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A refined parametric model for

short term load forecasting

Nathaniel Charlton1, Colin Singleton1

CountingLab Ltd, Reading, United Kingdom

Abstract

We present a refined parametric model for forecasting electricity demand,
that performed particularly well in the recent Global Energy Forecasting
Competition (GEFCom 2012). We begin by motivating and presenting a
simple parametric model, treating electricity demand as a function of tem-
perature and day of the year. We then set out a series of refinements to
the model, explaining the rationale for each, and using competition scores to
demonstrate that each successive refinement step increases the accuracy of
the model’s predictions. These refinements include combining models from
multiple weather stations, removing outliers from the historical data and
special treatment of public holidays.

1. Introduction

In this paper we present a refined parametric model for short term load
forecasting. Our model performed particularly well in the recent Global
Energy Forecasting Competition (GEFCom 2012). In Section 2 we motivate
and introduce a simple parametric model, which already performs better than
the competition’s benchmark model. Section 3 sets out a series of refinements
to our model, using Weighted Root Mean Squared Error (WRMSE) scores
from the competition to confirm that each refinement improves the results.
Section 5 identifies possible avenues for further improvement and Section 6
concludes.
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New feature Improvement Score

Competition benchmark model - 95,588

Our initial model - 84,362
Multiple weather stations 901 83,461
Day-of-season terms 4,359 79,102
Four seasons instead of two 2,366 76,736
Local averaging 3,090 73,646
Outlier removal 120 73,526
Public holidays treated specially 2,898 70,628
Smoother temperature forecast 3,541 67,087

Our competition entry score - 67,214

Table 1: WRMSE scores obtained by our model after each refinement step. (These scores
are from the private leaderboard, obtained after the competition.)

2. Our basic parametric model

The models we build are based on the well-established idea of multiple
linear regression. Existing linear regression models for electrical load include
those discussed in Moghram & Rahman (1989) and Ramanathan et al. (1997),
as well as the competition’s benchmark model. Our initial model supposes
that electricity usage is a function

E = α1 + α2d+ α3T + α4Td+ α5T
2 + α6T

2d (1)

where T is the temperature, d is the day number (ranging from 0 to 1649
for the 1650 days of historical data) and α1, . . . , α6 are coefficients to be
determined. This form is suggested by multiplying out the expression

(a+ bT + cT 2)(rd+ k) (2)

where a, b, c, r, k are constants. The first factor models the quadratic relation-
ship between temperature and energy use that we observe when exploring the
data graphically; the second factor allows the model to reflect any changes
over time in the response to temperature. Thus our model takes account of
the effect of temperature on energy use (due to heating and air conditioning),
long term trends in energy use and interactions between the two.
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Figure 1: Using a quadratic function to model the relationship between temperature and
load for zone 1, hour 1 during the summer. The load has been detrended by fitting and
subtracting a long-term linear model.

Figure 1 shows the relationship between temperature and load for zone
1 at hour 1 during the summer, where we have detrended the load by fitting
and subtracting a long-term linear model. Fitting the relationship with a
quadratic function, as shown in the figure, achieves an R̄2 value of 0.70779.
On the other hand, using a cubic function gives a lower R̄2 value of 0.70743,
suggesting that a cubic function, despite having one more parameter, cannot
really fit the data any better. On the basis of observations such as this we
decide not to include T 3 terms in our model (1).

We apply (1) separately for each of the 20 zones and each of the 24 hours of
the day. Additionally we divide the year into two seasons (taking summer as
April to September inclusive and winter as the rest of the year), and divide
the days into two types: weekdays and weekend days. Thus we split the
historical load data into 20×24×2×2 groups and analyse each group of data
separately. This is because we hypothesise that the relationships between
energy use, temperature T and day d may be different for each of these
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20 × 24 × 2 × 2 groups. Householders’ reactions to temperature, say, might
be different at weekends when they are more likely to be at home. Similarly
reaction to temperature may vary with time of day (e.g. at night people are
asleep), season (changing use of heating or air conditioning) and zone (due
to cultural, demographic or climate-related differences). In-sample testing
suggests that this is indeed the case, and that more accurate predictions
are made with this model when we split the data into groups than when
considering all the data together.

