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Parametric Preference Functionals Under Risk in the Gain Domain: A Bayesian

Analysis

Abstract

The performance of rank dependent preference functionals under risk is comprehensively evalu-

ated using Bayesian model averaging. Model comparisons are made at three levels of heterogeneity

plus three ways of linking deterministic and stochastic models: the differences in utilities, the differ-

ences in certainty equivalents and contextual utility. Overall, the "best model", which is conditional

on the form of heterogeneity is a form of Rank Dependent Utility or Prospect Theory that cap-

tures the majority of behaviour at both the representative agent and individual level. However,

the curvature of the probability weighting function for many individuals is S-shaped, or ostensibly

concave or convex rather than the inverse S-shape commonly employed. Also contextual utility

is broadly supported across all levels of heterogeneity. Finally, the Priority Heuristic model, pre-

viously examined within a deterministic setting, is estimated within a stochastic framework, and

allowing for endogenous thresholds does improve model performance although it does not compete

well with the other specifications considered.

1. Introduction

There is a long history of research questioning the validity of Expected Utility Theory (EUT),

with many economists wishing to apply non EUT theories to problems relating to decisions under

risk. Within the literature some degree of consensus appears to have emerged that probability

weighting models such as Prospect Theory (PT) or Rank Dependent Utility (RDU) offer the best

alternative to EUT (Wakker, 2010; Fehr-Duda and Epper, 2012). Yet, while the scope for ap-

plications of PT and RDU is increasing (see Barberis, 2013, and Schleifer, 2012), the growth of

empirical applications is arguably less than one might expect given their theoretical prominence.

One potential reason is that the range of parametric variants of these theories can itself be baffl ing,

and perhaps may inhibit their adoption. Therefore, this paper reconsiders the appropriate selection

of parametric specifications of choice under risk within the gain domain.

While there is plenty of evidence that most economic agents do not seem to unerringly use

probabilities as summative linear weights to utilities of outcomes, what they actually do remains

the subject of debate. Leading critics of EUT include Kahneman and Tversky (1979) and more

recently Rabin (2000) and Rabin and Thaler (2001), who consider the weight of evidence against
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EUT suffi cient to label it an ‘ex-hypothesis’. In contrast, Birnbaum (2006) argues a case against

probability weighting of the PT form, and more recently, the unfavourable implications for EUT

from the concavity-calibration argument of Rabin (2000) have been challenged by Cox and Sadiraj

(2006) and Cox et al. (2012) on the grounds that calibration arguments lead to equally problematic

implications for nonlinear probability weighting. Furthermore, models in which outcomes are

weighted by functions of probabilities have also been challenged at the process level (Fiedler and

Glockner, 2012).

The understanding that emerges from the literature is further muddied by the fact that individ-

uals may use different (and multiple) strategies. For example, Bruhin et al. (2010) report results

that indicate that at least 20% of respondents in their experiments can be classified as EUT types,

while Harless and Camerer (1994), and Hey and Orme (1994) have presented analysis of a range of

theories and models suggesting that no one theory clearly outperformed all others. There is also

the important question about how best to nest what are ostensibly deterministic theories within

a stochastic setting. As Hey and Orme (1994) observed, while the issue of "noise" has often been

treated as an ancillary one, it deserves greater attention such as the research presented by Wilcox

(2011).

In practice, for applied researchers examining decision making under risk the implications of the

above for conducting research come down to a choice of appropriate functional forms. Thus, the

choice of functional forms to be employed to operationalise the theory is key and even if researchers

narrow the range of candidate models to within the PT or RDU class1, they face an enormous

set of potential models. Furthermore, the literature is still unable to give definitive advice in

this regard mainly because there are so many potential combinations of functional forms that are

used to model the different aspects such as value (utility), probability transformations and those

linking the deterministic models to stochastic outcomes. Each of these model aspects interacts

with others to determine overall model performance and there is a need to understand how different

model aspects perform in combination.

The data employed here is from Stott (2006), which to date provides one of the most compre-

hensive studies of the performance of a range of functionals characterising PT in the gain domain.

The results reported in Stott are frequently cited for the choice of functionals employed in PT/RDU

research (e.g., Bruhin et al., 2010). Unlike Stott (2006) we employ a Bayesian approach to the

1We use PT to mean its cumulative variant which is sometimes termed Cumulative Prospect Theory.
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analysis of this data. The analysis in Stott (2006) and Booij et al. (2010) are typical in that

they have been conducted from a classical perspective using maximum likelihood as the estima-

tion method. However, serious issues emerge in deciding on an optimal combination of functional

forms when there are so many combinations of competing specifications. Also, as noted by Booij

et al. (2010) the wrong choice of a functional form can result in contamination and bias of other

estimates of parameters. In this paper, we exploit the advantages of Bayesian Model Averaging

(BMA) which provides an internally consistent and coherent approach to this type of modeling

problem. Like Stott (2006), we examine a large number of functional forms at the individual

as well as the aggregate level. Furtermore, we examine and compare specifications based on the

‘contextual utility’approach developed in Wilcox (2011), a generalisation of the Priority Heuristic’

(PH) developed in Brandstätter et al. (2006), and the ‘Transfer of Attention Exchange’(TAX)

weighting function of Birnbaum and Chavez (1997). The TAX and PH models are examined as

they are viewed as alternatives to PT/RDU and in both cases positive experimental evidence has

been presented.

The diffi culty in deciding on an optimal specification for this type of problem stems from the

very large model space. Classical pairwise comparison of nested models can be made using a

range of standard tests (e.g. Likelihood Ratio, F, Wald) providing appropriate adjustment is made

for cases where parameters lie on the edge of the parameter space or alternatives are restricted

to a subset of possible values (e.g. Andrews, 1998). Classical non-nested models can also be

tested using the methods developed by Vuong (1989) and others.2 However, when the number of

potential models is very large, pairwise testing implies an extremely large number of tests3, whereby

the transitivity of these tests is not assured in finite samples (Findley, 1990). This means that an

unambiguous ranking of models is diffi cult. Information criteria (IC) offer an alternative way to

evaluate models. However, while IC are additive over individuals (when models are estimated at

the individual level), the formal basis for using them as model weights is through their asymptotic

approximation of logged marginal likelihoods. The use of IC in Bayesian Analysis of Classical

Estimates has been motivated by the desire to avoid informative priors (e.g. Sala-i-Martin et

al., 2004). Yet as shown in Fernandez et al. (2001) the choice of alternative g-priors leads to

asymptotically different IC, which rather weakens the claim that using IC means that one is less

2See Pesaran and Weeks (2007) for an overview.
3There are (n-1)n/2 combinations, which for the current paper means that the number of pairwise comparisons

are of the order 109.
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dependent on priors. In contrast, full BMA provides an internally consistent and coherent approach

to this problem, providing one can provide priors. In the context of PT, we believe that there is

substantive theoretical and previous empirical evidence that give a basis for setting these priors,

and we examine this in detail.

We are also concerned here with explicitly recognising that model selection may depend on

whether one is seeking an overarching model that explains aggregate behaviour, or whether one

is seeking models that allow heterogeneity in behaviour. To follow our clothing analogy, let us

imagine that our goal is to select the best style of hat. If we are constrained to dressing all

individuals in exactly the same clothes, our choice of hat style may be quite different to when we

allow the styles and colours of other items of clothing to differ across individuals. As discussed

in Andersen et al. (2008), arguments for and against models have sometimes been implicitly or

explicitly based on the idea of a ‘representative agent’where it is assumed that there exists a

common model of behaviour across all individuals both in the preference functionals and forms

and the parameters that characterise those functionals (e.g., Brandstätter et al., 2006). However,

what has been insuffi ciently recognised is that choosing a singular specification that best represents

all individuals is a different task from choosing multiple specifications that represent different

groups of individuals. Different people may do different things when it comes to making decisions.

For example, it is possible that some may employ a heuristic like the PH, and others adhere to

PT. In this paper we recognise that optimal model specification may differ depending on whether

the researcher seeks a model that performs best when applied to all individuals; or whether one is

interested in explaining individuals behaviour. Importantly, there may be models that do extremely

well in explaining the behaviour of a subgroup of individuals, but do very badly if applied to all

individuals.

When parametric models are being estimated, there are three levels of heterogeneity that are

commonly applied. Level 0 is where individuals share functional forms and have the same parame-

ters values (i.e., the representative agents. Level 1is where individuals share functional forms but

with potentially heterogenous parameter values. And Level 2 is where individuals need not share

functional forms or parameter values.

