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a joint state-variable/observation approach
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ABSTRACT

The analysis step of the (ensemble) Kalman filter is optimal when (1) the distribution of the background

is Gaussian, (2) state variables and observations are related via a linear operator, and (3) the observational error

is of additive nature and has Gaussian distribution. When these conditions are largely violated, a pre-processing

step known as Gaussian anamorphosis (GA) can be applied. The objective of this procedure is to obtain

state variables and observations that better fulfil the Gaussianity conditions in some sense. In this work we

analyse GA from a joint perspective, paying attention to the effects of transformations in the joint state-

variable/observation space. First, we study transformations for state variables and observations that are

independent from each other. Then, we introduce a targeted joint transformation with the objective to obtain

joint Gaussianity in the transformed space. We focus primarily in the univariate case, and briefly comment

on the multivariate one. A key point of this paper is that, when (1)�(3) are violated, using the analysis step

of the EnKF will not recover the exact posterior density in spite of any transformations one may perform.

These transformations, however, provide approximations of different quality to the Bayesian solution of the

problem. Using an example in which the Bayesian posterior can be analytically computed, we assess the quality

of the analysis distributions generated after applying the EnKF analysis step in conjunction with different GA

options. The value of the targeted joint transformation is particularly clear for the case when the prior is

Gaussian, the marginal density for the observations is close to Gaussian, and the likelihood is a Gaussian

mixture.

Keywords: Gaussian anamorphosis, ensemble Kalman filter, nonlinearity, joint transformations, non-Gaussianity

1. Introduction

It is often the case, when estimating a variable of interest,

that one only counts with imperfect sources of information.

For example, to determine the value of an atmospheric

variable at a given location, one can rely on a short-term

forecast and observations of the variable, both of which

contain errors. Data assimilation (DA) is the process of

combining these sources of information in a way that is

optimal in some predefined sense (see e.g. Cohn, 1997).

This paper deals with a particular aspect of sequential

DAmethods. These methods have two steps. In the forecast

step, the state estimator is evolved in time following some

dynamical model, along with some measure of its uncer-

tainty. Whenever an observation becomes available, the

information from this observation is combined with that

provided by the forecast (also called background) to

produce a better estimate (denominated analysis). This is

known as the analysis step.

In the present work we focus only on the latter step.

Hence, we consider that when an observation arrives we

have already got a background estimate (regardless of the

way this was obtained). We consider both the background

and the observations to contain random errors with some

prescribed probability density functions (pdf’s). Under such

a probabilistic framework, the aim of the analysis step is to

obtain the posterior pdf of the variable of interest. In

theory, this can be achieved through a direct application of

Bayes theorem. Nonetheless, in practice this can result in a

difficult task since a complete representation of the dis-

tributions for the prior and the likelihood is required.

When dealing with full pdf’s is not possible, one can

work with summary statistics for both the background and

the likelihood. For example, the analysis equations of the

Kalman filter (KF: Kalman, 1960; Kalman and Bucy,
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1961) provide a method to update the first two moments

(mean and covariance) of the state variable from back-

ground to analysis. In large-scale applications, such as

numerical weather prediction (NWP) or oceanography, the

background statistics are usually obtained from samples

[ensemble Kalman filter (EnKF) Evensen, 2006].

Under special conditions: (1) Gaussianity in the prior, (2)

linearity of the observation operator and (3) Gaussianity in

the additive observational error density, the solution given

by the analysis step of the KF/EnKF provides the sufficient

statistics of the Bayesian solution (the sampling nature of

the EnKF obviously introduces statistical error in this case).

If these conditions are not fulfilled, the application of the

(En)KF analysis equations is suboptimal, but it can still be

useful.

In some cases, however, the deviation from these condi-

tions can be quite important. This happens, for example,

when the prior is multimodal or when it does not have the

statistical support (domain) of the Gaussian distribution.

The latter is the case of positive definite variables such

as precipitation (see e.g. Lien et al., 2013), and bounded

quantities such as relative humidity. Large deviations from

Gaussianity in the prior are not uncommon in many fields,

for example in physical�biological models (Bertino et al.,

2003; Simon and Bertino, 2009; Beal et al., 2010; Doron

et al., 2011). Non-Gaussian pdf’s can also result from the

deformation of an original Gaussian pdf during the forecast

stepwhen themodel is strongly nonlinear (Miller et al., 1994,

1999). Problems can also arise if the likelihood presents

extreme non-Gaussian features.

In these cases, either of two options can be taken. One can

select an analysis step based on methods that do not require

Gaussianity, e.g. the rank histogram filter (Anderson, 2010).

On the other hand, one can still apply the (En)KF analysis

step, in conjunction with a procedure known as Gaussian

anamorphosis (GA). This involves transforming the state

variable and observations {x, y} into new variables fex;eyg
which present Gaussian features (details will be given in

Section 3). The (En)KF analysis equations are computed

using the new variables, and the resulting analysis is mapped

back into the original space using the inverse of the trans-

formation. GA is a well-known technique in the geostatistics

community (see e.g. Wackernagel, 2003), and it was in-

troduced to the DA community in a seminal paper by

Bertino et al. (2003). Since then, it has been explored in

different works (e.g. Zhou et al., 2011; Brankart et al., 2012;

Simon and Bertino, 2012).

A possible drawback of anamorphosis is that as a result

of the transformations (generally nonlinear), an observa-

tion operator is introduced in the new space (Bocquet et al.,

2010). Although one can apply the EnKF with nonlinear

observation operators (see e.g. Hunt et al., 2007), it seems

undesirable to solve one problem (non-Gaussianity) at the

cost of creating another. A central idea in this work is

that different transformations in the state variable and/or

observations can achieve different objectives: marginal

Gaussianity in the state variables, marginal Gaussianity

in the observations, joint Gaussianity in the pair {state

variable, observation}. As we will see, different transforma-

tions will bring different side effects. Is there an optimal

strategy to follow when performing anamorphosis? If not,

how do different transformations compare? These ques-

tions are at the heart of this paper.

This paper has three main objectives. The first is to study

anamorphosis transformations using a joint statistical

approach between state variables and observations. The

second is to visualise the effect that different transforma-

tions have on the joint probability space in which the

EnKF is used. The third is to introduce a targeted joint

state-variable/observation transformation which maps the

pair of an arbitrary prior probability and arbitrary like-

lihood into a joint Gaussian space. In order to assess the

performance of the different transformations, we choose an

example in which we are able to compute analytically the

posterior pdf of the model variables for different given

observations. It is against these exact posteriors that we

compare the EnKF-generated analysis pdf’s.

The rest of this paper is organised as follows: Section 2

discusses the DA analysis step in more detail, the probabil-

istic formulation and the EnKF solution. Section 3 intro-

duces and explains the concept of GA. Section 4 discusses

the implementation of GA, studying the existing methods

and introducing a newly targeted joint state-variable/ob-

servation transformation. In Section 5 we perform study

cases of the methods discussed in Section 4. Section 6

includes the conclusions and some discussion.

Some remarks on notation will be useful before starting.

We will try to follow (sometimes loosely) the convention of

Ide et al. (1997) with respect to sequential DA. Pdf’s will be

denoted as pnðnÞ, while cumulative density functions (cdf’s)

will be denoted as PnðnÞ. If we want to explicitly include the

parameters when referring to any distribution, this will be

done with a semicolon in the argument, e.g. pnðn; hnÞ. The
symbol � should be read ‘distributed as’. We will use Ex to

denote expected value, with the subindex indicating the pdf

with respect to which this operation is computed. For

example,

Ex½n� ¼
Z 1

�1
npxðnÞdn (1)

Similarly, Covx½�� denotes covariance, with the same meaning

for the subindex. The Gaussian distribution will appear

frequently in this work. For the sake of brevity, if the

random variable (rv) n 2 R
1 follows a Gaussian distribution
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with mean ln and variance s2
j, we will denote its

pdf as:

pnðnÞ ¼ / n; ln; rn

� �
� /

n� ln

rn

 !