In order to apply (1), however, we need to have a value for the temper-
ature T for each zone. Our initial approach is to find, for each zone, the
weather station which “fits the best” with the energy usage of that zone.
Consider the group g = (z, h, s, t) for a given zone z, hour of the day h,
season s and day type t (weekday or weekend). For each weather station
i = 1, . . . , 11 we build an energy model

Ei = α1 + α2d+ α3Ti + α4Tid+ α5T
2
i + α6T

2
i d (3)

by selecting the coefficients α1, . . . , α6 that minimise the sum of in-sample
squared errors for the energy use in group g. We then choose the best weather
station, individually for each group g, again minimising the sum of in-sample
squared errors. The computation of the coefficients is done using singular
value decomposition (SVD) as argued for in (Press et al., 1992, §15.4).

Note that the weather station for each group is chosen independently.
This allows, for instance, different weather stations to be used for a particular
zone during summer and winter. Knowing nothing about the geography of
the zones and weather stations, we find it a priori plausible that, if a zone is
close to two weather stations, one may be more suitable during summer and
the other more suitable during winter, for example because of seasonal wind
patterns.

Finally, in order to produce forecasts from our model, we need to predict
temperatures for the forecast week, 1st July 2008 to 7th July 2008. Because
we are not meteorologists, and wish to concentrate our efforts on understand-
ing load behaviour rather than weather systems, our temperature estimates
take a rather simple form. For each weather station i = 1, . . . , 11, each day
D of the forecast week and each hour h = 1, . . . , 24, we estimate a mean
temperature Mi,D,h using the historical data. Specifically, we look at the
corresponding day of the year in each of the four previous years, and ten
days either side of these; we take the mean temperature at hour h over all
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these days. This makes Mi,D,h a mean of 4× (10 + 1 + 10) = 84 data points.
We then simply use Mi,D,h as our forecast for the temperature at station i
at hour h of day D.

As Table 1 shows, our initial model scores 84, 362 which is already signif-
icantly better than the competition benchmark model. The main differences
between our initial model and the benchmark model are as follows. The
benchmark model contains T 3 terms in addition to T and T 2 terms, but does
not contain Td or T 2d terms. The benchmark model treats each day of the
week separately, rather than grouping them as weekdays and weekend days.
The benchmark model divides the year into twelve months, rather than into
two seasons. Finally as explained above we use different temperature esti-
mates. Note that although overall our initial model performs significantly
better than the benchmark, we cannot say that all of the differences between
our initial model and the benchmark model contribute to greater forecasting
accuracy.

3. Refinements to our model

We now introduce a series of refinements to the initial model, explaining
the rationale for each and noting the improvement in competition score that
each provides. Proposed refinements were first tested to see whether they
improved the model’s in-sample RMSE. In general, refinements which did so
were then used in a competition submission, and kept if they also improved
the public score. With this strategy we aimed to make the most of the limited
number of submissions available.

3.1. Using combinations of multiple weather stations

Assigning one weather station to each zone is quite simplistic. What if a
zone is broadly equidistant from two or more weather stations? To address
this possibility we allow weighted combinations of up to five weather stations
to be used for each group g = (z, h, s, t) of data (where z is the zone, h the
hour of the day, s the season and t the day type). Our final model for the
group is then a linear combination

β1Ei1 + β2Ei2 + β3Ei3 + β4Ei4 + β5Ei5 (4)

of the models from the five best fitting weather stations i1, . . . , i5 (measured
by sum of in-sample squared errors). Again SVD is used to find the coeffi-
cients β1, . . . , β5, with the exception that if any station receives a negative
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coefficient, it is eliminated and the β values recomputed, until all remaining
stations have coefficients ≥ 0. The linear combination (4) is then used to
produce the backcasts and forecasts for the group. This modification reduces
our score by 901, giving a score of 83,461.