Heterogeneity in parameters can be introduced, in a limited sense, by allowing the parameters

to be conditioned on covariates, but more general models include those that are either a latent class

model (or finite mixture of distributions) or a random parameter (or Heirachical Bayes) approach
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(e.g. Nilsson et al., 2011). Heterogeneity in models can be introduced using the weighted likelihood

approach outlined in Harrison and Rustrom (2009) and related approaches in Bruhin et al. (2010)

and Conte et al. (2011). In contrast, a number of papers, (e.g. Hey and Orme, 1994, Birnbaum

and Chavez, 1997, and Stott 2006) have estimated multiple models at the individual level. This

approach is flexible in terms of model estimation, but also requires large amounts of information to

be collected at the individual level. Studies that have pursued this approach typically offer a very

large number of choices (e.g. 100 or more) to each person. While an individual specific approach

is flexible, it is clearly less than optimal if there is an overarching framework that is able to allow

heterogeneity on one hand, but allowing the pooling of information across individuals to estimate

parameters that are common to all.

In this paper, we consider the model performance at all three levels which involves estimating

models at the representative agent level (Level 0) and the individual level (Level 2). Inference

about Level 1 specifications can be examined by using the Level 2 models, and calculating the log

marginal likelihoods with the common model restrictions imposed. That is, there is no additional

estimation required for Level 1 models, once all Level 2 models have been estimated.

The paper proceeds by describing general framework and specific models in Section 2. Section

3 discusses our approach to model comparison and model estimation. Our results are presented

and discussed in Section 4 and Section 5 concludes.

2. Model Descriptions

The choices under risk that are evaluated within this paper were elicited using a gamble format

with a discrete number of payoffs (See Stott (2006) for specific details). The prospect (g) is of the

form

gi =
(
{pik}Kik=1 , {xik}

Ki
k=1

)
(1)

where {pik} are the probabilities and {xik} are the monetary payoffs where, without loss of gener-

ality, it is assumed that they have been ordered xi1 ≥ xi2, .... ≥ xiKi . In the empirical part of the

paper Ki = 2 for all prospects, but we shall discuss the theory more generally.

Common to all economic models used to examine this type of data is the idea that there is

to some degree, compensatory behaviour (i.e. respondents make trade-offs) with regard to both

the payoffs in the prospects and the probabilities of obtaining those payoffs. As such we refer to

this general class of models as compensatory. In this sense PT/RDU and TAX are compensatory
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models.

In contrast within the psychology literature the idea that people apply heuristics (i.e., a decision

process) that do not necessarily imply such trade-offs is commonplace. A popular example of a

heuristic is the PH introduced by Brandstätter et al. (2006). Although the PH has proven very

popular within the literature it has been the subject of criticism as well (see Birnbaum, 2008, and

Brandstätter et al., 2008).

Note we will refer to the non-TAX, non-linear compensatory models as being PT models. Also

as we are dealing with models in only the gain domain, there is nothing really to distinguish PT

models from RDU models, subject to the fact that payoffs are not be evaluated relative to wealth,

but around a reference point of zero. However, for simplicity we shall use the term PT only.

2.1. Compensatory Specifications

The compensatory models specified in this paper are defined by four key components. We refer

to these as ‘aspects’of the model and they are: i) Value v; ii) Probability weighting (P-weight) w;

iii) Inner Link λ̃; and, iv) Outer Link λ̄.

Each aspect may take a number of specific functional ‘forms’from a defined set: v ∈ V , w ∈ W ;

λ̃ ∈ Λ̃ and λ̄ ∈ Λ̄.4 Each form of each aspect has a particular parameter space except for the Inner

Link which does not contain any free parameters (i.e. they cannot be defined differently by setting

parameter values).

In this paper we will (as we outline below) combine six v with seven w, three λ̃ and five λ̄ and.

Therefore, the number of combinations is 6 × 7 × 3 × 5 = 630. However, because the constant

probability λ̄ is dependent only on the sign (not magnitude) of the signal from the deterministic

component, models with this λ̄ are invariant to the nature of the λ̃, so the actual number of models

we estimate is slightly smaller, 549 once the three PH models are taken into account. These

549 models need to be estimated at the representative agent level, and for every individual in our

sample for Level 2 models, thus, requiring approximately 50,000 models to be estimated in total.

2.1.1. Value Forms (v-forms)

The v aspect evaluates the preference for a monetary amount that will be given with certainty.

We employ six forms commonly encountered in the literature:

4Note that in this paper we employ the term "Link" in a different manner than that used in Stott (2006) who
refers to the "choice" function, which corresponds to what we call the outer link.
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POWER-I : v (x) = xα1 : α1 > 0 (2)

EXPO-I : v (x) = 1− e−α2x : α2 > 0

LOG : v (x) = ln (1 + α3x) : α3 > 0

QUAD : v (x) = x− α4x
2

2
: α4 > 0, α4 <

2

xmax

POWER-II v (x) = (α5 + x)α6 : α5 > 0, α6 > 0

EXPO-II : v (x) = 1− e−α7xα8 : α7 > 0, 0.5 < α8 < 1.5

For all of our v-forms, the set of parameter restrictions ensures that the value function is always

monotonically increasing. This is obvious for POWER-I, EXPO-I and LOG. For the functional

form QUAD, xmax is the largest payoff out of all the prospects, and the parameter restrictions

ensure that the function is monotonically increasing in value over the range of the data. Also, in

our analysis x is normalised by dividing through by xmax prior to estimation such that x only varies

between 0 and 1.

We also note that some of the v-forms appear in the literature with different names. For

example, the POWER-II is also referred to as the Hyperbolic Absolute Risk Aversion function, and

the EXPO-II is the Power-Expo-Utility function. However, since our set of restrictions on these

value forms are somewhat more restrictive than those applied in the literature, we use the terms

above to signal that they are generalisations of the POWER-I and EXPO-I.

2.1.2. P-Weight Forms (w-forms)

The w aspect transforms the probability of obtaining the monetary amount into some other

measure that lies between 0 and 1. All the w-forms operate on the cumulative probability function

except the TAX model of Birnbaum and Chavez (1997) which operates on the probabilities of the

ranked outcomes. Assuming the prospects have been ordered as xi1 ≥ xi2, .... ≥ xiKi then the

probability weights are constructed directly on the probabilities (rather than the cumulative)

TAX:
w (pi)=

p
β3
i −

1
n+1

∑n
j=i+1 p

β3
i + 1

n+1

∑i−1
j=1 p

β3
j∑

j p
β3
j

: 0 < β3 < 2

(3)
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For PT w-forms yield the weighting based on the cumulative or decumulative distributions and

take the form

w1 = w (p1)

and (4)

wj = w

(
j∑
i=1

pi

)
− w

(
j−1∑
i=1

pi

)
for j = 2, ....Ki

where

PRELEC-I : w (p) = e(−(− ln(p))β1) : 0 < β1 < 2 (5)

K&T : w (p) =
pβ2(

pβ2 + (1− p)β2

) 1
β2

: 0.27 < β2 < 1

LINEAR : w (p) = p

POWER : pβ4 : 0 < β4 < 2

PRELEC-II : e(−β5(− ln(p))β6) : 0 < β5 < 2, 0 < β6 < 2

G&E :
β8p

β7(
β8p

β7 + (1− p)β7

) : 0 < β7 < 2, 0 < β8 < 2

The LINEAR probability form is included in our analysis because of its significance in terms of

corresponding to the EUT model. We wish to assess its performance relative to the other models

that have proven popular in the literature.

Our K&T specification could have an extended parameter space, but its lower bound ensures

that the weight is monotonically increasing in p (Ingersoll, 2008) and the upper bound imposes the

inverse-S (IS) behavior restriction (with linearity at the edge of parameter space). We imposed this

restriction so we can specifically investigate a w-form with the IS condition imposed. This type

of transformation was supported by and Tversky and Kahneman (1992), as being the predominant

form of behaviour, but has been challenged by others (e.g. Birnbaum and Chavez, 1997, Harrison et

al., 2010) who provide evidence of S-shaped behaviour. A comprehensive overview of the empirical

evidence supporting IS probability weighting is provided by Wakker (2010).

The IS condition is not imposed on the other w-forms (e.g., PRELEC-I, II, G&E5 and POWER),

although the former two can be either IS or S-shaped. The lower bounds for these forms are required

5We take this nomenclature from Stott (2006). G&E is an abbreviation of Goldstein and Einhom (1987).
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so that the weights are monotonically increasing in probability, and upper bounds for these forms

are not particularly restrictive in the sense that they allow for a wide variety of behaviour, but are

still useful in ensuring that our estimates are convergent.