� 1ffiffiffiffiffiffi
2p
p

rn

exp �
ðn� lnÞ

2

2r2
n

 !
(2)

and its cdf as:

PnðnÞ ¼ U n; ln; rn

� �
� U

n� ln

rn

 !

� 1ffiffiffiffiffiffi
2p
p

rn

Z n

�1
exp �

ðt� lnÞ
2

2r2
n

 !
dt (3)

For some examples, we will also use exponential rv’s.

The pdf for this distribution is:

pxðxÞ ¼
1

k
e�

x
k; x]0 (4)

where k > 0 is a scale factor.

2. Analysis step: Bayesian and EnKF solutions

In this section, we make use of transformations of rv’s; basic

concepts of this topic can be found in Appendix A. Let

x 2 R
Nx denote the vector of state variables, and consider it

follows a prior distribution pxðxÞ. In the most general case,

the observations y 2 R
Ny follow the relationship:

y ¼ ĥðx; hÞ (5)

where ĥ : R
Nx�Ny ! R

Ny is a nonlinear observation opera-

tor, and h 2 R
Ny represents the observational error, which

follows a distribution ph(h). Consider there exists an inverse

h ¼ ĥ�1ðy; xÞ (as a function of y), then the likelihood

pyjxðyjxÞ� conditional pdf of y given x � can be written as:

pyjxðyjxÞ ¼ phðĥ�1ðy; xÞÞ det
@

@y
ĥ�1ðy; xÞ

" #�����
����� (6)

where det @
@y

ĥ�1ðy; xÞ
h i��� ��� is the absolute value of the

determinant of the Jacobian matrix of the transformation.

The joint pdf of x and y is the product of the likelihood and

the prior. The posterior distribution can be computed via

Bayes’ theorem as:

pxjyðxjyÞ ¼
px;yðx; yÞR1

�1 px;yðx; yÞdx
¼

pyjxðyjxÞpxðxÞ
pyðyÞ

(7)

The denominator py(y) is the marginal pdf of the observa-

tions, and can often be treated as a normalisation factor of

the posterior pdf, since it does not depend on x.

This is the most general solution for the DA analysis

step. Nonetheless, obtaining the posterior pdf is not an easy

task in many occasions, since it requires full knowledge of

the two densities involved in the product of the numerator

of eq. (7). Let us step back and discuss a considerably

simpler case; we will build on more complicated cases later.

Hence, let eq. (5) become:

y ¼ Hxþ h (8)

where H 2 R
Ny�Nx is a linear operator and the observa-

tional error is additive. Define mb ¼ Ex½x� 2 R
Nx ,

B ¼ Covx½x� 2 R
Nx�Nx (denoted rb2

in the univariate case),

R ¼ Covyjx½yjx� 2 R
Ny�Ny (denoted ro2

in the univariate

case), and Eh½h� ¼ 0. One can get a minimum variance

estimator for the analysis mean ma 2 R
Nx as:

ma ¼ mb þ Kðy �HmbÞ (9)

where K 2 R
Nx�Ny is known as gain, and is computed as:

K ¼ BHTðHBHT þ RÞ�1
(10)

The covariance of the analysis is computed as:

A ¼ ðI� KHÞB (11)

Expressions (9) and (11) are the KF analysis equations

(Kalman, 1960; Kalman and Bucy, 1961). If, besides having

a linear observation operator and additive observational

error, both px(x) and pyjxðyjxÞ are multivariate Gaussians,

then using these equations is optimal. This means they

produce the sufficient statistics of the full Bayesian poster-

ior. Note that if the set {x, y} has a joint multivariate

Gaussian distribution, then the aforementioned conditions

are automatically fulfilled.

It is important to mention that the marginal pdf of the

observations is pyðy;my;RyÞ, again a multivariate Gaussian,

this time with mean and covariance:

my ¼ Hmb

Ry ¼ HBHT þ R
(12)

Now, let us partially relax the assumptions on the

likelihood. For nonlinear observation operators and ad-

ditive error, the observation equation is:

y ¼ hðxÞ þ h (13)

It should be clear that in this case eq. (6) simplifies to

pyjxðyjxÞ ¼ phðy � hðxÞÞ. A first order (linear) approxima-

tion to the KF analysis equations, known as extended KF

(EKF, see e.g. Jazwinski, 1970) can be written as:

ma ¼ mb þKðy � hðmbÞÞ
A ¼ ðI�KHÞB

K ¼ BHTðHBHT þ RÞ�1

(14)

where H 2 R
Ny�Nx is the tangent linear operator of h, i.e.

the Jacobian matrix H ¼ @h
@x
jx¼xb .

GA IN THE ANALYSIS STEP OF THE ENKF 3



Formulating the KF analysis equations for a general

observation operator as indicated in eq. (5) is much more

complicated (and further away from optimal conditions),

since it would require the linearisation of ĥðx; hÞ with

respect to h to express:

y ¼ hðx; hÞjh¼0 þ
@h

@h
jh¼0 hþOðh2Þ (15)

This approximation of course will only be accurate for

small h.

To end this section, it is useful to discuss the analysis step

of the EnKF (see e.g. Evensen, 2006). This is a Monte Carlo

implementation of the KF, and uses sample statistics. Let us

denote the background ensemble as Xb ¼ xb
1; . . . ; xb

M½ �,
where Xb 2 R

Nx�M . The sample mean is:

xb ¼ 1

M

XM
m¼1

xb
m (16)

An ensemble of perturbations around the mean can

be defined as: X0b ¼ Xb � xb1T , where 1 2 R
M . Then, the

sample covariance is:

Pb ¼ 1

M � 1
X0bX0bT (17)

The KF analysis equations update both mean and

covariance, but in the analysis step of the EnKF it is

necessary to update each one of the M ensemble members.

This can be done deterministically (ensemble square root

filters: Tippett et al., 2003), or stochastically (perturbed-

observations EnKF; Burgers et al., 1998). In this work we

focus on the stochastic formulation (henceforth EnKF will

refer to perturbed-observations EnKF), where each en-

semble member is updated as:

xa
m ¼ xb

m þ Kðym �Hxb
mÞ (18)

where K is defined as before but using the sample covar-

iances, and the perturbed observations {ym} are samples

from pyjxðyjxÞ. In particular, if the error is additive they

relate to the actual observations by ym�y�hm, where hm

is a particular realisation of the observational error. By

construction, the KF analysis equation for the mean is

fulfilled if the perturbed observations are generated such

that y ¼ y, where y is the sample mean. The KF analysis

equation for the covariance is fulfilled in an statistical sense.

In the case of nonlinear observation operator, eq. (18)

would be written as

xa
m ¼ xb

m þKðym � hðxb
mÞÞ (19)

In the EKF analysis equation, the computation of K
involves calculating H. In the analysis step of the EnKF

one can avoid computing this Jacobian by using the

ensemble (Hunt et al., 2007). First, one maps Xb 2 R
Nx�M

into observational space using the nonlinear observation

operator to get a new ensemble Yb 2 R
Ny�M . Explicitly:

Yb ¼ ½yb
1 ¼ hðxb

1Þ; yb
2 ¼ hðxb

2Þ; � � � ; yb
M ¼ hðxb

MÞ� (20)

Then a sample mean yb can be computed, as well as an en-

semble of perturbations around this mean Y0b ¼ Yb � yb1T .

Finally, K is computed as:

K ¼ X0
b

Y0bTðY0bY0bT þ ðM � 1ÞRÞ�1
(21)

For the EnKF analysis step, the quality of the sample

estimators does depend on the ensemble size M, and this

size should be related to the number of unstable modes in

the model. It is not within the objectives of this paper to

consider the effect of ensemble size, since what we want to

evaluate is the exact solution produced by the analysis step

of the EnKF when computed in different spaces, and how

does it compare to the actual Bayesian posterior. For this

reason, we will consider effectively infinite ensemble size

(M ¼ 106 in all our experiments) such that xb ! mb and

Pb ! B.

3. Anamorphosis

In Section 1, we stated three conditions that ensured

optimality in the application of the (En)KF analysis step.

For the moment, let us assume that conditions (2) and (3)

are fulfilled, and focus on non-Gaussian priors. Two cases

� for x 2 R
1� that result as challenging for the application

of the EnKF analysis step are illustrated in Fig. 1. In both

cases, the likelihood has been kept Gaussian and centred at

the (directly observed) state variable.

In the left panel, the prior (blue line) is bimodal, a

mixture of two Gaussians centred in x� �2 and x�2 with

equal variance s2�1
4
. The prior mean is x�0, correspond-

ing to a region where px(x) is close to zero. By assimilating

an observation (red line) at y �x�1
3
, the EnKF incorrectly

constructs a unimodal analysis pdf (green line) which does

not resemble at all the Bayesian posterior (magenta line).

In fact, the analysis pdf is centred in a region where the

posterior pdf is close to zero.

In the right panel, the prior is an exponential distribution

with k ¼ 1. This is a positive�definite variable, and the

Bayesian posterior (corresponding to an observation at

y�x�2
3
) correctly captures this information, since

pxjyðxjyÞ ¼ 0 8xB0. The analysis pdf given by the KF,

however, yields non-zero probabilities for negative values

of x. In reality, physical observations of a non-negative

variable will not be negative. An additive error with

Gaussian distribution cannot be used in practice: either a

truncated non-symmetric distribution is likely to be used,

or negative values will be mapped to zero. Moreover, in

these cases the nature of the observational error tends not

4 J. AMEZCUA AND P. J. VAN LEEUWEN



be additive, but multiplicative for instance. Nonetheless,

for the purpose of illustration, we allow the existence of

negative observations.

To avoid the mentioned problems, one can transform the

state variable before applying the EnKF. The ultimate goal

of this procedure is to map x, a variable with an arbitrary

multivariate pdf px(x), into a new state variable ~x with

multivariate Gaussian pdf p~xð~xÞ. Then, the KF analysis

equations can be applied to the transformed variables, and

these updated values can be mapped back into the original

space. This mapping process is known as GA.

In the univariate case (x 2 R
1), applying GA is concep-

tually not complicated (aside from the implementation

aspects). One could use analytic functions such as loga-

rithm or Box�Cox transformations, but these are not

guaranteed to improve the distribution in general (Simon

and Bertino, 2009). A better solution is to make use of the

integral probability transform theorem (IPT) and solve for

the new variable as (for details see Appendix A):

~x ¼ gðxÞ ¼ P�1
~x ðPxðxÞÞ (22)

The moments of the target Gaussian variable ~x are set to

be those of the original ensemble (see Section 4.4 Bertino

et al., 2003). Of course, in the implementation one can

transform x into a standard Gaussian rv N(0,1), and then

translate and scale the values correspondingly to get ~x.

The actual prior px(x), and consequently the cdf Px(x),

are rarely known perfectly. Hence, to apply the IPT,

the first step is to empirically estimate Px(x). This can be

done using the ensemble. Then, a set of percentiles of this

empirical cdf are mapped to the same percentiles of the cdf

of a target normal distribution. A piecewise linear trans-

formation can be used to get the intermediate values, and

special care has to be taken when dealing with the tails

(Simon and Bertino, 2009; Beal et al., 2010). The quality in

the estimation of Px(x) clearly depends on the size of the

ensemble. In order to increase the sample size, one can

make use of values of the variable at different times and

consider a stationary climatological pdf. Refinements to

this idea include time-evolving anamorphosis functions.

Simon and Bertino (2009), for example, construct the GA

function for the state variables from a window of 3 months

centred on the datum in a 3-D ecosystem model.

The multivariate case is considerably more difficult.

Strictly speaking, it requires a joint multivariate transfor-

mation. A multivariate version of the IPT exists (Genest

and Rivest, 2001), but its application is not simple. Besides,

checking for the joint Gaussianity of a multivariate spatial

law is quite computationally demanding (Bertino et al.,

2003). For this reason, implementation of GA in large

models is often done univariately, i.e. a different function is

applied for each one of the components in the state-

variable vector:

~x ¼ gðxÞ;

~x1

~x2

..

.

~xN

26664
37775 ¼

g1ðx1Þ
g2ðx2Þ

..

.

gNðxNÞ

26664
37775 (23)

For field variables, one can either consider them to have

homogeneous distributions, or one can apply local ana-

morphosis functions at different gridpoints (Doron et al.,

2011; Zhou et al., 2011). Another option for the multi-

variate case is to rotate the space to get uncorrelated

variables by performing principal components analysis

(PCA). It is not straightforward, however, that the updated

variables will follow the same PCA, since the transforma-

tions are nonlinear (see the discussion in Bocquet et al.,

2010). Moreover, residual correlations may remain (Pires

and Perdigao, 2007). A more complicated approach invol-

ving copulas has been suggested by Scholzel and Freidrichs

(2008).

Fig. 1. Comparison of the analysis pdfs obtained by a direct application of the EnKF analysis step (green line) with respect to the actual

Bayesian posteriors (magenta line). The state variables have either a multimodal prior distribution (left), or they are positive�definite
quantities (right). The EnKF analysis step is applied with M�106.

GA IN THE ANALYSIS STEP OF THE ENKF 5



Up to this moment we have only considered transforma-

tions of the prior, but the observations can be transformed

as part of a more general GA process, i.e.

~x ¼ gmodelðxÞ
~y ¼ gobsðyÞ

(24)

In the transformed space, ỹ and ~x are related by the

observation operator

~h ¼ gobs � h � g�1
model (25)

where k denotes function composition. In this space, for

each one of the transformed ensemble members, the EnKF

analysis value can be obtained as (Bertino et al., 2003):

~xa
m ¼ ~xb

m þ eKð~ym � ~hð~xb
mÞÞ (26)

To compute ỹm, Simon and Bertino (2012) propose to

perturb the observations in the original space by sampling

from pyjxðyjxÞ, and then map each of the perturbed

observations individually ~ym ¼ gobsðymÞ. In this work we

use said approach. The perturbed variables have associated

covariance matrices ~B and ~R, which can be computed

directly from the ensembles ~Xb and ~Y. These covariance

matrices are used for the computation of eK. If ~h is

nonlinear, then one uses the same procedure described at

the end of Section 2 for the computation of eK.
A crucial issue in GA is the choice of the transformations

gmodel( �) and gobs( �), and the effect these choices will have in

the observation operator in transformed space. In the next

section, we study different choices for these maps.

4. Choosing anamorphosis functions

We now discuss different ways to transform {x, y} into new

variables f~x;~yg, paying attention to the effects these

transformations cause in the joint characteristics of state

and observations. Is there a transformation that produces a

Gaussian posterior p~xj~yð~xj~yÞ in the transformed space? The

search for this ideal case leads this section.

For the moment, we focus on the univariate case

(x; y; ~x; ~y 2 R
1). We start with a generalisation of eq. (24)

and consider joint bivariate forward transformations of the

form:

~x ¼ g1ðx; yÞ
~y ¼ g2ðx; yÞ

(27)

with the respective backward transformations:

x ¼ q1ð~x; ~yÞ
y ¼ q2ð~x; ~yÞ

(28)

Then, if the joint pdf of {x, y} in the original space is

px;yðx; yÞ ¼ pyjxðyjxÞpxðxÞ, the joint pdf in the transformed

space is (see Appendix A for details):

p~x;~yð~x; ~yÞ ¼ pyjxðq2ð~x; ~yÞjq1ð~x; ~yÞÞpxðq1ð~x; ~yÞÞ

� @q1

@~x

@q2

@~y
� @q1

@~y

@q2

@~x

���� ���� (29)

Wewill now study different choices for eq. (27). Through-

out the rest of this section, we will use the following example

to visualise the effects of these choices in the joint state-

variable/observation space. The prior pdf, likelihood, and

observation equation are [refer to eq. (2) for notation on

Gaussian rv’s]:

pxðxÞ ¼ 1
2
/ xþ2

1=2

� �
þ 1

2
/ x�2

1=2

� �
pgðgÞ ¼ 4

5
/ gþ 1

4

� �
þ 1

5
/ g�1

1=2

� �
y ¼ hðx; gÞ ¼ xþ g

(30)

Both pdfs are Gaussian mixtures (GMs) with expected

values equal to 0; px(x) is symmetric while ph(h) is not. One

can think of this choice for px(x) to be plausible, but this

type of distribution is rarely used for observational error. It

could be seen as the result of the interaction of a simpler

likelihood with a nonlinear observation operator. In any

case, using GMs is convenient since they allow tractability

of the analytical Bayesian posteriors (see Appendix B for

details), something very useful for illustration and evalua-

tion purposes. Also, GMs can be used to approximate any

smooth pdf.

