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 6 

Abstract 7 

Recent research into flood modelling has primarily concentrated on the simulation of inundation 8 

flow without considering the influences of channel morphology. River channels are often represented 9 

by a simplified geometry that is implicitly assumed to remain unchanged during flood simulations. 10 

However, field evidence demonstrates that significant morphological changes can occur during 11 

floods to mobilise the boundary sediments. Despite this, the effect of channel morphology on model 12 

results has been largely unexplored. To address this issue, the impact of channel cross-section 13 

geometry and channel long-profile variability on flood dynamics is examined using an ensemble of a 14 

1D-2D hydraulic model (LISFLOOD-FP) of the 1:2102 year recurrence interval floods in 15 

Cockermouth, UK, within an uncertainty framework. A series of hypothetical scenarios of channel 16 

morphology were constructed based on a simple velocity based model of critical entrainment. A 17 

Monte-Carlo simulation framework was used to quantify the effects of channel morphology together 18 

with variations in the channel and floodplain roughness coefficients, grain size characteristics, and 19 

critical shear stress on measures of flood inundation. The results showed that the bed elevation 20 

modifications generated by the simplistic equations reflected a good approximation of the observed 21 

patterns of spatial erosion despite its overestimation of erosion depths. The effect of uncertainty on 22 

channel long-profile variability only affected the local flood dynamics and did not significantly 23 

affect the friction sensitivity and flood inundation mapping. The results imply that hydraulic models 24 

generally do not need to account for within event morphodynamic changes of the type and 25 

magnitude modelled, as these have a negligible impact that is smaller than other uncertainties, e.g. 26 

boundary conditions. Instead morphodynamic change needs to happen over a series of events to 27 

become large enough to change the hydrodynamics of floods in supply limited gravel-bed rivers like 28 

the one used in this research.  29 
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1. Introduction 1 

River morphology is both a control and consequence of fluvial processes (Sear et al., 2010). River 2 

channels subjected to morphological changes during a subset of flood events could have significant 3 

implications for floodplain inundation, flow depth, and floodwave propagation and the associated 4 

uncertainties. Numerous studies have addressed one or some of the types of the uncertainty in the 5 

modelling: model structural choice (e.g. Apel et al., 2009), model friction and conveyance 6 

parameters (e.g. Aronica et al., 1998; Romanowicz and Beven, 2003; Bates et al., 2004; Werner et 7 

al., 2005; Pappenberger et al., 2007), and boundary conditions (e.g. Pappenberger et al., 2006; 8 

Pappenberger et al., 2007). The sensitivity of flood inundation predictions to uncertainty of the 9 

geometry of the floodplain (e.g. Werner et al., 2005) and channel (e.g. Pappenberger et al., 2006; 10 

Pappenberger et al., 2007) (including the representation of natural and man-made flow control 11 

structures such as vegetation and buildings (e.g. Beven et al., 2012)) have also been evaluated. In 12 

addition, others have presented methodology for the estimation of uncertainty of the models, which 13 

takes account of the uncertainty in the observed data (e.g. Pappenberger et al., 2007; Di Baldassarre 14 

et al., 2009; Stephens et al., 2012; Stephens and Bates, In revision). Increased flooding is shown to 15 

be caused by either hydrologic changes that increase peak flows or geomorphic changes that reduce 16 

channel conveyance (Stover and Montgomery, 2001). Thus, how flood dynamics interact with 17 

morphological change is a topic of growing interest for hydraulic modelling (Fewtrell et al., 2011). 18 

Driving this motivation has been the basic question that, given the uncertainty inherent in other 19 

sources like observation error and boundary conditions, is it important to account for uncertainty in 20 

morphodynamic changes within a flood event? The standard hydraulic models adopted for risk 21 

mapping use a static representation of channel geometry, but without studies that quantify the 22 

uncertainties associated with a changing channel geometry it is impossible to know whether this is a 23 

significant uncertainty that is missing from the quantification of risk. This paper therefore addresses 24 

this question by assessing the impact of changes in channel long-profile and cross-section during an 25 

extreme flood event on water surface elevation and subsequently the depth and extent of flood 26 

inundation. 27 

Reviewing the development in the flood risk estimation and flood inundation mapping literature 28 

finds that most of the numerical hydraulic models (e.g. Galland et al., 1991; Bates and De Roo, 2000; 29 

Brunner, 2002) are concentrated merely on the simulation of inundation flow without considering the 30 

influences of channel morphology and sediment delivery from upstream. In most cases 31 

hydrodynamic unsteady models are applied in which the river channels are considered as a means of 32 

access for flow conveyance rather than a device for controlling river flow patterns (Neuhold et al., 33 

2009). It has been suggested that the complexity of channel geometry is not significant during large 34 

flood events as the whole floodplain and river channel can act as a single channel unit (Bates et al., 35 

2005). River channels can then be represented by a simplified geometry that is implicitly assumed to 36 

remain unchanged during flood events and under long-term erosion and deposition. However, 37 

bedload may become highly mobile during floods, forces on the bed, banks and floodplain are 38 

sufficient to mobilise the boundary sediments resulting in significant changes in channel morphology 39 

(cross-section and long-profile) and even channel pattern (Kleinhans et al., 2013), resulting in 40 

modification of form roughness (Hey, 1979). This suggests that the influence of sediment and 41 



Page 3 of 19 
 

subsequent changes in bed elevation may be an important control on hydraulic and flood inundation 1 

modelling. 2 

Following recent large flood events, during which significant and damaging morphological change 3 

occurred, both in the UK and other parts of the world (e.g. River Derwent in UK 2009, 2012; River 4 

Indus in Pakistan 2010), there is an increasing need to evaluate the impact and uncertainties 5 

introduced by morphological change on the accuracy of flood inundation modelling. Hydraulic 6 

models are not only sensitive to model parameters and the representation of hydraulic structures, but 7 

also the geometric description (Merwade et al., 2008). Fewtrell et al. (2011), for instance, showed 8 

that cross-section variability is less important than the channel long-profile in the calibration process 9 

with the use of a coupled dynamic 1D-2D hydraulic model (ESTRY-TUFLOW) of the Carlisle 10 

floods of January 2005. Other studies have addressed the intricacy of channel geometry 11 

representation and showed the flood inundation area will be influenced by the number and location 12 

of cross-sections (e.g. Cook and Merwade, 2009). Implementation of hydraulic models also requires 13 

the specification of suitable roughness parameters. Channel and floodplain roughness used in many 14 

studies (e.g. Aronica et al., 2002) are commonly examined in a calibration process based on 15 

observed flood inundation extent and flow depth. Roughness values, and the way in which they 16 

change with depth, are needed to compensate for the restrictions in the model representation of 17 

channel geometry, floodplain topography and energy dissipation at the scale of model resolution as 18 

such these roughness values are often referred to as 'effective' (e.g. Pappenberger et al., 2005; 19 

Werner et al., 2005). Therefore, reach scale effective values of roughness are required, but little 20 

attention is paid to the impact of geometric description on model sensitivity to roughness parameter 21 

values which can be highly uncertain. 22 

Knowing the effect of uncertainty in channel geometry on roughness parameter values is not 23 

sufficient and the challenge is to, perhaps more importantly, assess the effect that such uncertainty 24 

may have on model performance. Channel geometry and floodplain topography are the principal 25 

variables that affect the flood wave propagation and are therefore critical to the prediction of flood 26 

dynamics. A small degree of uncertainty in bed elevation may have a relatively large effect on model 27 

predictions (Wilson and Atkinson, 2005). In a study of a 5.6km reach of the Upper River Wharfe, 28 

UK, Raven et al. (2009) showed that a mean bed level rise of 0.17m over the six-year monitoring 29 

period had a significant effect on increasing the flood frequency by 2.6 times on average, and 30 

overbank flow time by 12.8 hours. Similarly, Stover and Montgomery (2001) concluded that whilst 31 

the requisite discharge for overbank flow and peak discharge had reduced, the frequency of flooding 32 

had increased as a result of aggradation on the mainstem Skokomish River, Washington State, USA. 33 

Furthermore, recent research that incorporates the implications of sediment delivery and river bed 34 

level changes on flood risk (Lane et al., 2007; Lane et al., 2008; Neuhold et al., 2009), have 35 

highlighted the fact that an effective flood inundation modelling strategy should be built on how 36 

sensitive the flood dynamics are to the changes not only in hydrological but also morphological 37 

processes. 38 

In the light of current interest and recent research, the objectives of this paper are therefore 1) to 39 

develop an approach that reconstructs realistic changes (in terms of spatial patterns) in channel 40 

erosion during flood events; 2) to examine the impact of modelled bed elevation changes during a 41 

flood event on model sensitivity to roughness parameter values; 3) to assess the significance of 42 
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modelled bed elevation changes on the prediction of flood depths; and, 4) to explore and quantify the 1 

differences arising from cross-section geometry and long-profile variability on flood inundation 2 

mapping. The recent extreme flooding in Cockermouth, UK provides a useful test because of the 3 

availability of high quality hydrological, flood inundation and morphological data for before and 4 

after flood conditions. 5 

2. Test Site and Data Availability 6 

The town of Cockermouth in North West Cumbria, UK, is situated at the confluence of one major 7 

river (River Derwent) and the River Cocker, with the River Marron joining the main River Derwent 8 

further downstream (Figure 1). This study reach, 32.27km in length, was selected because: a) an 9 

extreme flood event in November 2009 caused significant morphological changes to the river 10 

channels and floodplain and, b) a data-rich case study that has multiple datasets of the observed flood 11 

extent at different times during the flood for evaluation of model performance was available. 12 

The November 2009 event followed a prolonged period of rainfall over the catchment. A rain gauge 13 

at Seathwaite Farm in Borrowdale, about 24.1km southeast of Cockermouth, recorded the highest 14 

24hr total ever recorded in the UK of 316.4mm. Furthermore, major lakes and reservoirs within the 15 

region were already full and with the waterlogged upland catchment soil conditions, this resulted in a 16 

large amount of runoff into the river network. The resulting peak flow at Camerton gauging station 17 

on the Derwent was estimated by the Environment Agency of England and Wales (hereafter the EA) 18 

as 700m
3
s

-1
 and historic flood marks indicated that it was the largest event since at least 1899. The 19 

flood event was estimated to have a return period of 2102 years, with 95% confidence limits of 507 20 

and 17706 years (Miller et al., 2013). These high river flows destroyed six bridges and flooded 855 21 

properties in Cockermouth and Workington. Sediment transport processes resulted in the largest 22 

changes in channel width since at least 1867, the date of the first accurate surveys of the river 23 

planform. Bank erosion, including the collapse of river cliffs up to 30m in height, injected substantial 24 

quantities of sediment into the flooded river. Much of that material was then deposited on the 25 

floodplain and infilled pools within the river channels. In one area, the channel avulsed across the 26 

floodplain to create a new planform for the water flow.  27 

The EA provided a digital elevation model (DEM) at 2m resolution of the study site, generated from 28 

an airborne laser altimetry (LiDAR) survey flown in 1998 and April/May 2009. The majority of the 29 

data was from 1998 and had a vertical Root Mean Square Error (RMSE) of approximately 0.25m . 30 

Three different datasets of the observed flood extent were taken at different times during the flood: 1) 31 

aerial photography of the flood, which had a horizontal resolution of 0.15m, taken between 13:10 32 

and 14:50 on 20
th

 November; 2) well defined wrack marks, which were visible along much of the 33 

extent of the flood in the aerial photograph and represent the maximum flood extent; and, 3) 34 

TERRASAR-X imagery, which had a 1m horizontal resolution, captured at 18:02 on 21
st
 November. 35 

Water level measurements at 15-min intervals were provided for three gauges around Cockermouth: 36 

upstream on River Derwent at Ouse Bridge and downstream at Camerton, and upstream on the River 37 

Cocker at Southwaite Bridge (See Figures 1 & 2). The Ouse Bridge gauge was bypassed during the 38 

flood. Yet, the EA had provided metadata to advise that the stage at the peak of the flood has been 39 

edited using estimates of the maximum flood level from a wrack survey, with the time of peak and 40 

the infilled data estimated using correlation techniques. The Camerton gauge was severely damaged 41 
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during the flood event, the dataset with ‘Good’ readings only recorded up to 19th November 2009 at 1 

20:30. After this, the only available data are through correlation with the Southwaite gauge. Flow 2 

data for the River Marron was provided by rescaling the flows in the Cocker using the comparative 3 

size of the catchments. Data to quantify the river channel geometry and bed material grain size of the 4 

River Derwent were also available. Some 234 and 191 channel cross-sections were surveyed for the 5 

study reach of the River Derwent in 1998 and 2010 respectively. The 1998 dataset were provided by 6 

the EA and was based on a composite of ISIS Section 105 model total station cross-section surveys, 7 

and repeat cross-sections within the town of Cockermouth. The 2010 data was based on cross-8 

sections surveyed by the EA in December 2009 from Workington to immediately upstream of 9 

Cockermouth. In addition, 127 repeat cross-sections were surveyed for the whole river in May and 10 

August 2010 by this study (See Table 1 for summary). The 2010 cross-sections were taken at 11 

locations close to those made in 1998, of which 93 could be paired as they were within 10m of each 12 

other. 13 

As there were five major flood events between 2003 and 2008 (Figure 3) the 1998 DEM was updated 14 

and modified to provide a better representation of topography before the 2009 flood event. The 1998 15 

DEM was built from a combination of datasets: 1998 LiDAR 2m DEM, 1998 cross-section survey, 16 

2005 repeat cross-section survey for the reach through the town of Cockermouth, and bank outlines 17 

derived from the latest aerial photographs (1:3000) taken in 2004. <5% of the total cross-sections, 18 

where bank migration had occurred between 1998 and 2004, were linearly interpolated out to the 19 

position of the 2004 bankline. In the area of wetted channel, 1998 (adjusted to 2004 banklines) and 20 

post-2005 flood cross-sections were interpolated to generate cross-sections at 5m spacing throughout 21 

the whole channel using the method of Merwade et al. (2008) and Cook and Merwade (2009), with a 22 

RMSE of 0.235m. Using the 2004 banklines as 3D breaklines (Wheaton et al., 2010), the cross-23 

section nodes were combined with the LiDAR 2m DEM data within the 2004 bankline mask to 24 

create a 2m DEM for the wetted and non-wetted valley floor. Comparison of cross-sections surveyed 25 

post the 2005 flood in the reach through Cockermouth with those taken in 1998 show minor changes 26 

in bed elevation associated with submerged bars (0.15 +/- 0.08m) and localised changes in bank 27 

outline. Therefore, the modified DEM was assumed to closely reflect the river morphology and 28 

topographic conditions at the time of the 2009 flood event. 29 

3. Methodology 30 

3.1. Model setup 31 

The LISFLOOD-FP model was considered appropriate and was used in this paper for three reasons. 32 

Firstly, the model was relatively straightforward to implement (in terms of data requirement) and edit 33 

(in terms of changing river geometry). Secondly, the model code has been extensively validated and 34 

benchmarked, and is routinely employed in industrial applications (Hunter et al., 2008). Lastly, the 35 

model was not limited by computational burden given the large number of simulations required to 36 

fully examine the model sensitivities. 37 

A 1D-2D LISFLOOD-FP model was then set up with the river channel represented by a diffusive 38 

wave solver as described by Trigg et al. (2009) and the floodplain represented by the inertial 39 

formulation of the shallow water equations as described by Bates et al. (2010). The location and 40 

structure of the channel in the channel component is specified as a series of XY coordinates that can 41 
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be matched to a corresponding cell in the floodplain component and is represented using variables 1 

for channel width and bed elevation at each XY coordinate. In the model, water is routed through the 2 

channel component until flows exceed the channel capacity, at which point the excess flow divided 3 

between the two grid cells adjacent to the channel cell and entered the floodplain component. 4 

The floodplain topography in the model was described using the modified DEM, rescaled to 20m 5 

resolution to enable multiple simulations to be run for computational efficiency. The 1D channel 6 

model was driven by the 234 channel cross-section points extracted from the mid-points of each 7 

1998 surveyed cross-section (Figure 4). The channel geometry was assumed to be a rectangular 8 

shape due to the inability of LISFLOOD-FP to represent complex irregular channels. The channel 9 

slopes were taken from the survey by allowing the channel bed to slope both positively and 10 

negatively. The channel widths were extracted by measuring the distance between two end points of 11 

each cross-section and the bed elevations of the channel were adjusted such that bank-full cross-12 

sectional flow area matched the surveyed bank-full flow area along the reach.  13 

Instead of using the gauged data for Camerton as a downstream stage-varying boundary condition on 14 

account of the failure of the gauge during the event, a free boundary condition has been imposed. 15 

The River Derwent catchment is characterised as a gravel-bedded river (D50 0.058±0.017m) with 16 

pastural (grazed grass) land use dominating the floodplain across the catchment. According to Chow 17 

(1959) pasture with short grass would have a minimum Manning’s n of 0.025, and a gravel bed 18 

would have a minimum of 0.030. Some areas of the catchment are heavily forested or have medium 19 

to dense brush, which might expect a maximum Manning’s n value of 0.120 (Chow, 1959). To 20 

ensure that the entire range of potential friction values were sampled, and also accepting that friction 21 

as specified in LISFLOOD-FP acts as an effective value to parameterise un-modelled process and 22 

features such as sub-grid scale topography and three dimensional flow structures, a range of channel 23 

(𝑛𝑐ℎ) and floodplain (𝑛𝑓𝑝) friction values of between 0.020 and 0.140 were explored. 24 

3.2. Evaluation of model performance 25 

The two observed datasets (wrack marks and aerial photography) were processed by Stephens and 26 

Bates (In revision) to provide a total of 177 maximum water elevations and 3724 observed data 27 

points for model assessment. The outline of the flood in the TERRASAR-X image was also 28 

manually digitised and converted to 3353 data points from which known erroneous points, such as in 29 

vegetated areas, were removed. 30 

Based on the analysis procedure described in Aronica et al. (2002), Monte-Carlo simulation using 31 

the GLUE technique (Beven and Binley, 1992) was adopted. 300 parameter sets were randomly 32 

sampled from the parameter space to evaluate model performance at the time steps when the 33 

observed datasets were collected. Mason et al. (2009) described two water surface elevation 34 

comparison methods (RMSE and paired t test) to assess the acceptability of parameter sets. The use 35 

of paired t test might be problematic as mentioned in Stephens et al. (2012) and therefore the RMSE 36 

will only be used in this study. The equation is defined as the square root of the mean square error 37 

and is given as 38 

𝑅𝑀𝑆𝐸 = √𝐸((𝑠𝑖𝑚𝑖 − 𝑜𝑏𝑠𝑖)2)         (1) 39 
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where 𝑖 is the number of data points, 𝑠𝑖𝑚 the simulated nearest water surface elevation in the model, 1 

and 𝑜𝑏𝑠 the observed flood margin on DEM elevation. 2 

According to their RMSE performances, the parameter sets were ranked and normalised into 3 

generalised likelihoods (Wagener et al., 2002). This measure could only be treated as analogous to a 4 

true probability as it could not be used for formal statistical inference (Wagener et al., 2002). 5 

Because of the unavoidably subjective process when no consistent error structure could be assumed 6 

(Freer et al., 2003), the top 20% of parameter sets were used to classify as behavioural simulations, 7 

the rest were rejected and their likelihoods were set to zero. Each parameter set was then weighted 8 

and assigned a value corresponding to how well the simulations reproduced the result in a global 9 

sense. The observed datasets were combined by evaluating on one dataset, then using another to 10 

update the weights assigned to each parameter set with the use of a recursive form of Bayes’ 11 

equation (Lamb et al., 1998). The combined likelihood values associated with behavioural parameter 12 

sets were used to calculate and then map the relative probability (𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

) that a given pixel is 13 

inundated, using the following equation 14 

𝑃𝑖
𝑓𝑙𝑜𝑜𝑑

=
∑ 𝑓𝑖𝑊𝑗𝑗

∑ 𝑊𝑗𝑗
           (2) 15 

where 𝑗 is the number of model simulations, 𝑓𝑖 represents the numerical model result at a pixel 𝑖 for 16 

each parameter set, and takes a value of 1 for a flooded pixel and is 0 otherwise.  𝑊𝑗  acts as a 17 

generalised relative measure for each simulation. 18 

3.3. Generation of bed elevation scenarios  19 

A simplified method was adopted to statically adjust the channel geometry at the beginning of the 20 

simulation due to the inability of LISFLOOD-FP to represent any morphodynamic processes and 21 

complicated technical demand to incorporate all processes (e.g. erosion, deposition, bank failure, 22 

etc.). Erosion during the flood peak was chosen as the focus of this paper because this is the point of 23 

the flood where flood extent and depths are greatest, and therefore has the highest risk as well as 24 

potential for geomorphological change. It is also the period when the largest sensitivities and 25 

uncertainties were most likely to be found. In addition, the majority of channel change was erosional, 26 

with deposition occurring as extensive gravel and sand sheets, on floodplains immediately 27 

downstream of river cliff failures. Lateral erosion (bank failure) was excluded in the erosion process 28 

to further reduce the complexity of parameter uncertainties. Therefore, changes in bed elevations at 29 

each cross-section were used as a simplified representation of changes in river morphology during 30 

the flood event. 31 

The construction of hypothetical bed elevation scenarios was derived from a simplified duBoys-type 32 

sediment transport formulae (DuBoys, 1879) that have a shear stress relationship, which was 33 

developed by relating sediment transport to the threshold of incipient motion of sediments. For a 34 

fluid to begin transporting sediment that is currently at rest on a surface, the bed shear stress 𝜏𝑏 35 

exerted by the fluid must exceed the critical shear stress 𝜏𝑐𝑟 for the initiation motion of grains at the 36 

bed (Buffington and Montgomery, 1997). The bed shear stress 𝜏𝑏 is expressed as a force per unit 37 

area of the bed (𝑁𝑚−2) and increases with flow depth and water surface slope while the critical shear 38 
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stress 𝜏𝑐𝑟 is defined in a dimensionless form (Shields et al., 1936) and increases with particle size 1 

and bed roughness. They are defined as 2 

𝜏𝑏 = 𝜌𝑔𝑅ℎ𝑆            (3) 3 

𝜏𝑐𝑟 = 𝜃𝑐𝑟(𝜌𝑠 − 𝜌)𝑔𝐷            (4) 4 

where 𝑔 is acceleration due to gravity (assumed to be 9.8ms
-2

), 𝑅ℎ hydraulic radius, 𝑆 water surface 5 

slope (mm
-1

), 𝜌 water density (assumed to be 1000kgm
-3

), 𝜌𝑠 the sediment density (assumed to be 6 

2650kgm
-3

), 𝜃𝑐𝑟 the dimensionless shear stress, and 𝐷 a characteristic grain size (m). Equation (4) 7 

represents the moment at which sediment movement begins. Equation (3) was converted in terms of 8 

velocity 𝑣  using the Manning equation ( 𝑣 =
1

𝑛
𝑅ℎ

2/3𝑆1/2 ). Combining the two equations and 9 

rewriting the terms, Equation (4) was converted into critical velocity 𝑣𝑐𝑟 , defined as 10 

𝑣𝑐𝑟 = (𝜃𝑐𝑟𝐺𝑅ℎ
1/3𝐷)

1 2⁄
/𝑛            (5) 11 

where 𝐺 =
(𝜌𝑠−𝜌)

𝜌
 is the dimensionless submerged specific gravity of the sediment, and 𝑛  the 12 

Manning’s n which is estimated by the Strickler equation ( 𝑛 = 𝐷1 6⁄ 21⁄ ) (Strickler, 1923). 13 

Rewriting the Manning’s n and Equation (5) became  14 

𝑣𝑐𝑟 = 21𝑅ℎ
1/6𝐷1/3(𝜃𝑐𝑟𝐺)1 2⁄           (5.1) 15 

Given a 1D channel with steady and uniform flow, at each cross-section, the relationship between 16 

velocity and critical velocity is defined as 17 

𝑣ℎ = 𝑣𝑐𝑟(ℎ + 𝑒)            (6) 18 

where 𝑒  is the erosion depth (m), and ℎ  the water depth (m). Re-arranging the equation, the 19 

following equation can be used to calculate the maximum possible bed elevation change, defined as 20 

𝑒 = {
ℎ (

𝑣

𝑣𝑐𝑟
− 1)

0

𝑖𝑓 𝑣 > 𝑣𝑐𝑟

𝑖𝑓 𝑣 ≤ 𝑣𝑐𝑟
           (7) 21 

This equation only accounts for the erosion caused by flow at the time that maximum velocity 22 

occurred, and makes a couple of assumptions: 1) there were no sediment transported and deposited 23 

from upstream; 2) there were no lateral erosion (bank failure) during the flood event; 3) 24 

consequences that caused by deposition within the channel such as avulsion, increased lateral erosion, 25 

channel instability were neglected; 4) the channel was in rectangular shape along the long profile; 26 

and 5) local features such as presence of bedrock and bridges were ignored. In other words, the paper 27 

only focusses on the scouring effect of the flood event during the peak caused by the changes in 28 

mean bed elevation, before any sediment could deposit downstream as the flood proceeded. Similar 29 

with other applications in sediment transport formulae (Gomez and Church, 1989), one calculation is 30 

undertaken for each cross-section with the mean depth being input into the equation and such a 31 

simple approach may reduce the capability of the equation. The equation is also affected the different 32 

sources of error arising from the propagation of error in the measured variables (e.g. McLean et al., 33 

1999) and the spatial variability of bed shear stress (Wilcock, 1996). Moreover, the uncertainty 34 
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involved in the equation is evident in the fact that the values of the dimensionless critical shear stress 1 

differ from a variety of roughly a factor of two (Buffington and Montgomery, 1997). Additionally, 2 

the equation is sensitive to grain size distribution due to patch dynamics or topographic variability 3 

across the channel. Regardless of well-documented limitations in using such formulae approach 4 

(Gomez and Church, 1989), sediment transport formulae continue to be widely used and reasonably 5 

accepted in geomorphological studies. It is acknowledged that the accuracies of the formulae 6 

approach could be improved by building an empirical relationship between transport rate and flow 7 

discharge from field measurements (Wilcock, 2001), but effort required to determine this input can 8 

be very large, becoming impractical as it involves knowledge of the bed grain size and topography 9 

throughout the reach. A balance must then be found between the overall ease of the implementation 10 

of the approach and the complexity involved in the equation.  11 

The dimensionless critical shear stress 𝜃𝑐𝑟 and grain size 𝐷 were believed to be the main source of 12 

uncertainty in the equation and thereby considered in this study. The range of values of 𝜃𝑐𝑟 0.03 to 13 

0.06, which cover different flow conditions (Reynolds numbers ranging from ≈10 to ≥400), 14 

previously reported in the literature (Graf, 1971) were adopted here. Regarding 𝐷, the simplest and 15 

most common approximation was to treat the bed material as a single size fraction (e.g. the median 16 

𝐷50) (Wilcock, 2001). Based on the surveyed grain size data which were sampled at four locations 17 

(Isel, Cockermouth, Papcastle, and Great Broughton) along the River Derwent (see Figure 1), the 18 

grain size distribution was computed at each site using the Wolman method (Wolman, 1954), 19 

whereby grains are blindly selected from the channel every few walks in a rough grid pattern. The 20 

Wolman method uses the percentile system to characterise the grain size variability and errors 21 

involved in estimating the percentiles using this methods are mainly because of the influence of 22 

fluctuations in sampling (Green, 2003). However, assuming that the grain size distribution is log-23 

normal, the precision reduces with distance from the median percentile, 𝐷50, and only decreases 24 

noticeably beyond the 5th and 95th percentiles (Inman, 1952). The 5th (0.048) and 95th (0.082) 25 

percentiles were reasonably to be used to represent the entire bed size distribution, while remaining 26 

simple enough to permit a practical integral description of the sediment. 300 parameter sets for 𝜃𝑐𝑟 27 

and 𝐷  were randomly sampled and generated from the range specified accordingly. Despite the 28 

rectangular channel assumption, it is expected that the model would perform equally well in terms of 29 

optimum RMSE as compared with model with channels of higher complexity (Fewtrell et al., 2011). 30 

The results of Fewtrell et al. (2011) also suggested that in order to obtain a good prediction of 31 

maximum water levels, it is essential to configure a channel approximation that maintains an 32 

estimate of bank-full capacity that is consistent with field observations, as was the case in this study. 33 

The velocities in Equation (7) and critical velocities in Equation (5.1) were determined by running a 34 

steady state flow simulation of LISFLOOD-FP. 300 bed elevation scenario cases were then 35 

generated by Equation (7) for each behavioural friction parameter set. The 5th and 95th percentiles 36 

were extracted to save computational cost and used as inputs in LISFLOOD-FP for re-evaluation of 37 

model performance. The two percentile cases represented two extreme scenarios in which the 5th 38 

percentile portrayed the least amount of possible erosion while the 95th described the greatest. The 39 

same procedure applied and the probabilistic map was again generated for comparison. 40 

In addition, the simulated bed elevation changes were compared with the 93 pairs of observed data 41 

points where both pre- and post-flood surveys were taken. The aim of the comparison was to provide 42 
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a general idea of how well the hypothetical erosion changes reflected the observed spatial 1 

geomorphic changes. The 2010 surveyed cross-section data, in which ten of them had to be modified 2 

to account for sediment management undertaken by riparian owners in the intervening period 3 

following the flood, were assumed to reflect the nearest river geometry after the 2009 flood event 4 

because: 1) comparison between ground based photographs taken immediately after the flood with 5 

those taken during the surveys showed no obvious evidence of bar or bank changes in reaches 6 

without major sediment management; and, 2) the morphological changes resulting from the 7 

November 2009 flood were clearly far greater than any subsequent re-sculpting, or any channel bank 8 

migration since the first accurate surveys of the bank line undertaken by the Ordnance Survey in 9 

1867. The data were then used to compute the observed changes in bed elevation for comparison. 10 

4. Results 11 

4.1. Modification of river bed elevations 12 

Because of the inability of LISFLOOD-FP to dynamically change the channel geometry during 13 

simulations, Equation (7) was used to account for the erosion processes during the flood peak and to 14 

statically adjust the channel geometry at the start of the simulation. Figure 5a illustrates the 15 

hypothetical changes of river bed elevations along River Derwent from downstream. The two dash 16 

lines represent the 5th (black) and 95th (grey) percentile calculated erosion depth. Figure 5b displays 17 

the 5th percentile bed elevation scenario on subsection of the domain covering the downstream area 18 

near Camerton while Figure 5c and 5d show the 95th percentile scenario on subsections of the 19 

domain covering area near Great Broughton and the vicinity of Cockermouth and Papacastle 20 

respectively. White represents areas of channel where there has been no erosion, and increasing 21 

erosion depths (m) are represented by an increase in saturation of red. The 95th percentile scenario 22 

displays discontinuous erosion along the reach with little or almost no scouring for the last 5km 23 

measuring from downstream. Both scenarios showed three major erosion zones: (1) between BNG 24 

311572E 530696N and BNG 311295E 531137N where Cockermouth and Papcastle lie (Figure 5d); 25 

(2) at BNG 307774E 531170N near Great Broughton (Figure 5c); and (3) downstream near 26 

Camerton at BNG 303832E 530554N and BNG 303623E 530044N (Figure 5b). Yet, care should be 27 

taken when looking at the erosion depth at the tight bend in Papcastle as the river floor and width are 28 

confined by bedrock, in which the presence of bedrock was not represented in the model. The real 29 

values of vertical changes are likely to have been lower than modelled. Local erosion was also 30 

predicted to occur at BNG 309795E 530900N and BNG 308295E 530900N respectively due to the 31 

presence of two bridges. The bridge structure was not represented explicitly in the model but its 32 

effect was simulated by a reduction in channel cross-sectional area at cross-sections co-incident with 33 

the bridge resulting in an increase in velocities and subsequent erosion. 34 

The modification of river bed elevations based on Equation (7) was further compared with the 93 35 

pairs of observed data points where both pre- and post-flood surveys were taken. The black dots in 36 

Figure 6 show the net differences in observed data points between pre- and post- surveys along the 37 

River Derwent from downstream and the envelopes indicate the 5th and 95th percentiles of simulated 38 

erosion depth at the observed locations. Negative values mean net erosion and positives net 39 

deposition. Referring to the locations where erosion was seen to be the dominant process (between 40 

23.5km and 31.3km), the observed bed elevation changes ranged from -0.06m to -0.84m while the 41 

5th and 95th percentile envelope covered similar ranges (from -0.02m to -0.75m). Estimated by a 42 
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wide range of percentile envelopes by Equation (7), two locations between 14.8km and 17.4km and 1 

between 2.9km and 4.9km matched the areas where dynamic geomorphic processes, both erosion 2 

and deposition, were observed. The observed bed elevation changes ranged from -0.54m to +1.00m 3 

and from -1.45m to +1.16m respectively. Even though the wide range of percentile envelopes 4 

provided unrealistic erosion depths (especially between 2.9km and 4.9km where the 95th percentile 5 

erosion depth could be up to 2.9m), the envelopes do indicate the potential erosive power of the 6 

flood at these locations and reveal the areas where dynamic changes could potentially occur. 7 

4.2. Model sensitivity to parameter roughness values 8 

After identifying the possible ranges of erosion process during the flood event, the 5th and 95th 9 

percentile bed elevation scenarios were then used as inputs in LISFLOOD-FP for re-evaluation of 10 

model performance. Figure 6 present the sensitivity of the RMSE between the 300 simulated and 11 

observed water levels obtained from the three datasets before and after applying the bed elevation 12 

changes using Equation (1). It is immediately noticeable that the model showed no real sensitivity to 13 

channel friction, only floodplain friction (Figure 7 left) for all three datasets. This suggests that the 14 

channel friction had little effect on flow conveyance as the floodplain and river channel acted as a 15 

single channel unit during the flood event. Even taking the river bed channel changes into 16 

consideration, the sensitivity remained similar (Figure 7 middle & right). However, differences 17 

between the parameter spaces were still witnessed. There were noticeable changes in the region for 18 

the floodplain optimum. In general, the region for the floodplain optimum for all scenarios moved 19 

gradually to a lower floodplain friction value after the flood peak, but a slightly higher region for the 20 

peak flood wrack marks dataset and the time of aerial photography in the case of 95th percentile bed 21 

elevation scenario. 22 

To further examine the changes in parameter spaces, the optimal friction parameter sets and their 23 

RMSEs for each scenario and each dataset are shown in Table 2. Generally, the RMSEs were the 24 

lowest for all scenarios at peak flood (wrack marks) and gradually increased when the flood receded 25 

(aerial photos and TERRASAR-X image). Applying the bed elevation changes did not improve the 26 

RMSE for both 5th and 95th percentile scenarios. The parameter sets of channel and floodplain 27 

friction for the peak flood wrack marks dataset and the time of aerial photography varied 28 

considerably. Specifically, the value of optimal floodplain friction decreased on the falling limb of 29 

the event while that of optimal channel friction appeared to have an increasing trend despite its poor 30 

sensitivity. Conversely, the optimal parameter set (𝑛𝑐ℎ: 0.047; 𝑛𝑓𝑝: 0.020) for the TERRASAR-X 31 

image remained the same for all scenarios. All this suggests that the complexity of channel geometry 32 

and long-profile variability is noticeable during and shortly after the flood peak but becomes 33 

negligible when the flood further recedes. Given the significant geomorphological change in the river 34 

channel and deposition of sediments on the floodplain, the uncertainty in bed elevation changes 35 

during this extreme flood event is evident, although the effect of this uncertainty is not dominant 36 

compared to other uncertainties. This is perhaps more likely (or largely) to be due to boundary 37 

condition uncertainty than any physical change in surface roughness such as through scouring of 38 

river beds. 39 

4.3. Effects of bed elevation changes on prediction of flood depths 40 
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The similar behaviour of the RMSE performance measure and parameter spaces, despite differences 1 

in bed elevation scenarios, suggests the modifications due to bed elevation changes are not 2 

remarkable in the global friction sensitivity. However, the local dynamics of in-channel and 3 

floodplain flows, flood depth and extent may still be affected by the changes in channel geometry 4 

and long-profile variability both temporally and spatially. To investigate the influence of bed 5 

elevation changes on flood dynamics, the 50th percentile, standard deviation (SD) and coefficient of 6 

variation (CV) of inundation depth at the flood peak were computed for three scenarios. Only 7 

flooded cells were included in the calculations in order to prevent non-flood cells from skewing the 8 

results, as cells which were not flooded in some simulations would have decreased both SD and CV. 9 

The 50th percentile inundation depth at the flood peak of the no change scenario is shown in Figure 10 

8a and two subsections of the domain (Camerton in Figure 8b and Cockermouth and Papcastle in 11 

Figure 8c) are zoomed in as areas of interest for better illustration of variability (This also applies to 12 

Figure 9). The inundation depth ranged from 0.11m at the edge of the floodplain to 5.76m in the 13 

channel. However, the variations in SD were very different from the inundation depth pattern in 14 

which the channel and the surrounding floodplain both had the same variations (Figure 10a(ii)). 15 