2.1.3. Inner and Outer Links

The purpose of the links are to determine the probability that one prospect (gi) will be preferred

to another (gj). We also adopt this approach, but explore some alternative specifications. The

literature generally only refers to having one link (or choice) function, but we consider it useful

to think of it as being a composite function composed of an Inner and Outer link. The link

aspects take the signal determined by the v-form and w-form aspects to yield a probability that

an individual will choose a given prospect.6

Given common forms of (v,w) these may be combined in various ways to enter the link in

different ways. Therefore, (v, w, gi, gj) combine to give, ui = hv,w (gi) and uj = hv,w (gj), which

we shall term the ‘utilities’of the prospects (as distinct from the values or ‘utilities’of the payoffs

within the prospects). If one adopts a particular PROBIT or LOGIT link form, there is still a

choice as to how to combine the utilities within the ‘Outer Links’. Thus, the link is a composite

function, λ (v, w, gi, gj) = λ̄
(
λ̃ (ui, uj)

)
, composed of the Inner Link (λ̃) and Outer Link (λ̄).

2.1.3.1. Inner Link Forms
(
λ̃-forms

)
The majority of studies to date have used the difference between utilities as the Inner Link (i.e.

λ̃ (ui, uj) = ui−uj). We investigate this approach as well as.the difference in certainty equivalents

and the ‘contextual utility’approach of Wilcox (2011). Wilcox introduced the contextual utility

approach for a number of reasons. First, is the observation that affi ne transformations of the

same Value form do not necessarily lead to the same utility differences. Second, utility differences

are not monotonically related to the degree of risk aversion perhaps casting doubt on how well a

given model will be identified. Third, if one seeks a stochastic generalisation of the idea that one

individual is more risk averse than another, then utility differences do not lead to such a definition,

whereas under the conditions outlined in Wilcox (2011) such a definition can be obtained, though

this definition requires individuals to have the same w-forms and parameters. Wilcox (2011)

provides further evidence that the contextual approach is superior to the difference in utilities, but

we are not aware that there has been any study that has compared it to the difference in certainty

6In the case of PT v and w take different forms in the gain and loss domains (and more generally may be
asymmetric around a given reference point). In this study we only consider the gain domain.

10



equivalents also.

We define the Inner Link to be a latent variable representing one of three quantities where each

is calculated as:

• UTILITY: ∆u = ui − uj are the differences in utility across the two prospects

• C-UTILITY: ∆c = (ui − uj)ϕ−1
ij where ϕij = v (xupper,ij)−v (xlower,ij) and xupper,ij and xlower,ij

are the highest and lowest payoffs over prospects i and j

• C-EQUIV: ∆e = ei − ej are the differences in certainty equivalents where ei = v−1 (ui) and

ej = v−1 (uj)

2.1.3.2. Outer Link Forms
(
λ̄-forms

)
If we take y = 1 as the indicator function that an individual selects the prospect with the

higher UTILITY, C-UTILITY, or C-EQUIV, then the Outer Link is a function F (y = 1|ψ,∆) =

Pr (y = 1|ψ,∆) which can take several forms.

LOGIT : F (y = 1|ψ1,∆) =

(
eψ1∆

1 + eψ1∆

)
: ψ1 ≥ 0 (6)

PROBIT : F (y = 1|ψ2,∆) = 1−Θ (ψ2∆) : ψ2 ≥ 0 where Θ is a standard normal cdf

CONSTANT : F (y = 1|ψ3,∆) = ψ3 if ∆ > 0 and 1− ψ3 if ∆ ≤ 0 where 0.5 ≤ ψ3 ≤ 1

BETA-I + (BETA-II) : F (y = 1|ψ4,∆) = 1− Cbeta∗
(
y = 1|ψ4,∆, ū, l̄

)
(where Cbeta∗ is a cumulative beta distribution)

The LOGIT, PROBIT and CONSTANT λ̄-forms have been commonly used as stochastic links

in the literature, but the BETA link has not been investigated, at least in the way that is being

used within this paper. The BETA link has two forms with BETA-II being a generalisation of

BETA-I. The motivation for these two Outer Links is derived from the fact that the utilities from

gambles can, under one rationalisation, be viewed as bounded from above and below. But, being

bounded need not matter depending on interpretation. For example, in a pure ‘trembles’setting,

the individual may nearly always report their non-stochastic preference, except for occasions where

they lapse. However, if one views the choices as arising from a subjective distribution of utilities

or certainty equivalents, then the subjective distributions of these are bounded by the upper and

lower levels in the prospects.
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2.2. The Priority Heuristic

The PH can be described as follows. A respondent compares the lowest payoffs between two

prospects. If the difference between these is greater than ((ϕ1 × 100)%) of the highest payoff over

the two prospects, they choose the one with the highest minimum payoff. Otherwise, they compare

the probabilities of the two lowest payoffs. If the higher of these probabilities is ϕ2 more than the

lower, they choose the prospect with the lower probability. Otherwise, they compare the highest

payoffs between the two prospects and choose the one with the higher payoff. If they have not

made a decision, they choose randomly. The choice of ϕ1 and ϕ2 in Brandstätter et al. (2006) was

ϕ1 = 0.1 (i.e.10%) and ϕ2 = 0.1. These thresholds were set on the basis of what respondents were

used to dealing with in a decimal system.

The PH is typically employed in a deterministic setting. However, it can also be used in a

stochastic setting by estimating the probability p that the choice indicated by the PH is chosen

by the individual (p > 0.5). That is, it has a constant probability link as outlined above. Once

this has been assigned then the likelihood function for the individual is defined. Additionally, the

thresholds used in the standard PH, ϕ1 and ϕ2, can be treated as estimable parameters.

As well as offering a number of criticisms of the PH, Andersen et al. (2010) argue that such

an approach is ‘ad hoc’ and that restrictions would need to be placed on the model to allow

estimation of the likelihood. However, we found no problems in estimation providing bounds are

set relatively narrow for the parameters, which nonetheless represented a considerably more flexible

parameterisation than the non-stochastic version.

In this paper, we implement three versions of the PH model. The first (PH-0) is with the

thresholds ϕ1 and ϕ2 being set exogenously at 0.1, the second (PH-I) where both are allowed to

vary according to ϕ1 = ϕ2 = ϕ where ϕ is estimated, and the third (PH-II) where ϕ1 and ϕ2 are

estimated and not constrained to be equal, thus nesting both PH-0 and PH-I. ϕ1 and/or ϕ2 were

constrained to lie within the interval (0.01 and 0.20) in the generalised models.

2.3. Model Reparameterisations and Prior Distributions

Within the Bayesian approach prior distributions need to be specified for all parameters in

a model. For a model using the marginal likelihood, these priors need to be proper, and to

some extent informative. In general, the prior distributions should have mass in regions in a

way that reflects prior knowledge and beliefs. However, since prior knowledge and beliefs differ

between people, these priors are usually set in a relatively diffuse way. With relatively diffuse
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priors, the data will quickly dominate the prior, providing the data is itself informative. Here

we parameterise our models by populating them with parameters ϑ with normal priors, where the

parameter of interest (θ) are transformations of ϑ (See Appendix A1).

2.3.1. v-Form Parameter Priors

In setting the priors for the v-form parameters, we need to emphasise the way in which the

parameter changes the curvature of the v-form. Simply imposing equal prior probability values

for the parameters could lead to priors giving high weight to regions that we consider unlikely.

Therefore, before considering the priors for each of the v-forms it is useful to examine the Pratt

risk coeffi cient (henceforth pc) (See Appendix A2).

Recalling we normalise x so that it lies within the unit interval, then based on the pc, then

curvature at any given point is related to the various coeffi cients in equation [2] in very different

ways. For example, since the utility forms must be monotonically increasing functions in x, which

follows from the various constraints we impose on αi, then for the POWER-I form, pc is bounded

from above (at 1
x
) but not from below.

The greatest curvature for any given value of α2 is found for low values of x, but must be less

than one at the largest value of x (x = 1). The LOG form has a pc that is bounded between 0 and

1
x
, thus, it shares the same upper limit as the POWER-I form, whereas the EXPO-I form pc does

not vary with x. The QUAD on the other hand has a lower bound at −1
1+x

and and upper bound

1
1−x . Thus, it has the greatest convexity at low levels of x, but the highest possible concavity at

the upper end of x.

With regard to the parameters α1, α2, and α3 each of these are bounded by zero but have no

upper limit. For these parameters, we set the prior distributions with the majority of the mass

over regions that we consider plausible, but are relatively diffuse so as not to dominate the influence

of the data. In doing so, we set an upper and lower bound for which a specified percentage of the

mass that lies above and below these values. The parameters α2 and α3 are positively related to

concavity, while α1 is negatively related to concavity. However, with log-normal priors, we can

just as easily think in terms of the reciprocals of α2 and α3 since these are also log-normal. That

is, in setting the distributions for α2 and α3 we can immediately deduce the distributions of their

reciprocals or vice versa.

