Search from over 60,000 research works

Advanced Search

Hydrological controls on soil redox dynamics in a peat-based, restored wetland

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Niedermeier, A. and Robinson, J. S. orcid id iconORCID: https://orcid.org/0000-0003-1045-4412 (2007) Hydrological controls on soil redox dynamics in a peat-based, restored wetland. Geoderma, 137 (3-4). pp. 318-326. ISSN 0016-7061 doi: 10.1016/j.geoderma.2006.08.027

Abstract/Summary

Increasing areas of altered wetland are being restored by re-flooding the soil. Evidence in the literature indicates that this practice can induce the redox-mediated release of soil nutrients, thereby increasing the risk of diffuse water pollution. However, for the sake of improving wedand management decisions, there is a need for more detailed studies of the underlying relationship between the hydrological and redox dynamics that explain this risk; this is particularly the case in agricultural peatlands that are commonly targeted for the creation of lowland wet grassland. A 12-month field study was conducted to evaluate the relationship between hydrological fluctuations and soil redox potential (Eh) in a nutrient-rich peat field (32 g N kg(-1) and 1100 mg P kg(-1) in the surface 0-30 cm soil) that had been restored as lowland wet grassland from intensive arable production. Field tensiometers were installed at the 30-, 60- and 90-cm soil depths, and Pt electrodes at the 10-, 30-, 60- and 90-cm depths, for daily logging of soil water tension and Eh, respectively. The values for soil water tension displayed a strong negative relationship (P < 0.001) with monthly dip well observations of water table height. Calculations of soil water potential from the logged tension values were used, therefore, to provide a detailed profile of field water level and, together with precipitation data, explained some of the variation in Eh. For example, during the summer, alternating periods of aerobism (Eh > 330 mV) in the surface, 0-10 cm layer of peat coincided with intense precipitation events. Redox potential throughout the 30-100 cm profile also fluctuated seasonally; indeed, at all depths Eh displayed a strong, negative relationship (P < 0.001) with water table height over the 12-month study period. However, Eh throughout the 30-100 cm profile remained relatively low (< 230 mV), indicating permanently reduced conditions that are associated with denitrification and reductive dissolution of Fe-bound P. The implications of these processes in the N- and P-rich peat for wetland plant diversity and water quality are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/3922
Item Type Article
Divisions Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Interdisciplinary centres and themes > Soil Research Centre
Uncontrolled Keywords soil redox potential agricultural peat field hydrology wetland lowland wet grassland PHOSPHORUS MINERALIZATION EVERGLADES REDUCTION GRASSLAND NITROGEN IRON
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar