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Ras of complex proteins (ROC) domains were identified in 2003 as GTP bindingmodules in largemultidomain
proteins from Dictyostelium discoideum. Research into the function of these domains exploded with their
identification in a number of proteins linked to human disease, including leucine-rich repeat kinase 2
(LRRK2) and death-associated protein kinase 1 (DAPK1) in Parkinson’s disease and cancer, respectively.
This surge in research has resulted in a growing body of data revealing the role that ROC domains play in
regulating protein function and signaling pathways. In this review, recent advances in the structural informa-
tion available for proteins containing ROC domains, along with insights into enzymatic function and the
integration of ROC domains as molecular switches in a cellular and organismal context, are explored.
The Ras of complex proteins (ROC) domain was first established

as a distinct protein domain family following the identification of a

guanosine triphosphate (GTP) binding motif in a series of large

multidomain proteins in the Amoeba Dictyostelium discoideum

(Bosgraaf and Van Haastert, 2003). Since 2003, ROCO proteins

have been identified in a range of species, from prokaryotes to

humans. Interest in the structure and function of ROC domains

increased with the identification of links between several pro-

teins containing ROC domains and human disease: most

notably, leucine-rich repeat kinase 2 (LRRK2) with Parkinson’s

disease (PD) and death-associated protein kinase 1 (DAPK1)

with cancer. ROC domains likely act asmolecular switches, con-

trolling function and, through this, the cellular role of the proteins

within which they reside. This has led to analogies being drawn

between ROC domains and the function of small GTPases

such as Ras, as well as G protein a subunits. Over the past

five years, our understanding of these proteins has been much

improved by structural studies, in vitro and cellular analysis of

function, and in vivo modeling. What emerges from these data

is an incomplete but tantalizing picture of ROC domain function,

the highly complicated mechanisms by which these domains are

regulated, and the pathways that they control.

Evolutionary and Genetic Perspective
Proteins containing ROC domains have been recognized and

studied for almost two decades (Deiss et al., 1995); however,

the first formal description of the ROCO protein family dates

from 2003 (Bosgraaf and Van Haastert, 2003). This family com-

prises proteins with ROC, invariably followed by a domain

termed COR (C-terminal of ROC). Phylogenetic analysis of

different ROC domains revealed a monophyletic group distinct

from the rest of the GTPases (Bosgraaf and Van Haastert,

2003). There are no clear examples of ROC or COR domains
occurring in isolation, suggesting that the ROC-COR is

likely to be a single functional unit. Another unique property of

ROC-COR is that it always sits in multidomain proteins, from

the simplest arrangement observed for animal MFHAS1 or plant

Tornado proteins where ROC-COR is N-terminally preceded by

leucine-rich repeats (LRRs) to the complex multidomain GbpC

protein of D. discoideum that contains nine domains (Marı́n

et al., 2008).

Although ROC domains have garnered considerable interest,

their biological function is still poorly understood. From an

evolutionary perspective, ROC domains are present among

the most ancient and simple living organisms, including

bacteria. Prokaryotic ROC domains are part of multidomain pro-

teins that typically possess N-terminal LRRs and a C-terminal

ROC-COR unit. The best-characterized bacterial ROC domain

is found in the thermophilic green sulfur bacteria Chlorobium

tepidum. A similar architecture is also present in other gram

positive bacteria such as purple bacteria and cyano-

bacteria. Archaea also possess ROC domains with a similar

architecture (Doolittle, 2000). However, blastp searches using

C. tepidum (bacteria) or M. Barkeri (archaea) COR domains

against myxobacteria sequences reveal no significant domain

conservation. Although it is unclear whether ROC domains orig-

inated in prokaryotes or were instead horizontally transferred

from eukaryotes, their presence in both archaea and bacteria

suggest an ancient origin (Marı́n et al., 2008). The Amoebozoan

slim mold D. discoideum possesses 11 ROCO genes, which are

thought to have evolved recently from prokaryotic ROCO genes

(Marı́n et al., 2008). D. discoideum ROCO genes have been

extensively studied, revealing their involvement in chemotaxis

and also in cell division and development through control of

cytoskeleton dynamics (van Egmond and van Haastert, 2010).