The POWER-I form offers a useful starting point because previous studies can be used to infer

a prior distribution for α1 without reference to the scaling of x. Generally, previous studies have
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commonly found values of α1 (See Stott (2006), Table 5) as low as 0.225 and as high as 0.89.

However, these are aggregate estimates, whereas for individuals there is likely to be a greater

degree of variability. At the individual level there must be scope for some individuals to display

convexity. Therefore, we set our prior to have Pr (α1 < 0.1) = .10 and Pr (α1 < 2) = .90. This

equates to having 75% of the prior mass in the concave region. Thus, the POWER-I form displays

significant concavity, but only at relatively low values of at x (e.g. α1 = 0.1, x = 0.1 has pc = 9).

This distribution also has relatively cumulative high density at points close to zero (representing

approximate risk neutrality).7

The prior for EXPO-I requires concavity like the POWER-I form at lower values of x. Thus,

the distribution for α2 needed to be more diffuse than for α1. On the other hand, no finite level

of variance for α2 can make it as concave for suffi ciently small values of x. Thus, we set the prior

distribution to have Pr (α2 < 0.1) = .10 and Pr (α2 < 10) = .90.

For the QUAD, the parameters must lie between the boundaries -1 and 1 with coeffi cients having

a lower bound at −1
1+x

and and upper bound 1
1−x . Thus, it has greatest convexity at low levels of

x, but the highest possible concavity at the upper end of x. The prior we adopted here assigned

75% mass on the concave region with an approximately linearly decreasing mass as we move from

concavity to convexity.

For the two parameter v-forms (POWER-II and EXPO-II) the same priors were adopted for

α5 and α7 as for α2 and α3 respectively. Then, for α6, we note that the POWER-II form increase

in curvature decreases rapidly, particularly at lower levels of x. Therefore, for α6, we specified a

log-normal with 50% of the mass below 0.5 and and 10% of the mass above 1. For the EXPO-II

form the parameter α8 was specified a bounded prior between 0.5 and 1.5 but with the highest

density at 1.

2.3.2. w-Form Parameter Priors

All parameters for the w-forms were parameterised using the bounded transformation being set

to conform to the inequalities presented in Appendix A1. The mean and variance were set so that

the implied priors were for the transformed normals and were approximately uniform.

2.3.3. λ̄-Form Parameter Priors
7For the LOG and EXPO-I functions if the parameters to be equal (α2 = α3) and to achieve the same level of

concavity (if α2 < 1
x ) α3 needs to be higher. In effect, the prior for α3 should be more diffuse with a higher mean

unless the aim was to construct a prior supporting risk neutrality. However, we see that for values of α3 equal to
100 has a value at r that exceeds 99% of its possible value whereas at 10 it is at least 90% of its possible value.
We therefore placed 1% of the mass above 100 and 10% below 0.1. Resulting in a relatively small shift in the mass
above 10, at 13% rather than the 10% for EXPO-I function.
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For the λ̄-form priors, the parameters ψi (i = 1, 2) were given log-normal priors so that 0.01

percent of the prior mass was below 0.0001 and 99% of the prior mass was below 100. The prior for

ψ4,1 was also set in this manner and ψ4,2 was specified to be approximately uniform on the interval

(0,1) and for the constant probability, the prior was set so that it was uniform between 0.5 and 1.8

3. Bayesian Model Comparison and Model Estimation

3.1. What do we mean by the word "Model"?

In this paper, the word ‘model’refers to the quadriplet mr =
(
vr, wr, λ̃r, λ̄r

)
(where vr ∈ V ,

wr ∈ W and λ̃r ∈ Λ̃, λ̄r ∈ Λ̄) unless it is the PH (of which there are three variants) and where r

is a specific model. Therefore, models are indexed by r with the set of all models being contained

in the set R = (1, .....,#R). However, the model spaces may be limited to subsets of R which

we call R, which contain #R elements. Therefore, a model is defined when it is populated by a

set of aspect forms, but where the parameters need not be set. For each model, there is a set of

parameters specific to the model with different parameter supports. We shall denote the collection

of all these parameters for a given model as the vector θr (or θn,r where applied to individual n)

where each model generates a parameter support Θr. The probability of choosing one prospect

relative to another is dependent on the pair (mr, θr) . The term ‘model’can be ambiguous, since

it can sometimes be used to refer to mr alone, and sometimes to the pair (mr, θr) . Here we refer

to mr as the model, since it is useful to be able to say that two individuals have the same model

even though they may differ in their parameters.

3.2. Marginal Likelihoods, Bayes Ratios and Model Probabilities

The Marginal Likelihood (ML) is a distinctly Bayesian quantity, the calculation of which pro-

vides the basis for model comparison (through Bayes Ratios) and model averaging. The calculation

of the ML is common practice in Bayesian econometrics, with a considerable literature devoted to

its calculation and use. However, as the purpose of this paper is not to introduce unfamiliar read-

ers to this approach, we relegate a fuller discussion of the construction of the MLs and associated

statistics to Appendix A3.

In general, MLs can be defined at Levels 0, 1 and 2, and can be constructed to compare singular

models or classes of models. In our model comparisons, we calculate and employ the quantities

8Some expost sensitivity analysis was performed on these priors. For example, the two parameter probability
weigthings were re-estimated by doubling and halving the prior variances. These had no substantive impact on the
results herein.
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lj (N , R) which represents the logged Marginal Likelihood (LML) for all individuals (N ) for a given

model space R at Level j(j = 0, 1, 2). Within the paper the set R will usually be a model class

defined by a particular aspect form (the model class is, therefore, a limited subset of R called R).

For example, RA could refer to all the models with the POWER-I v-form and RB the set of models

with the QUADRATIC v-form. Alternatively, RA and RB can be defined by the absence of these

forms. A comparison of lj (N , RA) with lj (N , RB) enables a comparison between these two sets

of models (with the larger being preferred) where there has been averaging over the other model

aspects (w-forms and links). For example, we can make a determination about how the POWER-I

v-form compares to the QUADRATIC v-form, which is not conditional on a specific w-form or link.

The Bayes Ratio supporting RA over RB at level j is exp (lj (N , RA)− lj (N , RB)) So, for

example, a Bayes Ratio of 10 would, under uniform model priors, indicate that the model space

with the higher LML was relatively 10 times as likely compared to the model with the lesser LML.

In our empirical section, we report Logged Bayes Ratios (LBR) since the raw Bayes Ratios can

be very large. The reported LBRs are the difference between the LML where a given aspect form

has either been solely included or excluded and the LML is where all combinations of aspect forms

are allowed (the unrestricted model spaceMR).

We also calculate and present the individuals model probabilities (πn,R). These can be in-

terpreted as the probability that a model class R should be applied to an individual n, and we

present πn,R in the form of histograms for key model classes. These probabilities are also used to

produce model averaged estimates of "quantities of interests" such as ∆, which we use to estimate

an individual’s probability for the w-form.

3.3. Model Estimation

Adaptive Monte Carlo Markov Chains (MCMC) (see Andrieu and Johannes 2008) were used

to estimate all models. This followed from an investigation of a subset of models estimated on

a subset of individuals, which initially used a random walk Metropolis Hastings algorithm (e.g.

see Koop 2003). While this algorithm converged quickly for most model-individual combinations,

the mixing of the sampler was slow for a small proportion of models. While the parameters of

interest are non-normal, each of the parameters is expressed as a function of a parameter with a

normal prior, which suggested that a multivariate normal proposal density would be an appropriate

choice for an MCMC independence chain. Investigation of the output from the random walk

samplers also confirmed that the posterior distributions (for the untransformed parameters) could
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be approximated by normals. Therefore, our approach to estimation used an initial phase to

finding proposal densities, followed by another to estimate the parameters (See.Appendix A4 for

details).

3.4. Model Comparison Strategy

Our approach to model comparison takes account of the three different levels of heterogeneity

(j = 0, 1, 2) discussed in the Introduction. The results reported in Table 1 and 2 are LBR for

the model sets defined by the sole inclusion (in Table 1) or exclusion (in Table 2) of a given

aspect form at Levels 0, 1 and 2. Sole inclusion means that all forms within a given aspect have

been excluded from the model space other than the one listed in the label column. Exclusion

means that a particular aspect form is no longer part of the model space. We have taken this

approach to model comparison as the sole inclusion and exclusion comparisons address slightly

different questions in relation to model comparison:

• The inclusion approach asks whether a particular aspect form can adequately replace all the

forms within that aspect; and,

• The exclusion approach asks whether a particular aspect form can be replaced by the collection

of other forms within the aspect.