When mean depth was taken into account using CV, it was the shallowest areas, especially at the 16 

edge of the flood, which exhibited the greatest variation in depth (Figure 11a(ii)). The no change 17 

scenario was compared with the 5th and 95th percentile bed change scenarios and the differences in 18 

inundation depth are shown in Figures 9a(i) and 9b(i) respectively. Increase in mean depth is 19 

indicated as green, decrease as red, and no change in white. Overall, the 5th percentile change 20 

scenario did not produce much change in the inundation depth of the whole reach, except for the 21 

areas (BNG 303800E 530764N) where erosion took place (See Figure 9a(ii)). For instance, the 22 

maximum decrease in floodplain water depth was 0.103m, accompanied with an increase in channel 23 

water depth of 0.469m at BNG 303935E 530690N. This implies that the effects are localised and do 24 

not propagate through the whole model in this case. The result of the 95th percentile change scenario 25 

showed a strong association of increase in channel water depth with decrease in its surrounding 26 

floodplain water depth (Figure 9b(ii) & 9b(iii)). The effects in this case, however, propagate 27 

downstream as both channel and floodplain water depth increased in the areas after the sections 28 

where channels were modified (Figure 9b(i)). This could be due to the fact that where more erosion 29 

took place in the channel it led to an increase in channel capacity, which resulted in a delay in time 30 

and a shift in location of overbank flow to the floodplain when the flood wave progressed 31 

downstream. The variations in SD and CV in the 5th percentile change scenario were similar to that 32 

of the no change scenario, excluding an average increase of 0.015m and 0.063% at BNG 303935E 33 

530690N (Figure 10b(i) & 11b(i)). The 95th percentile change scenario had a general decrease in 34 

variations in both SD and CV, except for the areas at BNG 303935E 530690N and BNG 311630E 35 

531175N where the SD (0.053m and 0.076m) and CVs (0.306% and 0.248%) remained high (Figure 36 

10c(ii) & 11c(ii)). 37 

Regarding the temporal change of flood inundation area (Figure 12 left) all three scenarios followed 38 

the same pattern that the total inundation area increased to a maximum of 6.44km
2
 at 77hours and 39 

gradually decreased after reaching the peak. The 5th and 95th percentile bed elevation scenarios 40 

simulated smaller flood inundation areas of 6.44km
2
 and 6.39km

2
 at the later times of 77.25hours 41 

and 78.25hours respectively. Maximum SD occurred 19.5hours and 21.25hours after the time of 42 

maximum flood inundation extent in no change and 5th percentile scenarios while that of 95th 43 
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percentile scenario came shortly (9.75hours) after the time of maximum flood area. Although the SD 1 

in area decreased as the flood moved downstream, the CVs continued to rise to a maximum of 1.50%, 2 

1.50%, and 0.43% and tended to stabilise as the flood wave receded. These figures suggested that the 3 

variation increased through time. However, with the consideration of bed elevation changes, the 4 

variations were smaller throughout the simulation even though all scenarios produced similar 5 

temporal patterns in total inundation area and time of maximum flood extent. 6 

On the other hand, a different trend in SD and CV was observed in the mean channel and floodplain 7 

depth of flooding (Figure 12 middle & right). The greatest variation occurred during the rising limb 8 

of the hydrograph, before falling back to a relatively low level. This higher variation in depth during 9 

the rising limb than falling limb was expected because this was when flood inundation commenced. 10 

However, the variation was restricted to a shorter period of time as flood inundation occurred at a 11 

faster rate than flood recession. The maximum SDs of the mean floodplain water depth in three 12 

scenarios (0.0370m, 0.037m, and 0.009m) were smaller than that of the mean channel water depth 13 

(0.053m, 0.0543m, and 0.0135m) (Figures 12 middle b & 12 right b) but the maximum CVs of the 14 

former were double (3.172%, 3.192%, and 0.765%) than that of the latter (1.572%, 1.603%, and 15 

0.383%) (Figures 12 middle c & 12 right c). This meant that the variations in mean floodplain water 16 

depth in each scenario were larger than that of the mean channel water depth. 17 

4.4. Effects of bed elevation changes on flood inundation mapping 18 

Deriving flood inundation maps is important for subsequent decision making for local planning or 19 

insurance industry. Accordingly, the effect of bed elevation changes on the mapping of flood 20 

inundation was assessed. Based on the RMSE analysis and Equation (2), 31 parameter sets out of 21 

300 were classified as behavioural in the no change bed elevation scenario and were used to generate 22 

the probabilistic flood inundation maps at the three observed time intervals. The same procedure was 23 

applied to the 5th and 95th percentile scenarios in which 31 and 10 parameter sets were used. The 24 

model simulated water depths were converted into a discrete binary format. Adopting the approach 25 

in previous studies (e.g. Aronica et al., 2002), only cells with simulated water depths greater than 26 

0.1m were assumed to be inundated so as to reflect uncertainties in the exact shoreline location, e.g. 27 

caused by emergent vegetation. Figure 13 provides subsections from flood inundation probability 28 

maps for the time of maximum flood extent. Generally speaking, the flood margins along the whole 29 

reach had a high degree of certainty in flood extent at all three time intervals (refer to Figure 13 top 30 

for illustration). This could be due to the fact that it was a valley-fill flood event in which the flood 31 

margins were constrained by the both side of the valley, resulting in a highly certain flood boundary. 32 

Not surprisingly, the flood margins were more or less as certain as before even taking the bed 33 

elevation change scenarios into consideration (Figure 13 bottom). The flood extent of the bed change 34 

scenario produced a similar pattern and area with that of the no change scenario despite an increase 35 

of channel volume following erosion. 36 

5. Discussion 37 

In this study, the effect of bed elevation changes on flood dynamics was explored using a simplified 38 

1D-2D hydraulic model, LISFLOOD-FP, within an uncertainty analysis framework applied to 39 

modelling of the November 2009 flooding in Cockermouth, North West England. The 5th and 95th 40 
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percentiles bed elevation change scenarios were extracted to represent the range of possible erosion 1 

that were derived from a simple velocity based model of critical entrainment. There were numerous 2 

sources of uncertainty stemming from morphodynamic processes and from assumptions made that 3 

undermined the capability of Equation (7). Since erosion goes with deposition most of the time, on 4 

one hand these two effects partially offset one another, on the other channel instability due to 5 

braiding caused by deposition can further enhance erosion. More often the effects of deposition are 6 

far greater on channel behaviour and thus hydraulics than erosion. Neglecting deposition may result 7 

in an overestimation of erosion depths, especially in locations where dynamic geomorphic processes 8 

occurred. The model did not incorporate deposition changes, is therefore acknowledged to be a major 9 

limitation. However, the model did simulate the range of erosional channel adjustments which are 10 

typical of supply limited reaches of river networks. Although no rigorous statistical comparison 11 

between observed and estimated erosion depths could be made, the bed elevation modifications 12 

generated by Equation (7) reflected a good approximation of realistic spatial erosion pattern when 13 

compared with the observed erosion data points. 62 out of 93 pairs of observed data points were 14 

recorded as net erosion. Among them there were 23 data points fall within the 5th and 95th percentile 15 

envelopes. In other words, 37.1% was estimated within the bed change scenarios. Given the 16 

numerous factors that can cause erosion within the channel, the equation that is driven by water 17 

depth and indirectly grain size through critical velocity could still be able to capture areas of 18 

significant erosional channel changes. The approach was, therefore, good enough for an initial 19 

assessment of the erosional impact on flood modelling.  20 

When evaluating the model performance, the three scenarios (no change, 5th and 95th percentiles) 21 

displayed similar friction sensitivity for channel and floodplain Manning’s n. The inclusion of bed 22 

elevation changes did not improve the performance of behavioural models, however the use of the 23 