The application of different anamorphosis functions for

this example is illustrated in Fig. 2. This figure has five

panels, one for each transformation. In every panel we

show the joint bivariate distribution of the state variables

and observations (contour plot), the marginal distribution

of the state variable (horizontal plot) and the marginal

distribution of the observations (vertical plot). Also, we

consider individual given observations (shown as colour

lines on top of the bivariate plot), and the effects of the

transformations in these observations.

4.1. Independent transformations

The simplest case is to make the transformations for

state variables and observations independent. This means

~x ¼ g1ðx; yÞ ¼ g1ðxÞ and ~y ¼ g2ðx; yÞ ¼ g2ðyÞ. Then, eq.

(29) simplifies to:

p~x;~yð~x; ~yÞ ¼ pyjxðg�1
2 ð~yÞjg�1

1 ð~xÞÞpxðg�1
1 ð~xÞÞ

@g�1
1

@~x

@g�1
2

@~y

���� ���� (31)

Next, we list some choices for independent univariate

transformations.
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(a) Working in the original space.

In this trivial case, both transformations are the identity:

~x ¼ x; g1ð�Þ ¼ 1
~y ¼ y; g2ð�Þ ¼ 1

(32)

This amounts to just applying the EnKF in the original

space, but it serves as a benchmark for comparison. As we

see in panel (a) of Fig. 2, for our example both pxðxÞ and
pyðyÞ are bimodal, with pyðyÞ showing asymmetry, a

consequence of the asymmetric likelihood. In the joint

state-variables/observations space, this translates into two

sell-separated areas of high probability. This is indeed a

scenario that ensures non-optimality for the use of the

EnKF.

(b) Transforming only x.

In this case, only the state variable is transformed into a

Gaussian rv. Hence the transformations are:

~x ¼ U�1
~x ðPxðxÞÞ g1ð�Þ ¼ gx!~xð�Þ ¼ U�1

~x ðPxð�ÞÞ
~y ¼ y g2ð�Þ ¼ 1

(33)

where U~xð�Þ explicitly indicates that the cdf in transformed

space is that of a Gaussian rv (see notation defined in

Section 1). As we can see in panel (b) of Fig. 2, this

transformation achieves a marginal Gaussian p~xð~xÞ, but

does nothing either on p~yð~yÞ or in the individual observa-

tion values. The joint pdf p~x;~yð~x; ~yÞ does not show the

isolated peaks as before, but instead it has elongated

features, a consequence of populating regions of the space

variable around 0 which were previously unpopulated.

(c) Transforming both x and y with the same function.

This transformation is only possible when the domains

of x and y are the same, as in our example with h�1. This

option cannot always be applied; it would be incorrect, e.g.

if x 2 R and y 2 R
þ. For the sake of completeness, we

include it in our discussion. In this case the maps would be:

~x ¼ U�1
~x ðPxðxÞÞ g1ð�Þ ¼ gx!~xð�Þ ¼ U�1

~x ðPxð�ÞÞ
~y ¼ U�1

~x ðPxðyÞÞ g2ð�Þ ¼ gx!~xð�Þ ¼ U�1
~x ðPxð�ÞÞ

(34)

The application of this transformation in y does not

guarantee anything characteristic for p~yð~yÞ. Panel (c) of

Fig. 2 illustrates the effect of this transformation. While the

state variable is indeed transformed into a Gaussian, we

obtain a non-Gaussian and very peaked distribution for

p~yð~yÞ, which translates in a very narrow bivariate pdf with

respect to ỹ. The individual observations are transformed,

as depicted by the colour lines.

(d) Transforming x and y marginally.

With the previous methods one achieved marginal

Gaussianity in ~x, but not on ỹ. One can apply the IPT to

Fig. 2. Bivariate distributions (contour plots) and marginal distributions (line plots) for state variables (horizontal) and observations

(vertical) under six different transformations [panels (a)�(e)] described in the text. Individual given observations are identified with colour

lines in the contour plot, except for panel (f) where individual values of x are shown.
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y and obtain marginal Gaussianity in ỹ. The maps would

then be:

~x ¼ U�1
~x ðPxðxÞÞ g1ð�Þ ¼ gx!~xð�Þ ¼ U�1

~x ðPxð�ÞÞ
~y ¼ U�1

~y ðPyðyÞÞ g2ð�Þ ¼ gy!~yð�Þ ¼ U�1
~y ðPyð�ÞÞ

(35)

This transformation involves knowing the marginal dis-

tribution of the observations, or at least constructing an

estimation. This is the approach used in Simon and Bertino

(2009, 2012). In these works, the authors estimate amarginal

climatological pdf for observations using values from an

extended time period. Panel (d) of Fig. 2 shows the effects of

this transformation. As we can see, both marginal pdf’s are

Gaussian. The individual observations are transformed [as

in panel (c)]. The joint pdf, however, looks very different

from a bivariate Gaussian; recall that whereas bivariate

Gaussianity implies marginal Gaussians, the opposite is not

true (e.g. Casella and Berger, 2002).

4.2. Joint state-variable/observation transformations

In Section 4.1, the objectives of the proposed transforma-

tions became progressively more ambitious. The last case

achieves marginal Gaussianity in both ~x and ỹ. Still, with

independent transformations we are not able to guarantee

any particular characteristics for the relationship between

state variables and observations in the transformed space.

We now introduce a joint state-variable/observation trans-

formation which has precisely this objective: to transform

the pair {x, y} (with arbitrary joint pdf) into the pair f~x; ~yg
(with joint Gaussian pdf). Consequently as a by-product,

the marginal and conditional pdfs in this space will also be

Gaussian. Our algorithm can be divided into three steps.

These are listed next and also depicted in Fig. 3.

(1) The first step corresponds to the upper row of Fig. 3.

In this step we pre-design a transformed space (right panel)

which is joint Gaussian and that shares statistical char-

acteristics with the original space (left panel). In the

transformed space we set the prior as p~xð~xÞ ¼ /ð~x; ~lb; ~rbÞ,
and the likelihood as p~yj~xð~yj~xÞ ¼ /ð~y; ~H~x; ~roÞ. The mo-

ments of p~x are estimated by the sample moments of the

ensemble in the original space, i.e. f~lb ¼ lb; ~rb ¼ rbg, and
the observational error is prescribed (or deduced) from the

original likelihood, i.e. ~ro ¼ ro. ~H is a linear observation

operator (in our example we choose the identity).

(2) The second step corresponds to the middle row of

Fig. 3. We map both x and ~x into w�U [0, 1], i.e. an rv

with uniform distribution in the interval [0, 1]. Simply

applying the IPT to both variables does this:

w ¼ PxðxÞ
w ¼ P~xð~xÞ ¼ U~xð~xÞ

(36)

The previous procedure is just the application of eq. (22)

with an extra intermediate step. Let us focus on the spaces

{w, y} and {w, ỹ}. Since the marginal pdf of w is simply

pw(w)�1 I[0, 1](w)�where I[0, 1]( �) is the indicator function�,
the joint pdf pw,y(w,y) coincides with the conditional pdf

pyjwðyjwÞ, i.e. pw;yðw; yÞ ¼ pyjwðyjwÞ. The same applies to the

{w,ỹ} case, i.e. pw;~yðw; ~yÞ ¼ p~yjwð~yjwÞ.
For our example, these distributions are illustrated in the

second row of Fig. 3, and they are shown in better detail in

Fig. 4. In the left panel of this figure we depict pw,y(w,y), the

centre panel depicts pw,ỹ(w,ỹ) and the right panel is the

difference between the two [we can do this subtraction

because y and ỹ have the same support ð�1;1Þ]. In the

left panel, we can see the effect of having a GM as prior, as

we can see two well-separated regions in the joint pdf, with

a division at w�0.5. We can also notice the effect of the

non-symmetric likelihood: the distance between the con-

tours in the upper part of the coloured strip is less than the

distance between those in the lower part. These effects are

not present in the centre panel. In fact, we need a way to

convert the left panel into the centre panel; this is the

purpose of the next step.