As part of the model comparison exercise we report the LML values for the unrestricted model

space (MR) for each heterogeneity level at the bottom of Tables 1 and 2. These estimates are

l0 (N,R) = −4206.09, l1 (N,R) = −3531.26 and l2 (N,R) = −3633.92, and they can be used in

conjunction with the LBRs within the Tables (at the same respective levels) to obtain the "top" or

"best" model LMLs for eachMR defined by the inclusion or exclusion of an aspect form. Notably,

the models with the highest LML at Levels 0 and 1 would be the same as if we were to assemble

models by choosing each of the highest performing aspect forms based on their model averaged

LMLs.9

So for example, if we consider Level 0 in Table 1, and then we take the LBR for the best aspect

forms, add the LBRs together and then take this value away from l0 (N,R) we arrive at the estimate

of the LML for the "Top Model". Thus, a positive LBR in Table 1 means that by imposing a

9We note, that while this makes complete sense, it is not a formal requirement that the two should equate. A
particular aspect form could perform well when averaged across the other aspect forms, yet not actually be part of
the model with the very highest LML.
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particular aspect form on all individuals has resulted in an improvement of the performance of the

model space relative to the unrestricted model spaceMR. In contrast, a negative LBR in Table 2

indicates that the exclusion of this model aspect reduces the explanatory power of the model space.

However, one important difference in terms of model comparison is that the PH specification is a

separate model and it is not combined with other aspects. Also, for the PH specifications there

is no distinction between Level 1 and Level 2 for ‘sole inclusion’in Table 1, although there is a

distinction between Levels 1 and 2 for exclusion in Table 2.

Although not a formal requirement, at Levels 0 and 1, we would generally expect a positive

LBR in Table 1 to be associated with a negative LBR in Table 2. However, for Level 2, this is

not necessarily to be expected. For example, a particular aspect form may do well in explaining

a subset of individuals, yet do badly when applied to everybody. In this case we might obtain a

negative LBR in Table 2 and positive LBR in Table 1 associated with this aspect form. Indeed,

it can be observed within Table 2, that the LBRs for a number of aspect forms are the same for

Levels 0 and 1. This is because these aspects are associated with models with very low LMLs.

However, since the model space continues to include the highly performing models, the reduction

in the LML is ostensibly due to the relatively small penalty incurred by increasing the dimension

of the model space from a large dimension to an even larger one.

4. Results

4.1.1. The Representative Agent (LEVEL 0)

We see from Tables 1 and 2, that at Level 0, the worst performing specification (given the

most negative values in Table 1, and slight positive value in Table 2) is the PH, although the most

general specification (PH-II) does improve model performance with estimates for the thresholds

of {E (ϕ1) , stdv (ϕ1)} = {0.0392, 0.00496} and {E (ϕ2) , stdv (ϕ2)} = {0.1470.0139}. The TAX w-

form is the worst performing model within the compensatory class. Interestingly, the second best

w-form is the POWER w-form, even though ultimately it is not supported in terms of inclusion

or exclusion in Tables 1 and 2. This finding is also reflected by the plot of the w-form for

the top performing Level 0 specification, the PRELEC-II, which is presented in Figure 1 For

the PRELEC-II the resulting parameter estimates are {E (β5) , stdv (β5)} = {0.629, 0.055} and

{E (β6) , stdv (β6)} = {0.829, 0.026}).10

10Stott (2006) reports values of exactly 1 for both parameters of the PRELEC-II which is actually Linear, even
though the PRELEC-I estimate is not linear. This seems unlikely, though is technically possible as the estimates
are derived as medians of individuals, rather than using the representative agent model we are reporting here.
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{Approximate Position of Figure 1}

Interestingly, the shape of this w-form shown in Figure 1 is not really of the classic IS shaped

form favoured in the literature, but more of a concave function over the entire range. Therefore, our

representative agent is estimated to be risk averse in the sense of having a concave v, but counter

to this, w overweights low probability large payoffs, though is rather optimistic with respect to high

payoffs with high probability also.11

Overall the best combination of aspects incorporates a POWER-I v-form12 and PRELEC-II

w-form, a LOGIT λ̄-form and C-UTILITY λ̄-form (its LML is reported at the bottom of Tables

1). This conclusion is reached since the sole inclusion of each of these aspect forms is supported in

Table 1, and their exclusion is unsupported in Table 2. The LBRs for each of these aspect forms

in Table 1, while positive, are moderate or small. The LBRs in Table 2 are somewhat larger in

absolute terms. At Level 0 there is only one positive LBR within each aspect in terms of inclusion

and only one negative value for the same aspect forms in terms of exclusion.

{Approximate Position of Tables 1 and 2}

4.1.2. Parameter Heterogeneity - Model Homogeneity (LEVEL 1)

Next we consider the heterogeneous parameter specifications (Level 1) with results again re-

ported in Tables 1 and 2. With a Level 1 specification all respondents are endowed with a common

model, but allowed to have different parameters.

Dealing first with the PH model, our Table 2 results show that there is not much to be lost or

gained by including the PH within the model space with LBRs close to zero at Level 1. However,

as we can see in Table 1, the sole inclusion of the PH is clearly outperformed by any of the

compensatory models given the very negative values relative to the other LBRs for the compensatory

models. The generalisations of the PH, allowing it to have estimated thresholds, significantly

improves its relative performance, nonetheless, even with these generalisations there is no basis for

arguing that these PH specifications outperform the compensatory models, at least in this context.

As with Level 0, at Level 1 within each aspect there is only one form with a positive LBR in

Table 1 for each of the non-PH models, and a negative LBR in Table 2. Thus, the choice of highest

11We note the observation of Wakker (2010) page 228 about the stability of probability weighting compared to
utility curvature.
12Although not explicitly reported the estimated parameter value is E (α1) = 0.197 with a standard deviation of

0.013. This results indicates a strongly concave form, which is consistent with Stott (2006) who reports 0.19.
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performing aspects forms is unambiguous. As in the Level 0 case, starting with the v-form aspect,

we see that the POWER-I v-form is a clear winner with the highest LBR in Table 1 and a negative

LBR in Table 2. It is larger than the alternative forms by a considerable margin. It is then

followed by the LOG, and EXPO-II in Table 1, though neither are supported by having positive

LBRs in Table 1 or negative in Table 2.

Turning to the w-form aspect, the two top performing w-forms are the more general ones

(PRELEC-II and G&E) with the G&E being the best performing followed by the PRELEC- II

since it is the only one with a positive LBR in Table 1 and a negative LBR in Table 2. As with

Level 0, the worst performing w-form in Table 1 is the TAX model. These results are inconsistent

with Stott (2006), who concluded that the PRELEC-I is the better w-form. However, Stott (2006)

arrives at this conclusion by arguing that, after elimination of other poorly performing aspects, the

PRELEC-I performs the best, even though in general the two parameter forms (PRELEC-II and

G&E based on rankings and averages of AICs) are the top ranked forms if there is no elimination

of poorly performing aspect forms.

With respect to the λ̃-form it is evident, as at Level 0, that the C-UTILITY λ̃-form outper-

forms both the UTILITY and the C-EQUIV. This result further supports the idea that contextual

utility has both empirical support as well as theoretical motivation. However, we note that the

difference between C-UTILITY and UTILITY is relatively small, whereas the C-EQUIV model

does considerably worse than both these other forms.

With regard to the λ̄-form, the BETA-II λ̄-form outperforms the other λ̄-forms, with the next

preferred being the BETA-I. Our results suggest that the PROBIT outperforms the LOGIT spec-

ification, a finding that again does not completely accord with that of Stott (2006). The best

performing links have changed as a result of moving from Level 0 to Level 1. If we were to give

this a structural interpretation, it would be that the treatment of the λ̄-form in terms of individuals

forming a subjective distribution of outcomes which takes account of the bounded nature of that

distribution is supported. However, the way that people construct that distribution differs across

individuals. The poor performance of the CONSTANT λ̄-form is noteworthy as the worst link to

be imposed on all models.

4.1.3 Heterogeneity in Parameters and Models (LEVEL 2)

We now consider our Level 2 results. In this case, in addition to the results in Tables 1 and 2,

we report a "best-worst" analysis in Table 3.
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{Approximate Position of Table 3}

Table 3 reports for each model aspect the number of times a particular form occurs as the

top model over all individuals. Particular care needs to be taken in interpreting the numbers

in Table 3, and should not be used as an accurate guide to the overall performance of a given

specification. In addition to Table 3, we also present Figure 3 that illustrates model probabilities

by individuals by general model class: the PH; TAX; the Linear Probability w-form; and the Non-

Linear PT w-forms. In Figure 2 these model probabilities have been calculated using a "uniform"

0.5 prior probability on the models within that class and a collective 0.5 prior probability on all

other models of a different class, where all models within the classes are considered equally likely.

This represents a change in model priors for each case, so there is no reason for model probabilities

across model classes to add to one across individuals. Therefore, Figures 3 illustrates the revision

of the probability distributed across individuals after observation of the data, when one starts from

the position that they are equally likely to come from a particular model class and the class of all

other models.