The D. discoideum ROCO gene GbpC regulates cytoskeleton
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Figure 1. Putative Proteins Containing ROC-COR Domains from T. adherens
Proteins were identified using blastp searches with D. discoideum COR domains against T. adherens genome (TAXID: 10228). TRP, tetratricopeptide domain;
AAA, ATPase domain; MBT, malignant brain tumor repeats; SH3, SRC homology 3 domain; LRRs, leucine-rich repeats; CARD, caspase recruitment domain; TIR,
Toll-interleukin receptor domain.
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assembly by cGMP-dependent phosphorylation of myosin II

upon cAMP stimulation (Kortholt et al., 2012; van Egmond

et al., 2008). Lack of ROCO genes in fungi and yeasts, where

chemotaxis (movement of cells in response to external chemical

stimuli) is less important for their life cycle compared to slime

molds (Arkowitz, 1999), suggests that these genes play a role

in cytoskeleton-related processes culminating in cellular or sub-

cellular movements.

A recent bioinformatics analysis of myotubularin genes in

eukaryotes identified a novel group containing ROC domains in

another Amoebozoan, Entamoeba histolytica (Kerk and Moor-

head, 2010). Myotubularins belong to the tyrosine phosphatase

family and act as lipid phosphatases cleaving the D3 phosphate

from phosphatidylinositol phospholipids (Schaletzky et al.,

2003). These phospholipids localize to intracellular membranes

and to plasma membrane microdomains and rafts, and they

are thought to mediate vesicular trafficking, the transition

between endosomes and lysosomes, retromer transport, and

endocytosis in a phosphorylation-dependent manner (Clague

and Lorenzo, 2005). Kerk and Moorhead found a large set of

19 myotubularin genes in E. histolytica, 9 of which contain

inactive myotubularin at the N terminus followed by LRRs,

ROC-COR, and kinase domains. They called this novel architec-

ture IMLRK (inactive myotubularin-LRRs-ROCO-kinase) (Kerk

andMoorhead, 2010). Compared toD. discoideum, the life cycle

of E. histolytica is simpler; however, complex membrane remod-

eling processes linked to invasive contact with host tissue likely

require a large collection of myotubularins to be finely regulated

in time and space. Interestingly, extensive data support a role for

human LRRK2 in vesicular trafficking (Beilina et al., 2014; Piccoli

et al., 2011; Shin et al., 2008) lipid raft association (Hatano et al.,

2007), and exosome formation (Fraser et al., 2013), supporting a

role for ROC domains in lipid remodeling.
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A bioinformatic analysis of ROC domains in Trichoplax

adhaerens, the only species of the phylum placozoa and the

most ancient metazoan known, reveals the presence of multiple

ROCO genes. T. adherens is a simple, disc-shaped organism

with two epithelial layers covering an inner layer of fiber

cells and no apparent nerve, muscle, or sensory cells (Srivastava

et al., 2008). Using multiple blastp searches, at least 17

putative ROCO genes can be identified in T. adherens

(Figure 1). As shown in Figure 1, all putative protein

products contain an ROC-COR domain surrounded by other

functional domains, including CARD and death domains,

tetratricopeptide (TRP) and LRRs repeats, and ATPase domains

of the AAA family. Of interest, at least three putative protein

products are predicted to contain Ras-like domains N-terminally

of ROC (TRIADDRAFT_62404, TRIADDRAFT_62498, and

TRIADDRAFT_57945). This arrangement is novel and particularly

intriguing as two GTP binding and/or GTPase domains are

present in the same protein, and it may support a model where

the ROC-COR unit functions as a nucleotide-dependent dimer-

ization device while the Ras-like GTPase acts as the signaling

output (analogous to kinase domains found in some ROCO pro-

teins). Whether this model is correct and can be extended to

other ROCO proteins remains to be investigated. Another point

to consider is why two divergent species such as slime molds

and placozoa have independently undergone multiple gene

duplication events to expand their set of proteins with ROC

domains. Functionally, both organismsmove in response to che-

moattractants and feed by phagocytosis (Srivastava et al., 2008;