(3) The last step is depicted in the bottom row of Fig. 3.

For the last step we design a transformation from y to ỹ

such that the given pw,y(w,y) becomes the prescribed

pw;~yðw; ~yÞ. This is equivalent � as we have explained before

� to transforming pyjwðyjwÞ into p~yjwð~yjwÞ. Hence, for each

and every value of w, we can state the following equation of

cumulative likelihoods:

P~yjwð~yjwÞ ¼ PyjwðyjwÞ (37)

Although it is not always possible to obtain explicitly, the

solution of this equation is of the form ỹ�ỹ(w,y). Solving

this equation for each and every value of w completes

the construction of the map from {x,y} into f~x; ~yg. To

summarise, the transformation we just devised is formed by

the forward and backward maps:

~x ¼ gx!~xðxÞ x ¼ g�1
x!~xð~xÞ

~y ¼ gbivðx; yÞ y ¼ qbivð~x; ~yÞ
(38)

In Fig. 5, we show the form of these maps in our study

case: forward transformations in the top row and backward

transformations in the bottom row. The top left panel

shows the simple IPT-based transformation from x to

~x. For the region �1BxB1, the graph looks almost

horizontal, but it is not. This consequence comes from the

fact that in this region px(x) is close to zero, while this same

region contains the largest probability mass for p~xð~xÞ, so
the slope of the map in this region is extremely small. The

top right figure shows the joint transformation ỹ�ỹ(x,y),

which is the solution of eq. (37) in terms of y and w, but

with the values of w replaced by the corresponding x for the

plot. The bottom left panel shows the transformation from

~x to x. Again, it is a simple IPT-based implementation.
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Fig. 3. The process for the joint state-space/observations transformation described in Section 4.2. First (i), a target probability space is

constructed using the statistical moments inferred or prescribed by the original variables. Second (ii), the state variables (both original and

transformed) are mapped into a random variable w distributed U[0,1]. Finally (iii), for each w an equation of cumulative likelihoods is

solved to find ỹ in terms of y.
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This time we observe an almost vertical behaviour of

the graph near ~x ¼ 0, for the reasons stated before. On the

other hand y ¼ yðu; vÞ is the solution of eq. (38) in terms of

y and w, with the values of w replaced by the corresponding

values of ~x for the plot. The plot would suggest a dis-

continuity around ~x ¼ 0, but this is not the case, as there is

only a sharp change not captured at the resolution of the

graph. This behaviour is associated with the characteristics

around x�0 previously described.

The method we just described can be considered a special

instance of the multivariate Rosenblatt transform (1952).

Furthermore, the statistical characteristics of the joint

state-variable/observation space f~x; ~yg constructed with

this method fulfil conditions (1)�(3). At first sight, one

could consider this to be an optimal transformation.

Things are not that simple, however, and the complication

comes from the mapping of the given individual observa-

tions. The issue is that a fixed value y0 in {x,y} is not fixed

anymore in f~x; ~yg, it becomes a function ~y0 ¼ ~y0ðx; y0Þ
(actually a function of x since y0 is a fixed value). This can

easily be seen in panel (e) of Fig. 2. By construction the

obtained joint distribution is bivariate Gaussian (and

consequently the marginals are Gaussian as well), but

fixed observations are no longer horizontal lines, instead

their values depend on ~x. This leads to a conceptual

complication: in the f~x; ~yg space we are not finding a

Fig. 4. Joint pdfs for the spaces {w, y} (left) and {w,ỹ} (centre). The difference between the two densities is plotted in the right panel.

Fig. 5. Joint bivariate transformations from the {x,y} space (with GM marginals) to the f~x; ~ygspace (with a joint bivariate Gaussian

pdf). The first row shows the forward transformations: the state variable is univariately transformed (left) whereas the observation is

transformed in a joint bivariately manner (right). The backward transformations are presented in the bottom row.
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posterior in the proper sense (or estimating its first two

moments, since we are using the EnKF). In this space, the

posterior p~xj~yð~xj~yÞ is the pdf along a horizontal line of fixed

ỹ. But we do not have fixed ỹ ’s, instead we have functions.

Does this mean we are actually estimating a probability of

the form p~xj~yð~xÞð~xj~yð~xÞÞ instead of p~xj~yð~xj~yÞ? This may not be

as big a problem if we individually update each ensemble

member (as we do), it would be more problematic if we

were using a deterministic square root filter, updating mean

and covariance, and constructing the ensemble members

after that. Fortunately, by using perturbed observations we

sample directly from the likelihood. This avoids bias, as in-

dicated in Simon and Bertino (2009). Finally, it is impor-

tant to mention that if we wanted the Bayesian solution in

the transformed space we would need to compute the

corresponding normalisation factor, in this case pð~yð~xÞÞ,
which cannot be considered a constant with respect to ~x.

Fortunately, we do not require this factor after mapping

the sample back to the original space.

The EnKF analysis equation in the transformed space is

simply eq. (18), and it is linear. For ~rb2 we use the sample

covariance in transformed space. The observational error

variance ~ro2 is prescribed based on the characteristics of

the likelihood in the original space. One could compute

the empirical observational covariance in the transformed

space, but one could not be averaging over straight lines,

but functions of ~x (see the previous discussion). Hence, this

could lead to an overestimation or underestimation of the

actual observational covariance.

4.3. Transformations in the multivariate case

Performing GA in the multivariate case (x; ~x 2 R
Nx and

y;~y 2 R
Ny ) is considerably more difficult. As mentioned in

Section 3, the simplest way is to do independent transforma-

tions for each one of the state variables [see eq. (23)] and

observations. If there are variables that are neither trans-

formed nor observed, they are still affected by the transfor-

mations via the corresponding covariances. For illustration,

consider a two-variable system in which the first variable is

indirectly observed, i.e. x ¼ ½x1 x2�
T
and y=[y1]=[h(x1,h1)].

Even if the unobserved x2 is not transformed, the update

from background to analysis of this variable is different in

the original space than in one in which a GA of the form

x1 ! ~x1; y1 ! ~y1 is performed. We can see this if we

develop explicitly eq. (19) for this variable in the two cases:

xa
2 � xb

2 ¼
Covðxb

2
;yb

1
Þ

Varðyb
1
ÞþVarðy1Þ

ðy1 � yb
1Þ

xa
2 � xb

2 ¼
Covðxb

2
;~yb

1
Þ

Varð~yb
1
ÞþVarð~y1Þ

ð~y1 � ~yb
1Þ

(39)

where yb
1 ¼ hðxb

1Þ and ~yb
1 ¼ ~hð~xb

1Þ. The anamorphosis func-

tions should guarantee that Varðyb
1Þ � Varð~yb

1Þ and that

Varðy1Þ � Varð~y1Þ. Hence, the crucial part is the way in

which the anamorphosis function changes the covariance

between the observed and the unobserved variable. This is,

the change from Covðxb
2; y

b
1Þ to Covðxb

2; ~y
b
1Þ.

Now, let us think again about targeted joint transforma-

tions. Following our rationale in Section 4.2, the ultimate

goal in this case would be to go from the space {x,y} with a

general nonlinear operator h to a space f~x; ~yg with a joint

multivariate distribution and a linear observation operator
~H. This may not be possible in general, depending on the

precise behaviour of h.