Dealing first with the PH, we have already established that the sole inclusion of the PH performs

very poorly at Level 1 or 2. From the top part of Table 3, we can see that for five of these individuals

the PH-II is in fact the top performing model and that these individuals have very high posterior

probabilities of being PH types. These results highlight the fact while as a model of collective

behaviour (as discussed in the preceding section) the PH is a poor performer, the PH-II is a good

candidate model for small a number of individuals, which was being reflected in the positive LBR

in Table 2. .Turning to Figure 2, we can also see that very low model probabilities are assigned

to the collective PH models, with 75% or so of individuals having near zero weight assigned to the

PH model class, with the remainder being given non-negligible weight. Importantly, however, this

does not mean that the PH model did not perform well for some individuals.

{Approximate Position of Figure 2}

If now consider the compensatory specifications at the Level 2, results in Tables 1 and 2 are

different from Levels 0 and 1 in that there are several forms within some of the aspects that are

supported. First, the POWER-I v-form enjoys the most support in terms of both inclusion and

exclusion. This support is also reflected in the high number of individuals who consider POWER-I

the best v-form. We also note, that the LOG v-form also has positive LBRs in both Tables 1 and
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2 and clear support in Table 3. Likewise, both the PRELEC-II and G&E w-forms are supported

by positive LBRs in Table 1 and negative LBRs in Table 2. However, the removal of the POWER

and PRELEC-I w-forms are marginally not supported given their negative values. For the Inner

Links both the UTILITY AND C-UTILITY λ̃-forms are both supported as being components of

the best performing model space, as both have positive values in Table 1and negative in Table 2.

The results in Table 1 with regard to the Outer Link also suggest that one λ̄-form can adequately

substituted for the others, though the BETA links do best. In Table 2 we observe that the removal

of either BETA λ̄-form reduces the performance of the model space, and of note is the fact that

unlike Levels 0 and 1, the removal of the CONSTANT λ̄-form is not supported in Table 2. What

this suggests is that while the CONSTANT λ̄-form is a very poor form to ascribe to everybody

(given its large negative value in Table 1), it does very well at describing some individuals (given

its large negative value in Table 2). Also the last panel of Figure 2 contains the collective model

probabilities for the non-linear (or rather potentially non-linear) variants of PT. As can be seen

this class of model has considerably more support than the others, but notably, very little support

for a few individuals and one individual in particular.

Turning to the TAX model even though its removal was supported within Table 2, an examina-

tion of Table 3 indicates that the TAX model is also the top model for 5 individuals. This finding

is also observed in Figure 2 with around 50% of individuals with very small posterior probabilities,

with only 15 individuals having prior mass above 50%. Thus, the TAX model remains a good

candidate model for a small number of individuals, though as a characterisation of behaviour for

all or most individuals it is poor as noted discussed in the previous section.

Finally, if we consider the LINEAR w-form we observe little support in Tables 1 and 2 but

interestingly this is the top model for 20 individuals as reported in Table 3. Notably, however, it

is also in the worst for specification for 68 people. Similarly, in Figure 2 there are a considerable

number of individuals that have relatively large prior probabilities of being LINEAR for the w-

form. However, a minority of individuals (36) have more than 50% posterior probability of being

LINEAR. So again, there is evidence that for a minority of individuals that the LINEAR w-form

remains a good candidate model, but this is certainly not true for the majority.

4.2. Overall Model Comparison

The first finding to note is that there has been a large fall in the LML values for all aspect forms

as a result of imposing the representative agent restriction (Level 0) relative to either Levels 1 or 2
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(that is comparing l0 (N,R) , l1 (N,R) and l2 (N,R)). If we were to treat the representative agent

model as a hypothesis, we would reject this restriction in complete confidence, in favour of agents

having different parameters, even if they have the same models (combination of aspect forms)

imposed upon them. Both l1 (N,R) and l2 (N,R) exceed −4199.74, which is the top performing

Level 0 model. Thus, while the notion of a representative agent may be an attractive assumption,

such a construction disguises the true heterogeneous nature of risk attitudes across individuals, at

least for this data set.

Another important observation is that, as l1 (N,R) exceeds l2 (N,R), this in a sense supports

the common model restriction (R) as specified by the set of aspect forms above. However, by

narrowing the model space to a subset of well performing aspect forms one can achieve LML values

that exceed the top performing Level 1 model. In order to explore this further, we conducted a

search13 over model spaces. Our results indicate that the top model space (at Level 2) contained

the POWER-I, + (PRELEC-II and G&E) + (CONSTANT and BETA I and BETA-II) + (C-

UTILITY) aspect forms, with a Level 2 LML equal to −3518.49. This exceeds the top Level 1

model LML (−3524.84). The subtraction or replacement of any aspect form (or PH model) reduces

the LML at Level 2. Therefore, although at Level 2 in the full model space there is evidence that

removal of the POWER w-form, and the UTILITY Inner Link reduced performance, when seeking

an optimal combination of forms they played no part. Thus, this result further supports the

C-UTILITY λ̃-form as the optimal choice even at Level 2.

Overall, these results support the contention that no single w-form or λ̄-form was suffi ciently

flexible to adequately model all individual behaviour. As discussed above, overall non-linear w-

forms, other than the TAX model, do better at explaining the majority of individual behaviour.

However, the nature of the non-linearity has not been broadly discussed in the literature. This

issue is explored in Figure 3.

{Approximate Position of Figure 3}

Figure 3 gives the estimates by individual for the five non-linear PT w-forms, along with the

model averaged estimates over all of the six in the top left hand corner (averaging uses [20]). Each

plot has curves for all individuals though it may appear as shading. As can be seen the model

13Our search was not over the entire model space. We started by including all aspect forms for which elimination
was not supported in Table 2. The search was then over all model spaces in which there was an elimination of one
or more of these aspect forms.
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averaged version take some of the attributes of each of the components. What is also clear from

both the averaged and two parameter w-forms is that there are individuals which appear to be

mainly concave, mainly convex, IS or S-shaped.

Individuals were also grouped into whether they had an S or IS shape or were (almost) purely

concave or convex. What we can see is that there is a mix of individuals. Five individuals are

concave (so purely "optimistic"), but with a larger number of individuals being convex (so purely

"pessimistic), but with the remainder being fairy evenly split between being S or IS shaped. This

paints quite a different picture from that of the representative agent model (Level 0). Therefore,

the combined choices of individuals are best modelled by a primarily concave w-form, but an

examination of all individual level results in no way supports the contention that most people

behave in this way.

Finally, it is worth noting that we have found this degree of heterogeneity in spite of the limited

prospect employed to generate the data examined. This of course does not imply that a different

prospect would yield similar results, but it does suggest that more attention needs to be given to

potential heterogeneity present in such data.

5. Conclusions

This paper has reexamined models of choice under risk using a Bayesian approach to estimation

and model selection. We compared a large range of model specifications including PT models, the

TAX model of Birnbaum and Chavez (1997) and a generalisation of the PH of Brandstätter et al.

(2006) for which the thresholds were estimated. In addition, all models have been examined at

different levels of heterogeneity so that model performance can be assessed in relation to aggregate

as well as individual behaviour.

In terms of the v-form aspect (value functions), our results are in general accordance with the

findings of Stott (2006). The one parameter POWER-I was far superior to the other forms con-

sidered, whether it was applied at the representative agent level (Level 0) or at the individual level

(Level 2). In addition, our results support the use of non-linear w-form as suggested by PT, but this

conclusion comes with some caveats. Whereas Stott (2006) preferred the one parameter PRELEC-

I specification, we found that the two parameter w-forms were superior, and our findings were

different depending on the level of heterogeneity that was permitted. For the representative agent

(Level 0) the two parameter PRELEC-II was preferred, whereas with heterogeneity in parameter

values (Level 1) the G&E specification was generally preferred to the PRELEC-II. However, where
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heterogeneity in both forms and parameters was permitted (Level 2), neither of the generalised

forms alone seemed suffi cient to explain the behaviour of all individuals. This was also reflected

in the fact that individuals seemed to have a great degree of heterogeneity with respect to w-form

(i.e., probability weightings).

Overall, at the representative agent level (Level 0), there appeared to the familiar overweighting

of small probability high payoffs, but of a more concave form than the IS form than commonly

assumed within the literature. While all or nearly all individuals appeared to have concave v-form

(value functions), the individual w-form (probability weightings) were commonly of IS, S, concave

or convex functions, consistent with the observation of Wakker (2010, p.228) that "In general,

probability weighting is a less stable component than outcome utility". In behavioural terms what

this means is that there are individuals that behave in a pure pessimistic way, pure optimistic

way, as well as having the kind of reversal in probability weightings dictated by the S or IS forms.

