∂SA

− θ ∂
2µR

∂SA∂θ

)
,

655

C(θ, SA) =
1

cRp

∂cRp
∂SA

= − θ

cRp

∂2µR
∂θ2

. (102)

Given that the modifications to the potential temperature equation detailed656

above should be strictly equivalent to using the (Θ, SA) formulation proposed657
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by IOC et al. (2010), the actual benefits of switching to Conservative Tem-658

perature are no longer obvious. From a computational viewpoint, adding the659

nonconservative term (101) and modifying the current boundary condition660

as per (92) would be straightforward. Moreover, since OGCMs estimate ∇θ,661

∇SA, K∇θ and K∇SA as part of computing the heat and salt fluxes, diag-662

nosing θ̇irr would come at little additional cost, as to do so would only require663

additional routines for the 4 functions of θ and SA alone, namely cRp , A, B,664

and C. As regards to estimating the poleward heat transport, it could easily665

be diagnosed in terms of CT as recommended by McDougall (2003), since666

Θ can be diagnosed from (θ, SA) (using the routine gsw CT from pt.m667

from the GSW Library for instance). Since a (θ, SA) formulation can be con-668

structed that is strictly equivalent to the (Θ, SA) formulation proposed by669

IOC et al. (2010), it follows that the decision to switch to CT should be670

motivated on a careful evaluation of the computational and physical advan-671

tages of each formulation. Note, however, that even though the (θ, SA) and672

(Θ, SA) formulations discussed in this section are constructed to be strictly673

equivalent mathematically, it would be of interest to test whether this is also674

the case at the discretised level, as differences in results could shed light on675

whether the budget of derived nonconservative quantities such as buoyancy676

or entropy can be expected to be accurately represented in numerical ocean677

models.678
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Figure 2: Leading order entropy production term −Q̃/T (top panel, in W.m−2.K−1) and

second order entropy production term −Q̃(1/T − 1/T ) (bottom panel, in mW.m−2.K−1)
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Figure 3: Climatological annual mean sea surface temperature (top panel, in degrees

Celsius) and sea surface salinity (bottom panel, in g/kg) from the World Ocean Database

2013.

43



3
9
7
0

3
9
8
0

3
9
8
0

3
9
9
0

3
9
9
0

3
9
9
0

4
0
0
0

4
0
0
0

4
0
0
0

4
0
1
0

4
0
1
0

4
0
2
0

4
0
2
0

4
0
3
0

4
0
3
0

4
0
4
0

4
0
4
0

4
0
5
0

4
0
5
0

4
0
6
0

4
0
6
0

4
0
7
0

4
0
7
0

4
0
8
0

4
0
8
0

4
0
9
0

4
0
9
0

4
1
0
0

4
1
0
0

4
1
1
0

4
1
1
0

4
1
1
0

4
1
2
0

4
1
2
0

4
1
2
0

4
1
3
0

4
1
3
0

4
1
3
0

4
1
4
0

4
1
4
0

4
1
4
0

4
1
5
0

4
1
5
0

4
1
5
0

4
1
6
0

4
1
6
0

4
1
6
0

4
1
7
0

4
1
7
0

4
1
7
0

4
1
8
0

4
1
9
0

salinity (g/kg)

te
m

p
e
ra

tu
re

 (
c
e
ls

iu
s
)

cp(S,T,0)

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Longitude

L
a

ti
tu

d
e

Specific heat capacity at Ocean Surface

 

 

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

3980

3985

3990

3995

4000

4005

4010

Figure 4: (Top panel) Specific heat capacity cp (in J.K−1.kg−1) as a function of temper-

ature and salinity at mean atmospheric pressure, illustrating the strong dependence of cp

upon salinity. (Bottom panel) Surface distribution of cp (same units) for the climatological

annual mean temperature and salinity fields depicted in Fig. 3.
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Figure 5: Leading order production term −Q̃/cRp (top left panel, in kg.m−2.s−1.K) and

second order production term −Q̃/(1/cRp − 1/cRp ) (top right panel, in 10−3kg.m−2.s−1.K).

Decomposition of the top right panel into a salinity anomaly contribution (bottom left

panel) and temperature anomaly contribution (bottom right panel), in same units as top

right panel.
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Figure 6: Derivative of the specific heat capacity with respect to temperature (top panel)

and to salinity (bottom panel) as a function of temperature and salinity at mean atmo-

spheric surface pressure. Units are respectively J.K−2.kg−1 and J.K−1.kg−1.(g/kg)−1.
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