In the context of gas load forecasting, models such as in (4), where there
are separate terms for the various weather stations, have been termed Multi-
ple Weather Station (MWS) models in Pang (2012). An alternative to MWS
is to first average the temperatures from a number of weather stations to
make a single “virtual” or “substitute” weather station, and then apply the
single-station model as in (1). The virtual weather station approach is used
for electrical load forecasting in for example Paravan et al. (2002), Dordon-
nat et al. (2008) and Pierrot & Goude (2011). Another alternative to MWS
is used in Fan & Hyndman (2012). As in Pang (2012), we find that MWS
produces better forecasts than the virtual weather station approach.

3.2. Adding day-of-season terms

Examining graphically the fitting errors over the course of the yearly cycle,
we find that our model as described so far tends to overestimate around
March and April, and underestimate around September and October. A
plausible explanation is that householders’ reactions to temperature may
change gradually over the course of the yearly cycle. With this in mind, we
now add a new variable d′, the number of the day within the season (ranging
from 0 to 182). We replace (1) by

E = α1 + α2d+ α3T + α4Td+ α5T
2 + α6T

2d

+ α7d
′ + α8Td

′ + α9T
2d′

(5)

which is suggested by multiplying out the expression

(a+ bT + cT 2)(rd+ sd′ + k) (6)

The introduction of these new terms reduces our score by 4,359, giving a
score of 79,102.

3.3. Changing the number of seasons

Also motivated by the observation that our fitting errors were greatest at
certain times of year, we now split the year into four seasons instead of two:
spring (March, April and May), summer (June, July and August), autumn
(September, October and November) and winter (December, January and
February). This reduces our score by 2,366, giving a score of 76,736.
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3.4. Local averaging

To correct for any local systematic over- or under-estimation in our models
we perform local averaging. Consider Monday 9AM–10AM for the first day of
one of the backcast weeks. Once we have generated an estimate for this hour,
using (linear combinations of) (5), we multiply it by the following factor:

A−14 + · · ·+ A−1 + A1 + · · ·A14

P−14 + · · ·+ P−1 + P1 + · · ·P14

(7)

Here P−14, . . . , P−1 denote the values predicted by our model for 9AM–10AM
on the 14 days prior to the backcast week, and A−14, . . . , A−1 denote the
actual electricity usage for the same days. Similarly P1, . . . , P14 denote the
values predicted by our model for the 14 days after the backcast week, and
A1, . . . , A14 are the actual usages for the same days. Thus if our model
consistently overestimates by a factor of 1.2 around the time of a particular
backcast period, for example, our final backcast will still be correct. When
forecasting, we have no data for the period following the forecast week, so
local averaging is performed using just the 14 days prior to the forecast week.
Local averaging reduces our score by 3,090, giving a score of 73,646.

The load history for one of the zones, zone 10, shows an abrupt increase in
load at the beginning of 2008, by a factor of about 2.8, which persists until the
end of the data. A discussion in the competition forum suggests that this
is because the electricity company redefined the zone boundary. We tried
adding special adjustments to our model to account for this sudden change
but, as long as we used local averaging, no such adjustments produced any
improvement. Therefore we believe that local averaging handles the sudden
change well.

We experimented with using an additive local correction rather than a
multiplicative one, but during in-sample testing this did not perform as well.