This also means that researchers should be careful in the implementation of the IS approach, as

recommended by Kahnmann and Tversky (1992). Researchers should not automatically jump

to the conclusion that a form that ostensibly facilitates IS behaviour should be imposed on all

individuals.

Across the different levels of heterogeneity, the contextual utility approach introduced byWilcox

(2011) was found to have the most support relative to the utility difference or the certainty equiv-

alent difference approaches. The certainty equivalent approach was significantly inferior to the

other two. While the contextual utility approach was supported empirically, some of the theoreti-

cal motivation for the contextual utility approach is weakened by the fact that individuals have a

wide range of probability weightings meaning that the categorisation of somebody being more or

less stochastically risk averse relative to others will prove impossible.

More generally, the results herein also remind us that for all the classes of models investigated

here, no one model could adequately predict everybody, and the collective set of models failed

to predict the behaviour of all individuals. It is, of course, possible that such a framework that

can explain all behaviour simply does not exist and individuals employ different strategies when

making choices under risk. Indeed, we found little support for either the TAX or PH model

being applied to all individuals, though these models outperformed others for a small number of

individuals. Furthermore, our generalisations of the PH approach improved its performance, but

not suffi ciently for it to outperform compensatory approaches.
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This paper also introduced a BETA Outer Link which was found to outperform those com-

monly employed in the literature such as the LOGIT, PROBIT or CONSTANT probability link

when applied at the individual level, though the LOGIT was preferred at the representative agent

level. Notably, the CONSTANT probability Outer Link performed poorly relative to a others if

applied to everybody, but seemed a good descriptor for some individuals. Therefore, in line with

our expectations, deterministic compensatory models were more likely to predict choices if there

were large differences in utility (contextual utility or certainty equivalents) rather than small ones.

However, some individuals seemed to be performing in a way that was more consistent with the

‘trembles’characterisation.

Looking to the future, we would contend that there is room for further empirical studies aimed

specifically at examining the nature of risk functionals in the loss and mixed domains, taking a

further look at PT propositions such as convexity of the Value function within the loss domain and

loss aversion. These propositions could be usefully examined under a wide range of specifications

using the model averaging approaches employed in this paper, or perhaps employing a reversible

jump approach (e.g. Green, 1995) so that computational burdens of computing thousands of

models can be reduced. Some may take the view that since there are now a number of papers

which estimate preference parameters, this literature is already exhibiting decreasing returns. We

take a different view. On such a fundamental issue there is a significant need for further work to

be done.

Indeed, there are a significant range of estimates in the literature for key preference parameters

that suggest that perhaps behavioural parameters such as those governing probability weightings

may be heavily dependent on the experimental design, or more generally the context in which

decisions are made. If, for example, further studies find quite different probability weighting

patterns we would question whether the conditions and environment within which the experiment

are having a significant role in peoples attitudes towards risk and use of probabilities, which PT

and RDU theories to do not permit.

Finally, we believe that there is benefits in taking on board some of the "process based" ap-

proaches used in psychology (e.g. Fiedler and Glockner, 2012) to give a further insight into the

behaviour of individuals, but combining them with econometric analyses of the sort conducted here.
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Table 1: Log Bayes Ratios by Sole Inclusion of Aspect Forms

(Elimination of alternative aspect forms other than that listed)

Pr Heuristic Level 0 Level 1+2

PH-0 -976.49 -1559.71

PH-I -538.14 -882.41

PH-II -502.89 -856.51

Value

(v-form)
Level 0 Level 1 Level 2

P-weight

(w-form)
Level 0 Level 1 Level 2

POWER-I 1.71 1.80 66.04 TAX -156.27 -399.31 -289.05

EXPO-I -106.33 -142.90 -81.54 LINEAR -11.33 -199.05 -140.65

LOG -0.65 -82.60 5.31 PRELEC-I -7.94 -30.71 -22.34

QUAD -375.02 -445.26 -500.24 K&T -8.34 -162.74 -110.31

POWER-II -22.33 -395.41 -390.41 POWER -5.29 -130.99 -54.15

EXPO-II -91.07 -128.07 -61.60 PRELEC-II 1.95 -5.75 13.61

G&E -9.31 1.95 9.04

Outer Link

(λ̄-form)
Level 0 Level 1 Level 2

Inner Link

(λ̃-form)
Level 0 Level 1 Level 2

LOGIT 1.60 -74.30 -90.65 UTILITY -5.85 -2.93 10.88

PROBIT -8.73 -23.38 -47.49 C-UTILITY 1.10 1.09 13.57

CONSTANT -334.48 -208.73 -144.15 E-EQUIV -77.76 -209.44 -145.74

BETA-I -10.22 -1.73 -2.81

BETA-II -2.78 1.58 -7.86

Notes: Values are differences of the form lj (N,R)− lj (N,R) where j denotes level

l0 (N,R) = −4206.09, l1 (N,R) = −3531.26, l2 (N,R) = −3633.92.

Top Model (Level 0) POWER-I, PRELEC-II, LOGIT,C-UTILITY: -4199.75

Top Model (Level 1): POWER-I,G&E, BETA-II, C-UTILITY: -3524.85

Top Model Space (Level 2) POWER-I, G&E+PRELEC-II,

BETA-I+BETA-II+CONST, C-UTILITY: -3518.49

A Positive LBR supports the inclusion of an aspect form
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Table 2: Log Bayes Ratios Under Exclusion of Aspect Forms

(Elimination of the listed aspect form)

PH Level 0 Level 1 Level 2

PH-0 0.0015 0.0027 0.14

PH-I 0.0015 0.0027 -0.04

PH-II 0.0015 0.0027 -0.23

Value

(v-form)
Level 0 Level 1 Level 2

P-weight

(w-form)
Level 0 Level 1 Level2

POWER-I -2.27 -84.21 -49.71 TAX 0.15 0.16 5.96

EXPO-I 0.18 0.18 5.62 LINEAR 0.15 0.16 .96

LOG 0.09 0.18 -11.50 PRELEC-I 0.15 0.16 -.98

QUAD 0.18 0.18 13.00 K&T 0.15 0.16 2.56

POWER-II 0.18 0.18 12.05 POWER 0.15 0.16 -2.71

EXPO-II 0.18 0.18 4.33 PRELEC-II -6.96 0.16 -7.19

G&E 0.15 -7.55 -6.79

Outer Link

(λ̄-form)
Level 0 Level 1 Level 2

Inner Link

(λ̃-form)
Level 0 Level 1 Level 2

LOGIT -4.17 0.22 10.48 UTILITY 0.40 0.39 -13.22

PROBIT 0.22 0.22 2.22 C-UTILITY -6.55 -3.62 -11.88

CONSTANT 0.22 0.22 -22.10 E-EQUIV 0.41 0.41 14.26

BETA-I 0.22 0.19 -10.19

BETA-II 0.21 -3.12 -5.62

Values are differences of the form lj (N,R)− lj (N,R) where j denotes level

l0 (N,R) = −4206.09, l1 (N,R) = −3531.26, l2 (N,R) = −3633.92.

A positive LBR supports the exclusion of an aspect form
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Table 3: Occurrences of Best-Worst Performing

Forms over Individual at Level 2

PH Best Worst

PH-0 0 12

PH-I 0 0

PH-II 5 0

Value

(v-form)
Best Worst

P-weight

(w-form)
Best Worst

POWER-I 44 0 TAX 5 0

EXPO-I 1 1 LINEAR 20 68

LOG 31 1 PRELEC-I 8 3

QUAD 5 76 K&T 10 7

POWER-II 3 0 POWER 17 0

EXPO-II 1 0 PRELEC-II 15 0

G&E 10 0

Outer Link

(λ̄-form)
Best Worst

Inner Link

(λ̃-form)
Best Worst

LOGIT 2 0 UTILITY 42 7

PROBIT 21 0 C-UTILITY 23 8

CONSTANT 19 21 E-EQUIV 20 63

BETA-I 29 1

BETA-II 14 56

Note: There are 90 individuals in the sample. 85 out 90 are

best described by a compensatory model. Only 5 are best

described by the PH.

32



Figure 1: Representative Agent w-form

Function
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Figure 2: Model Probabilities by Main Model Types
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Figure 3: Probability Weighting Function Plots by Individual
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Appendix A1: Transformations

The parameters of interest in the models take θ in only one of two forms. That is, we parame-

terise our model by using θ = t1 (ϑ; δl, δu) = δl+(δu − δl) eϑ

1+eϑ
or θ = t2 (ϑ) = exp (ϑ) where ϑ ∈ R.