For the moment, we can propose a modest solution. Let

us consider that there is a set of L variables that are

observed as: ½y1 ¼ h1ðx1Þ; � � � ; yL ¼ hLðxLÞ�. Then, we can

perform the proposed joint transformations for each pair

fxl ; ylg. The effect of these transformation into other

variables will still be communicated through covariance,

just as in eq. (39). To explore the full problem, one could

start with a simple system such as the one described in this

subsection (two variables: one observed, one not). Can we

replace a joint trivariate transformation by a sequence of

two joint bivariate ones? This is one of the ideas we are

exploring at the moment.

5. Experiments

In this section, we study the analysis pdf’s that result from

performing the EnKF analysis step in combination with the

transformations described earlier. For the sake of brevity,

we will take the following short notation when describing

the five spaces in which the EnKF analysis step is applied.

Its application in {x, y} is denoted as K{x,y}, in {x̃=

gx0x̃(x), y}0 as Kf~x; yg, in f~x ¼ gx!~xðxÞ; ~y ¼ gx!~xðyÞg as
Kf~x; ~y	g, in f~x ¼ gx!~xðxÞ; ~y ¼ gy!~yðyÞg as Kf~x; ~yg, and

finally in f~x ¼ gx!uðxÞ; ~y ¼ gbivðx; yÞg as Kf~x; ~ybivg.
Figure 6 shows the results of assimilating anobservation at

y0 ¼ � 1
3
in the system [eq. (30)]. The true Bayesian posterior

(black line) is bimodal, with a considerably taller peak in the

negative values. The analysis pdf produced by K{x, y} (blue

line) does not resemble this at all, instead it generates a pdf

centred close to zero with a hint of bimodality. Note that a

Gaussian analysis pdf is not produced (as it was the case in

the left panel of Fig. 1) because in the current experiment the

likelihood is not Gaussian and the perturbed observations

were produced using the correct likelihood.

For the other five cases the resulting empirical posteriors

are indeed bimodal. Kf~x; ~y	g (magenta line) produces

almost symmetric peaks. Kf~x; ~yg (green line) gives more

probability to the wrong mode. Kf~x; yg (red line) and the

bivariate transformation Kf~x; ~ybivg (cyan line) gives higher

probability to the left peak, resembling the actual Bayesian

posterior.
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5.1. An objective assessment of the quality of the

EnKF-generated analysis

The previous discussion was rather qualitative. We now

use the Kullback�Leibler divergence (DKL, see Cover

and Thomas, 2006) to quantitatively compare the EnKF-

generated analysis pdfs with respect to the Bayesian poster-

iors. For two continuous pdfs p(x) and q(x), this quantity is

defined as:

DKLðp; qÞ ¼
Z 1

�1
ln

pðxÞ
qðxÞ

 !
pðxÞdx (40)

The definition for DKL can be interpreted as the expected

value of the logarithmic difference between the probabilities

p( �) and q( �), evaluated over p( �). DKL quantifies the

information gain from q to p (Bocquet et al., 2010). Note

that 05DKLðp; qÞB1 8 fp; qg, and DKL(p,q)=0 if and

only if the two densities are equal almost everywhere.

Roughly speaking, the larger the value of this quantity the

more different the two distributions are. In our case, p(x) is

the exact Bayesian posterior, whereas q(x) is the EnKF-

generated analysis pdf. We compute the DKL numerically

after dividing the data in Jbins bins, and using the following

expression:

DKLðp; qÞ ¼
XJbins

j¼1

ln
pj

qj

 !
pj (41)

We will consider an experimental setting which stems

from a generalisation of the system [eq. (30)]. The prior and

(additive) observational error pdf’s are:

pxðxÞ ¼ ax1 / x�lx1

rx1

� �
þ ax2 / x�lx2

rx2

� �
pgðgÞ ¼ ag1 /

g�lg1

rg1

� �
þ ag2 /

g�lg2

rg2

� � (42)

and the observation operator is the identity. We will choose

three combinations of parameters:

(1) The prior is a GM and the likelihood is Gaussian

(GM�G).

ax ¼ f1=2; 1=2g lx ¼ f�2; 2g rx ¼ f1=2; 1=2g
ag ¼ f1; 0g lg ¼ f0; �g rg ¼ f1; �g

(43)

(2) Both the prior and the likelihood are GMs (GM�GM).

ax ¼ f1=2; 1=2g lx ¼ f�2; 2g rx ¼ f1=2; 1=2g
ag ¼ f4=5; 1=5g lg ¼ f�1=4; 1g rg ¼ f1; 1=2g (44)

Fig. 6. Comparison of the Bayesian posterior distribution (black line) with respect to the EnKF-generated analysis pdfs, with the EnKF

analysis step applied in five different spaces (colour lines) for a given observation (dotted vertical line). Both the prior and likelihood in the

original space are GMs.
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(3) The prior is Gaussian and the likelihood is a GM

(G�GM).

ax ¼ f1; 0g lx ¼ f0; �g rx ¼ f1; �g
ag ¼ f4=5; 1=5g lg ¼ f0; 1g rg ¼ f2=3; 1=4g (45)

Furthermore, recall that we are assessing the quality of

the empirical distributions that approximate pxjyðxjyÞ,
which depend on a given observation. The Bayesian poster-

ior and the analysis pdfs generated by the EnKF analysis

step � which were plotted in Fig. 6 � were based on a single

observation. For the current experiment, however, we

reconstruct the distributions for a range of 21 different

observation values. For each one of the three scenarios (a�c),
for each one of the five transformations, and each one of

the 21 given observations we compute DKL. We plot this

information in the left panels of Fig. 7, a different colour for

each different transformation. In this figure, the top row

corresponds to the GM�G case, the centre row to the GM�
GM case and the bottom row corresponds to the G�GM

case. Of the 21 observation values we select three, which we

identify with the violet, black and orange vertical dotted

lines in these panels. In the right panels we take those

observations and plot the Bayesian posteriors associated

to them, each Bayesian posterior is identified with the

corresponding colour. The quality of the EnKF-generated

analysis distributions in the five different spaces will depend

on the shape of the real Bayesian posterior they are trying to

emulate. This is discussed in detail for each scenario.

(1) Let us start with the GM�G case in the top row.

Because of the settings (a bimodal prior symmetric with

respect to x�0 and a Gaussian likelihood), we expect

DKLðy0 ¼ nÞ equal to DKLðy0 ¼ �nÞ. This is indeed what we

Fig. 7. Assessing the quality of the EnKF-generated analysis pdf’s for three cases: GM�G (top row), GM�GM (centre row) and G�GM

(bottom row). The left panels shows the DKL for the EnKF-generated analysis pdf’s with respect to the Bayesian posterior (coloured lines)

for different given observations (horizontal axis). In each case we choose three given observations (vertical lines with markers) and in the

right panels we show the Bayesian posteriors associated with those three observations (coloured lines with markers, the colours correspond

to those of the vertical lines). The solid grey curve in these panels represents the prior for each case.
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get for the five methods. For all the values of the

observation, it is clear that K{x, y} is the worst method.

In particular, its highest DKL value is for y0�0 (vertical

black line), since this y0 gives rise to a bimodal posterior

(black curve in right panel), a definite challenge for the

EnKF applied in the original space. For the other two

observational values (y0� �1.8 violet line, and y0�1.8

orange line), the posteriors are close to Gaussians, and

hence the DKL values are lower. The next largest DKL

corresponds to Kf~x; ~y	g. Again, the worst performance is

for y0�0, but there is a consistent gap for all observational

values between this and the other methods. The DKL values

for the other three methods are very close. The perfor-

mance of both Kf~x; yg and Kf~x; ~ybivg is almost indistin-

guishable for all values of observations. In the interval

�0:755y050:75 Kf~x; ~yg is outperformed by Kf~x; yg and
Kf~x; ~ybivg, but outside this interval it is the best method

overall.