3.5. Outlier removal

The historical load data contains some values which are implausibly low,
sometimes even zero. We do not know the cause of these, but it is possible
that they originate from power outages or measurement failures. For each
zone we compute an hourly mean load (across all hours and all days of the
history) and then discard any days of data containing hourly loads smaller
than 20% of the mean. 158 days of data containing outliers are discarded,
147 of them in a single zone (zone 9). Adding outlier removal reduces our
score by 120, giving a score of 73,526.
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3.6. Treatment of public holidays

Following what is suggested in Hong (2010), we treat the following special
days as weekend days: Memorial Day, Labour Day, Thanksgiving Day and
the day after, New Year’s Day, Independence Day and Christmas Day. Other
public holidays receive no special treatment. This refinement reduces our
score by 2,898, giving a score of 70,628.

3.7. Using a smoother temperature forecast

As explained in Section 2 our initial temperature forecasts were computed
by taking time-of-year means, using days within a “window” of 10 days either
side of the target day. By changing this window to 25 days either side, the
temperature forecasts become smoother and our forecasts get better: we
reduce our score by 3,541, giving a score of 67,087.

Experiments with different temperature forecasts confirm as expected
that the load forecast, and its score, are very sensitive to the temperature
forecast used. Yet at the same time, this aspect of the competition task is
somewhat artificial: in reality, utilities wishing to forecast demand can simply
purchase commercially available weather forecasts. Of course, such weather
forecasts would make use of many variables in addition to past temperatures,
such as atmospheric pressure, humidity, cloud cover and so on.

3.8. Our final competition entry

Our competition entry, selected on the basis of the public scores, scored
67,214, marginally higher than our best score reported in Table 1. This is be-
cause our entry contained two further “refinements” which in-sample testing
and the public leaderboard scores suggested would improve the model, but in
fact did not; this was revealed in additional analysis performed after the com-
petition. The further modifications to the model were an additive adjustment
γ to the temperature forecast and multiplicative adjustments for the seven
different days of the week. Given more time to spend on the competition,
we would ideally have employed further model validation techniques such as
k-fold cross-validation. This would have given a more thorough picture of
which changes genuinely improved the model.

4. Computational efficiency

With no effort at optimisation, our C++ program performs the whole
forecasting and backcasting in 356 seconds, running on one core of a 2.2Ghz
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Intel laptop. This figure includes all activities, such as outlier removal, selec-
tion of appropriate weather stations for each zone, temperature forecasting
and model fitting. We could easily parallelise the operation, fitting the vari-
ous models concurrently.

5. Ideas for further improvements

In future we will pursue the following ideas, which we hope will lead to
substantial improvements in forecast and backcast accuracy.

• Link the models for the different hours of the day, for example by explic-
itly including term(s) for the previous hour(s) or by simply constraining
some of the coefficients in (5) to take the same values across multiple
hours of the day. Currently these are fitted completely independently.

• Study the effect of varying sunrise and sunset times, which determine
when domestic and street lighting is used.

• Perform separate fits for each of the backcast or forecast periods, min-
imising weighted in-sample squared errors. By giving higher weights
to days closer to the backcast or forecast period in question, we may
obtain a better fit for that period.

• Try out alternative approaches for modelling zone 9, which is indus-
trial load and is determined mainly by factory schedules rather than
temperatures.

• Revisit the issue of outlier removal. Adding outlier removal reduced the
WRMSE by only 120, which we found surprisingly low. In particular
it is possible that some of the low but non-zero values in the atypical
zone 9, the industrial zone, are correct measurements that we wrongly
excluded.

• Explore whether fixing any of the coefficients αj in (5) to zero produces
better models.

• Investigate whether the data contains any evidence of Demand Side
Management, and develop ways to account for this in our model.

• Add economic factors to our model.
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6. Conclusions

We presented a refined parametric model for short term load forecasting.
We began with a linear model, as in (1), that is simple and transparent,
uses well-understood techniques and is easy and efficient to implement. A
series of refinements improved the accuracy of our model; these included
combining models from multiple weather stations, removing outliers from
the historical data and special treatment of public holidays. The C++ code
of our forecasting program is freely available under the GPL license and we
encourage readers to experiment further with our methods.
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