In the case of t1 (ϑ; δl, δu) the transformed parameter lies within the interval (δl, δu). We set the

values for {δi} a priori in accordance with the inequality constraints. The priors for parameters of

the form t1 (ϑ; δl, δu) are (ϑ ∼ N (0, ζ)) where they are assigned a variance ζ equal to 9
4
, yielding an

approximately uniform prior within the specified interval, although there is less mass at the very

extremes. Thus, in a sense we are being ‘non-informative’about the values except that we have

specified the interval over which the parameters lie. For parameters of the form t2 (ϑ) we assume

that ϑ is normally distributed so that the implied prior distribution for the transformed parameter

is log-normal.

Appendix A2: Pratt Coeffi cients

For the v-forms in the text are as follows:

POWER-I : pc =
(1− α1)

x
: α1 > 0

EXPO-I : pc = α2 : α2 > 0

LOG : pc =
α3

(1 + α3x)
: α3 > 0

QUAD : pc =
α4

1− α4x
: α4 > 0, α4 <

2

xmax

POWER-II : pc =
(1− α5)

α6 + x
: α5 > 0, α6 > 0

EXPO-II : pc =
(
(α7 − 1)x−1 + α7α8x

α8−1
)

: α7 > 0, 0.5 < α8 < 1.5

Appendix A3: Marginal Likelihoods and Model Probabilities

Individuals are indexed by n and the collection of all individuals as the set N = (1, .....N).

Models are indexed by r with the set of all models being contained in the set R = (1, .....,#R).

However, the model spaces may be limited to subsets of R which we call R, which contain #R

elements. For the representative agent model (Level 0), and collective choices of all individuals as

Y = (y1, .....yN) where individual n makes choices yn, the marginal likelihood for model mr is the
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prior predictive density of the observed data:

f (Y |mr) =

∫
θr∈Θr

f (Y |mr, θr) f (θr|mr) dθr (7)

where f (θr|mr) prior distributions of the parameters θr and f (Y |mr, θr) is the likelihood of the

data. Commonly, it is the log marginal likelihood (LML) that is the reported quantity which we

define as l0 (N , r) = ln f (Y |mr) and can be ‘averaged’over models in the sense that if a class of

models is defined as MR = {mr}rεR where R ⊆ R (R being the index set of all models) then:

l0 (N , R) = ln f (Y |MR) = ln

(∑
rεR

el(N ,r)f (mr|MR)

)
(8)

where f (mr|MR) is the prior distribution for a given model conditional on MR. If all models

within that class are equally likely, then f (mr|MR) = 1
#R
. (with #R denoting the number of

elements within R). Therefore:

l0 (N , R) = ln

(∑
r∈R

el(N ,r)

#R

)
(9)

At the individual level, the marginal likelihood of a model with respect to an individual is,

f (yn|mr) =

∫
θn,r∈Θr

f (yn|mr, θn,r) f (θn,r|mr) dθn,r (10)

Under the assumption that the same parameter priors are assigned to every individual f (θn,r|mr) =

f (θr|mr) for all n. The LML isl (n, r) = ln f (yn|mr) as at Level 0, the LML at the individual level

can be ‘averaged’over models in the sense that if a class of models is defined as MR = {mr}rεR
where R ⊆ R (R being the index set of all models) then:

l (n,R) = ln f (yn|MR) = ln

(∑
rεR

el(n,r)f (mr|MR)

)
(11)

and if all models are equally likely within the class ofMR:

l (n,R) = ln

(∑
r∈R

el(n,r)

#R

)
(12)

Where there are no parameter restrictions across individuals, but where individuals share models
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(r), the LML is additive over individuals in the sense that for the set of individuals N

l1 (N , r) =
∑
n∈N

l (n, r) (13)

and for a class of models we can define:

l1 (N , R) = ln

(∑
r∈R

el1(N ,r)

#R

)
(14)

l0 (N , r) and l0 (N , R) we refer to as Level 0 log marginal likelihoods and and l1 (N , r) and l1 (N , R)

as Level 1 LML.

Finally, we define the marginal likelihoods which model over the model class where common

parameters nor common model are imposed on individuals. Define an index of models for all

individuals τ = (r1, ........rN) with a restriction that each rn ∈ R for all n = 1, .....N (but with no

requirement that rn = rn∗ unless n = n∗) and the set of all such model combinations as Ω (R) .

We assume that all elements of Ω (R) are equally likely a priori, and equally likely to apply to all

individuals, then the prior probability for τ is (#R)N and the LML is

l2 (N , R) = ln
∑

τ∈Ω(R)

e
(
∑
n∈N l(n,rn))

#Ω(R) (15)

We refer to this quantity as the Level 2 LML. Note, that under the restriction that r1 = r2 = .... =

rN , l2 (N , R) collapses to l1 (N , R).

Model Probabilities

Individual model probabilities can be constructed using:

f (mn,r|yn) =
f (yn|mn,r) f (mr)

f (yn)
=
el(n,r)f (mn,r)

f (yn)
(16)

where under equal prior odds for all models applying to all individuals f (mn,r) = 1
#R , then using∑

r∈R f (mn,r|yn) = 1, the probability for individual n having model mr is:

πn,r =
el(n,r)∑
r∈R e

l(n,r)
(17)
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πN ,r is the probability that model r can be applied to all individuals, and is defined as

πN ,r =
el(N ,r)∑
r∈R e

l(N ,r) (18)

and likewise, the probability that a class of models (R) pertain to an individual

πn,R =
el(n,R)∑
R∈R e

l(n,R)
(19)

The LMLs form the framework of comparisons for models, and penalise those models with

more parameters. The values of l (n, r) or l0 (N , r) are estimated after simulation of the posterior

distribution of the models, using the method of Gelfand and Dey (1994), which is also outlined in

Koop 2003 the associated estimates for , l1 (N , R), l2 (N , R) πn,r etc., can then be calculated using

the relationships above. For set where (#R)N is large l2 (N , R) cannot be feasibly calculated as

above. However, using a proposal density for τ based on the posterior probabilities, l2 (N , R) can

be estimated to a high degree of accuracy by simulation.

Within the paper the set R will usually be a model class defined by a particular aspect form.

For example RA could refer to all the models with the POWER-I value form and RB the set of

models with the QUADRATIC value form. Alternatively, RA and RB can be defined by the

absence of these forms. . Thus, for example a Bayes Ratio of 10 would, under uniform model,

priors indicate that the model space with higher LML was 10 times as likely compared to the lesser

one. In our empirical section we report logged Bayes Ratios since the raw ones can be very large.

We also calculate and present the individual model probabilities πn,R as histograms in the empirical

section. These probabilities are also used to produce weighted estimates of "quantities of interests"

∆. For example, if an individual has ∆n,r under model r, then a model averaged estimate of this

quantity can be obtained using

∆̄n,R =
∑
r∈R

∆n,rπn,r (20)

While we have calculated these for a wide range of parameters, we present only the model averaged

estimates of the probability weighting functions due to space constraints.

Appendix A4: The Adaptive MCMC sampler.

The following sequence was used:

Step 1: There was a initial random walk Metropolis-Hastings phase of 5,000 draw in order to
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reach a starting point for phase 2

Step 2: A ‘heated’ random walk phase of 50,000 draws from which a multivariate normal

proposal density was constructed. This proposal was a mixture of

f (x) =
1

2
N
(
µ̂, Σ̂

)
+

1

2
N
(
µ̂, 3Σ̃

)

where µ̂ and Σ̂ were the mean and variance of the sample from the heated random walk phase, and

Σ̃ was a diagonal matrix with diagonal elements
{

Σ̂ii

}
. The draws for this phase were not used as

posterior samples, but only in the construction of the initial proposal densities.

Step 3: 100,000 draws were then taken using the f (x) as the proposal, with the proposal being

updated every 100 iterations. At the end of this phase convergence was tested, and if it passed

then moved to step 4 and if it did not pass Step 5.

Step 4: Estimates and the marginal likelihood was calculated using the method of Gelfand and

Dey (1994) with a multivariate normal tuning density (see Koop, 2003).

Step 5: If convergence had not been achieved then the number of draws from the sampler was

doubled and convergence retested. Sample size were doubled continuously until convergence of the

model was achieved.

We employed two tests. First, the convergence diagnostic outlined in Koop (2003), and second,

a requirement that the serial correlation of the thinned sequence of 10,000 draws constructed from

the 100,000 had a serial correlation of less than 0.5. The entire estimation process was run twice so

to check if there were any substantial differences. There were no substantive differences in the two

runs. Finally, where results were obtained that seemed ‘unusual’, these models were investigated

more closely to uncover any problems. However, while there were a few of these cases, there was

no evidence that they are due to estimation problems. Note that updating of the proposal density

violates as in step 3 reversibility of the chain. However, as outlined in Andrieu and Johannes (2008),

this updating is allowed providing it obeys the principle of vanishing adaptation.

40