(2) In the centre row we have the GM�GM case. Not

surprisingly, K{x,y} presents the worst performance, fol-

lowed by Kf~x; ~y	g, and both perform worst for observa-

tions that produce bimodal posteriors. This is again the

case of y0�0 (black vertical line) which produces a non-

symmetric bimodal posterior (right panel). The perfor-

mance of Kf~x; yg and Kf~x; ~ybivg is again very close to each

other. It is interesting that for �2.4By0B0.6 both

Kf~x; yg and Kf~x; ~ybivg have the best performance, whereas

for y0B�2.4 and y0�0.6 the best method is Kf~x; ~yg. We

could identify that this particular method tends to have

trouble with bimodal asymmetric posteriors.

(3) Finally, we have the G�GM case in the bottom row.

For this scenario, three transformations are exactly the

same: K{x,y}, Kf~x; yg & Kf~x; ~y	g. The reason for this is

that the transformation gx!~x is the identity (the prior is

already a Gaussian). This is why in the left bottom panel of

the figure one line has the three corresponding colours

(blue, red and magenta); we will refer to this line simply as

K{x,y}. One can immediately notice that K{x,y} and

Kf~x; ~yg have a very similar performance for most observa-

tions. The explanation is that with the settings of this

experiment the marginal py(y) is very close to being

Gaussian, so that the transformation py(y) is very close to

the identity again. Still this method outperforms K{x,y} for

y0B�0.4. Note that the best performance for both

methods is for large negative observations; as we can see

for y0��1.8 (vertical violet line) the Bayesian posterior is

close to a Gaussian (right panel). This is not the case,

however, for the posteriors produced by y0�0 (black

vertical line) and y0�1.8 (orange vertical line). As it can

be seen in the right panel of this row, both Bayesian

posteriors are bimodal and asymmetric (black and orange

lines). In this example, we can truly appreciate the value of

both bivariate transformations; for most parts of the

observation values they outperform the other methods,

and the difference is especially significant for the challen-

ging cases mentioned above.

6. Summary and discussion

The analysis step of the EnKF is optimal when the following

three conditions are met: (1) the distribution of the prior

is Gaussian, (2) the observation operator that relates state

variables and observations is linear, and (3) the observa-

tional error is additive and follows a Gaussian distribution.

The analysis step of the EnKF is often applied in spite of the

violation of these conditions and still yields useful results.

There are cases, however, when the departure from said

conditions is too considerable. In these cases, a technique

known as GA is applied to convert these distributions into

Gaussians before performing the analysis step.

The ultimate goal of GA would be to convert the set

{x,y} of arbitrary joint distribution into the set f~x;~yg with
a joint Gaussian distribution. This is not an easy objective

at all, and a proper multivariate GA transformation is not

straightforward to devise. For this reason, GA is often

applied in a univariate manner. Thus, we have mostly

restricted ourselves to the univariate case x; y; ~x; ~y 2 R
1.

For this case, we have analysed GA transformations

starting from the following classification: independent, i.e.

transformations of the form ~x ¼ g1ðxÞ; ~y ¼ g2ðyÞ, and joint

state-variable/observation, i.e. transformations of the form

~x ¼ g1ðx; yÞ; ~y ¼ g2ðx; yÞ.
For independent transformations (Section 4.1), we have

studied some options: (1) an identity transformation � i.e.

working in the original space � (denoted K{x,y}), (2)

transforming only the state variable (denoted Kf~x; yg),
(3) transforming both state variables and observations

using the same function �applicable only when h is the

identity � (denoted Kf~x; ~y	g) and (4) transforming state

variables and observations to obtain marginal Gaussianity

for both (denoted Kf~x; ~yg).
One of the contributions of this work is the introduction of

a targeted joint state-variables/observation transformation

(Section 4.2) of the form ~x ¼ gx!~xðxÞ; ~y ¼ gbivðx; yÞ, which is
briefly outlined next. Having original distributions px(x) and

pyjxðyjxÞ, we devise target Gaussian distributions p~xð~xÞ and
p~yj~xð~yj~xÞ with prescribed parameters. Both px(x) and p~xð~xÞ
aremapped into an auxiliary variablew�U ½0; 1�. Finally, an
equality of cumulative likelihoods P~yjwð~yjwÞ ¼ PyjwðyjwÞ is
solved for all w and this completes the transformation

fx; yg ! f~x; ~yg.
To test these transformations, we have selected a case in

which the Bayesian posterior can be obtained analytically,

in particular a directly observed GM prior�GM likelihood

model with three settings: GM prior with Gaussian like-

lihood, GM prior with GM likelihood, and Gaussian prior
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with GM likelihood. We have compared the posterior pdf

to the pdf’s generated after applying the EnKF analysis

step in conjunction with the different transformations. This

resemblance has been evaluated using the Kullback�
Leibler divergence (DKL) for different given observations

(Fig. 7). To further understand the behaviour of the DKL

curves, we have plotted the Bayesian posteriors for three

selected observational values (right panel of the same

figure).

The truth is that, despite the application of any of the

different transformations, the analysis step of the EnKF

cannot exactly reconstruct the Bayesian posterior when

conditions (1)�(3) are not met in the original space. Still,

one can get approximate solutions, and it is clear that some

are better than others.

In all cases, K{x,y} has the worst performance, high-

lighting the fact that severe deviations from Gaussianity in

both the prior and likelihood can handicap the perfor-

mance of the EnKF analysis step. The next method in

increasing order of performance is Kf~x; ~y	g. It seems that,

at least for the situation we studied, applying the same

transformation for both state variables and observations is

not an appropriate strategy. In the first two cases (GM�G,

GM�GM), three methods have very similar performance:

Kf~x; yg, Kf~x; ~yg and Kf~x; ~ybivg. What are the sources of

error for each one of these two methods, i.e. in what sense

is the application of the EnKF analysis step not exact? For

Kf~x; yg and Kf~x; ~yg the answer is the appearance of a

nonlinear observation operator; for Kf~x; ~ybivg is the fact

that the given observations are no longer fixed values but

instead functions of the state variable [recall the coloured

lines in panel (e) of Fig. 2]. In these two cases we studied,

these errors seem to lead to the same performance.

The real advantage of the bivariate transformation

Kf~x; ~ybivg is appreciated in the G�GM case. In this case

the transformation gx!~x is just the identity (since x is

already Gaussian), and also gy!~y is very close to the

identity since pyðyÞ turns to be close to Gaussian. In this

scenario, Kf~x; ~ybivg clearly outperforms the other methods

when trying to reconstruct non-symmetric non-Gaussian

posterior densities.

This work has two main limitations. First of all, we have

considered the infinite ensemble size scenario � in fact all of

our experiments were done withM�106 �, which allows us

to perfectly know and simulate the distributions px(x) and

pyjxðyjxÞ. This is of course not the case in real applications.

In general, an estimation of px(x) has to be constructed

empirically using the ensemble. The likelihood can often be

considered to be prescribed (Bertino et al., 2003), but on

occasions it is also necessary to construct an empirical

estimation. For our bivariate method, the estimation of

px(x) can be done with the ensemble, but in general one does

require a good knowledge of the likelihood. When ensemble

sizes are small and the knowledge of pyjxðyjxÞ is not too

precise, it is perhaps better to rely on a marginal transfor-

mation for both x and y [Section 4.1, method (d)]. This is

because one can increase the sample size by including state

variables and observations for an extended time period and

consider either stationary marginal distributions, or slowly-

evolving ones (Simon and Bertino, 2009).

The second limitation is that we have restricted ourselves

to the univariate case, and just briefly mentioned some ideas

for the multivariate one (Section 4.3). GA implementations

in large models is often done univariately (e.g. Simon and

Bertino, 2012). To consider several variables at once would

require multivariate anamorphosis. This is indeed a challen-

ging and on-going area of research (Scholzel and Friedrichs,

2008), and we hope that our insights on the univariate case

may give guidance in the multivariate one. A further explo-

ration of joint state variables�observations of GA transfor-

mations for multivariate cases is part of our on-going work.