RMSE global performance measure will average out local errors, and so therefore might not be the 24 

best indicator of where the model performance has improved as a result of accounting for the 25 

uncertainty in channel morphology. The regions of behavioural friction parameter sets were 26 

reasonably different considering that the only thing being changed was erosional changes to the bed 27 

elevation. Greater changes in parameter spaces might be seen if it were two different rivers or events. 28 

Constrained by the valley sides and due to the fact that the entire valley floor acted as a single 29 

channel unit to convey the flood, the edge of the floodplain along the whole reach had a high degree 30 

of certainty in flood extent even though changes in bed elevation were considered. The flood 31 

inundation extent was thus not a sensitive measure in this case. It may be argued that larger effect of 32 

erosion on flood extent might be seen for smaller flood events as the channel capacity becomes more 33 

important when the majority of flow is still held within the channel. However, for this reach these 34 

events did no create significant morphological changes, as shown by the evidence that cross-section 35 

surveys in the post 2005 flood in the reach through Cockermouth showed minor changes in bed 36 

elevation and localised changes in bank outline when compared to those taken in 1998. In addition, 37 

since the change in flood extent is dependent on the size of the flood event due to topographic 38 

gradient, evaluation of model performance should be achieved using comparison of water surface 39 

elevations not spatial patterns of the flood (Stephens et al., In press).  40 

Referring to the changes in water depths within the inundation area, the uncertainty in the simulated 41 

mean depth of flooding throughout the flood event, however, had an average increase of 0.68% to 42 
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4.31% in 5th and 95th percentile bed change scenarios. The effects of uncertainty in bed elevation 1 

changes on flood dynamics were also observed both through time and with distance downstream. 2 

Temporally speaking, variations in mean channel and floodplain depth of flooding were greater but 3 

shorter during rising limb than falling limb. Despite its negligible change in water depth, the 4 

variations in mean floodplain water depth were larger than that of the mean channel water depth. 5 

Referring to the spatial patterns, local bed elevation changes became the principal control over where 6 

flood water initially flowed. Regions furthest away from the channel generally tended to have a 7 

higher degree of variability, areas where calculated erosion took place, however, also caused the 8 

near-channel floodplain to have greater variations in the time of initial flooding. Perhaps it would be 9 

interesting to look at the probability of localised channel breaching and its impact would have on 10 

floodplain inundation, but this is outside the scope of the data that is available as it would need to 11 

include some prior knowledge of the condition of the banks to get the probabilities of breaching 12 

remotely correct.  13 

6. Conclusion 14 

Overall, the inclusion of bed elevation changes appeared to alter the flood dynamics locally, and 15 

although this effect was noticeable in the global friction sensitivity, it was not significant for the 16 

flood inundation mapping. Given that the November 2009 flooding in Cockermouth was an extreme 17 

flood event with significant geomorphological changes, the effects of uncertainty in the bed elevation 18 

changes on flood dynamics were noticeable but relatively small. It is more likely that the boundary 19 

conditions or errors in observed data could have a larger impact on the model performance as well as 20 

on acceptable effective roughness values. For instance, an analysis of rating curve uncertainties 21 

could lead to an uncertainty in the input of 18-25% at peak discharge (Pappenberger et al., 2006). It 22 

is highly possible that the rating curve uncertainties arising from the extrapolation of the rating curve 23 

and errors in estimating the peak discharge are even greater for this flood event. Therefore, this study 24 

has shown that hydraulic models might not need to account for within event morphodynamic 25 

changes as these can have a negligible impact compared to other uncertainties. However, the 26 

conclusions of this study are limited in that they only represent simplified and erosional cross-section 27 

changes and did not account for the significant changes in cross-section (bank erosion) and 28 

deposition. Similarly, in catchments with much larger sediment supply, changes may well include 29 

channel blocking and avulsion, neither of which were included within this model.  While we 30 

conclude that morphodynamic change needs to happen over a series of events to become large 31 

enough to change the hydrodynamics of floods in the UK, given the assumptions in this study future 32 

work should be undertaken to concentrate on two areas: 1) the effects of the full range of 33 

morphological adjustments and, 2) the agglomerative changes in channel morphology resulting from 34 

flood sequences and how the uncertainties of each flood event propagate to the next; the latter 35 

becoming more significant with increased flood frequency. 36 
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Table 1 Summary statistics of cross-section survey 1 
 Pre-flood survey Post-flood survey 

Date of survey 1998 by EA December 2009 by EA  
May and August 2010 by 

this study 

No. of cross-section 234 191 

Mean spacing (m) 124 151 

Mean point spacing (m) 1.09 3.35 

Minimum elevation (m) 4.20 3.03 

Maximum elevation (m) 67.44 69.72 

 2 
 3 

Table 2 Optimal parameter sets of channel and floodplain friction identified using RMSE for three bed elevation scenarios and for three 4 
datasets. 5 

 Bed Elevation 
Scenario 

Channel 
Friction 

Floodplain 
Friction 

RMSE 
(m) 

Wrack Marks No change 0.022 – 

0.042 

0.044 0.2751 

5% percentile 0.067 0.045 0.2759 

95% percentile 0.067 – 
0.132 

0.05 0.3059 

Aerial Photos No change 0.038 – 

0.135 

0.029 0.4187 

5% percentile 0.036 – 
0.061 

0.028 0.4187 

95% percentile 0.05 – 

0.067 

0.038 0.4311 

TERRASAR-

X Image 

No change 0.047 0.020 0.6303 

5% percentile 0.047 0.020 0.6281 

95% percentile 0.047 0.020 0.6084 

 6 