A final comment must be stated. Our entire analysis has

been restricted to the analysis step of the EnKF, and we

have ignored any effects that the cycling of the forecast and

analysis steps may bring. Therefore, the impacts of GA in

forecast capabilities have not been assessed. In this sense,

any benefit from the suggested transformations has not

been proven. We are working towards satisfactorily answer-

ing these questions in the future.
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8. Appendices

A: Transformations of random variables

Let x be a univariate random variable (rv) with pdf px(x).

Let g be a monotonic transformation and define ~x ¼ gðxÞ.
The distribution of ~x, denoted as p~xð~xÞ, is given by (see e.g.

Casella and Berger, 2002):

p~xð~xÞ ¼ pxðg�1ð~xÞÞ d

d~x
g�1ð~xÞ

���� ���� (46)

where g�1 is the inverse of g. This inverse exists and is

unique due to the monotonicity of g; if this condition is not

met then one has to divide the sample space X into subsets

X1,X2,. . .,Xk in which g is monotonic, perform the trans-

formation in each set, and then add. One must be careful
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when transforming conditional probabilities. Consider

pyjxðyjxÞ. If one performs the transformation ~y ¼ gðyÞ, it
is clear by eq. (45) that

p~yjxð~yjxÞ ¼ pyjxð~g�1ð~yÞjxÞ d

d~y
g�1ð~yÞ

���� ���� (47)

On the other hand, if we still consider the same conditional

probability pyjxðyjxÞ but with the transformation ~x ¼ gðxÞ,
the new conditional density is simply py|x̃(y|x̃)=py|x
(y|x=g�1(x̃)), since the transformation is performed on

the variable upon which the pdf is conditioned.

The process becomes clearer if we consider the bivariate

transformation for the pair {x, y}. Let this pair have a joint

distribution px;yðx; yÞ ¼ pyjxðyjxÞpxðxÞ, and define the joint

bivariate forward transformations:

~x ¼ g1ðx; yÞ
~y ¼ g2ðx; yÞ

(48)

Consider these transformations to be invertible resulting in

the following two backward transformations:

x ¼ q1ð~x; ~yÞ
y ¼ q2ð~x; ~yÞ

(49)

Then, the transformed pair f~x; ~yg has the following joint

distribution:

p~x;~yð~x; ~yÞ ¼ px;yðq1ð~x; ~yÞ; q2ð~x; ~yÞÞ det½J�j j (50)

where det(J) is the absolute value of the determinant of the

Jacobian matrix of the transformation, namely:

J ¼
@
@~x

q1ð~x; ~yÞ @
@~y

q1ð~x; ~yÞ
@
@~x

q2ð~x; ~yÞ @
@~y

q2ð~x; ~yÞ

" #
(51)

In general, a joint multivariate transformation ~x ¼ gðxÞ,
with x 2 R

Nx , ~x 2 R
Nx and g : R

Nx ! R
Nx will transform a

joint pdf px�(x) into:

p~xð~xÞ ¼ pxðx ¼ g�1ð~xÞÞ det
@

@~x
g�1ð~xÞ

� 	���� ���� (52)

where @
@~x

g�1ð~xÞ 2 R
Nx�Nx is the Jacobian matrix.

Another important concept to recall is the so-called

integral probability theorem (IPT). If P(x) is the cdf of x,

then the variable w�P(x) has uniform distribution in the

interval [0, 1]. Multivariate extensions of this theorem exist,

although the application is not straightforward as in the

univariate case (Genest and Rivest, 2001). The IPT allows

us to convert any rv into another; to transform x�pxðxÞ
into ~x�p~xð~xÞ one can write:

~x ¼ P�1
~x ðPxðxÞÞ (53)

One can check eq. (51) by using eq. (45) and defining

gð�Þ ¼ P�1
~x ðPxð�ÞÞ. Then:

p~xð~xÞ ¼ pxðg�1ð~xÞÞ d

d~x
g�1ð~xÞ

¼ pxðP�1
x ðP~xð~xÞÞÞ

d

d~x
ðP�1

x ðP~xð~xÞÞÞ

¼ pxðP�1
x ðP~xð~xÞÞÞ

pxðP�1
x ðP~xð~xÞÞÞ

p~xð~xÞ (54)

B: Exact Bayesian posteriors for GM priors and GM

likelihoods

In this appendix, we analytically compute the marginal

distribution for the observations py(y) and the posterior

distribution for the state variable pxjyðxjyÞwhen both the

prior probability and the likelihood have GM distributions.

We limit the analysis to the univariate case x 2 R
1 with

observation operator h�1. Following the notation for

Gaussian densities introduced in the text, we have:

pxðxÞ ¼
XJb

j¼1

abj/
x� lbj

rbj

 !
(55)

The first two moments of this distribution are:

lb ¼ E x½ � ¼
PJb

j¼1

abjlbj

r2
b ¼ Var x½ � ¼

PJb

j¼1

abjððlbj � lbÞ
2 þ r2

bjÞ
(56)

In a similar manner, the likelihood can be expressed as:

pyjxðyjxÞ ¼
XJg

j¼1

agj/
y� ðxþ lgjÞ

rgj

 !
(57)

where the subscript h denotes the additive observational

error in the observation equation y�x�h. The first two

moments of the distribution are:

lyjx ¼ E yjx½ � ¼
PJb

j¼1

agjðxþ lgjÞ ¼ xþ lg

r2
yjx ¼ Var yjx½ � ¼

PJb

j¼1

agjððlgj � lgÞ
2 þ r2

gjÞ
(58)

where clearly lg ¼
PJb

j¼1

agjlgj . Notice that the variance r2
yjx is

independent of x.

The joint distribution of the state variables and observa-

tions is:

px;yðx; yÞ¼
XJg

j¼1

XJb

j0¼1

agjabj0/
y�ðx� lgjÞ

rgj

 !
/

x� lbj0

rbj0

 !
(59)
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Recalling that pyðyÞ ¼
R1
�1 px;yðx; yÞdx, the marginal

distribution for the observations is:

pyðyÞ ¼
XJg

j¼1

XJb

j0¼1

agjabj0/
y� ðlgj þ lbj0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
gj þ r2

bj0

q
0B@

1CA (60)

The first two moments of this distribution are:

ly ¼ E y½ � ¼
PJg

j¼1

PJb

j0¼1

agjabj0 ðlgj þ lbj0 Þ

r2
y ¼ Var y½ � ¼

PJg

j¼1

PJb

j0¼1

agjabj0 ððlgj þ lbj0 � lyÞ
2 þ r2

gj þ r2
bj0 Þ

(61)

Using Bayes theorem, we can compute the posterior as:

pxjyðxjyÞ ¼

PJg

j¼1

PJb

j0¼1

wajj0/
x�lajj0

rajj0

� �
PJg

j¼1

PJb

j0¼1

wajj0

(62)

where the subindex denotes analysis. This is again a GM, in

which the weights, means and variances of each one of the

JbJh Gaussian terms are:

wajj0 ¼ agjabj0/
y�ðlgjþlbj0 Þffiffiffiffiffiffiffiffiffiffiffi

r2
gj
þr2

bj0

p !
lajj0 ¼

r2
gj

r2
gj
þr2

bj0
lbj0 þ

r2
bj0

r2
gj
þr2

bj0
ðy� lgjÞ

r2
ajj0 ¼

r2
gj
r2

bj0

r2
gj
þr2

bj0

(63)

Finally, the first two moments of this posterior distribu-

tion are:

lxjy ¼ E xjy½ � ¼

PJg

j¼1

PJb

j0¼1

wajj0 lajj0PJg

j¼1

PJb

j0¼1

wajj0

r2
xjy ¼ Var xjy½ � ¼

PJg

j¼1

PJb

j0¼1

wajj0 ðlajj0 �laÞ
2þr2

ajj0 Þ
� �
PJg

j¼1

PJb

j0¼1

wajj0

(64)

In this paper, we have used cases in which either the prior

or the likelihood are simple Gaussians. These are obviously

special cases of the aforementioned solution. Gaussian

likelihood corresponds to Jh�1, whereas Gaussian prior

corresponds to Jb�1.
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