van Egmond and van Haastert, 2010). Based on the established

role ofD. discoideumGbpC protein in chemotaxis and the role of

human ROCO proteins in processes related to phagocytosis in

response to host infection (MASL1 and LRRK2), it can be

speculated that slime molds and placozoa have independently



Figure 2. Phylogenetic Relationships among ROCO Proteins
(A) Phylogenetic dendograms (constructed using the unweighted pair-group method of analysis) based on the full-length amino acid sequences of prokaryotes
(C. tepidum), archea (M. barkeri), placozoa (T. adherens), slime mold (D. discoideum), plants (A. thaliana), invertebrates (C. elegans and D. melanogaster), and
vertebrates (D. rerio and H. sapiens). Of note, the closest homolog of human DAPK1 is plant Tornado1; MFHAS1 proteins are closer to Dyctiostelium ROCO than
to LRRKs; and Drosophila LRRK and Caenorabditis LRK-1 are closer to LRRK1 than to LRRK2.
(B) Phylogenetic dendograms from the same species using the predicted ROC-COR domains. LRRK1’s closest ROC-COR domain is LRRK2.
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acquired multiple ROCO genes in a process of convergent

evolution.

There are other examples of organisms possessing multiple

ROCO genes. Zambounis et al. identified 37 LRR-GTPases of

the ROCO family in the brown algae Ectocarpus siliculosus by

using bioinformatic searches (Zambounis et al., 2012). The

majority of Ectocarpus ROCO proteins have N-terminal LRRs

followed by an ROC-COR domain and a C-terminal domain ho-

mologous either to other ROCO proteins or to transmembrane

proteins. The authors found that the majority of ROCO loci are

organized in clusters and that the LRR of all ROCO proteins

(with one exception) exhibit a repetitive intro-exon structure

where each LRR is encoded by a 72-nucletide/24-amino-acid-

long individual exon also present in noncoding regions. This

striking arrangement suggesting highly dynamic exon shuffling,

together with the remarkable expansion of the Ectocarpus

ROCO family, hints that Ectocarpus ROCO proteins may be

involved in immune response mechanisms. A role of ROC

domains in immune response mechanisms is gaining attention

among human ROCO proteins; for example, MASL1 and

LRRK2 have been shown to be upregulated upon pathogen

infection (Gardet et al., 2010; Ng et al., 2011). Although the

molecular mechanisms through which human ROCO proteins

modulate inflammatory response are still unclear, the LRRs of

LRRK2 display a significant similarity to those found in NOD-2

(Hakimi et al., 2011), an intracellular recognition receptor,

suggesting that LRRK2, and possibly MASL1, may function as

cytoplasmic receptors initiating NF-kB signaling in response to

various danger signals and pathogen-associated molecular

patterns.
As discussed, cyanobacteria possess ROC domains, but this

is not true for all photosynthetic organisms. Bioinformatic

searches for conserved ROC-COR domains in green algae,

ferns, gymnosperms, and angiosperms reveal that only flowering

plants possess ROCO genes, named Tornado1 proteins. These

proteins possess N-terminal LRRs, a ribonuclease-inhibitor-like

subfamily, and a C-terminal ROC-COR. Knockout (KO) studies

of Arabidopsis thaliana TORNADO1 gene revealed that Tor-

nado1, together with Tornado2 (a tetraspanin protein), is

involved in leaf patterning processes including leaf symmetry

and venation patterning (Cnops et al., 2006). Due to the limited

number of studies on Tornado1 proteins in plants, their function

is poorly understood, as is the role of ROC domains in the

signaling processes mediated by these proteins.

The evolutionary history of ROCO genes in animals has been

thoroughly reconstructed by Marin (Marı́n et al., 2008). Proto-

stomes and deuterostomes possess LRRK and DAPK1 genes,

while only deuterostomes have MFHAS1 genes. The phyloge-

netic relationships among prokaryotes, archea, placozoa, slime

molds, plants, invertebrates, and vertebrates ROCO proteins

are shown in Figure 2.

Several groups have reported evidence for multiple splice

variants of the LRRK2 gene. A study by Giesert et al. examined

splicing of LRRK2 in the mouse brain, uncovering evidence of

altered splicing of exon 5 and a novel exon 42 (located within

the kinase domain of this protein) (Giesert et al., 2013). Of direct

relevance to ROC domain function, Trabzuni and colleagues

reported that LRRK2 may undergo alternative splicing events

around exons 32 and 33 in the substantia nigra (Trabzuni et al.,

2013). Although these observations are limited to the RNA level
Chemistry & Biology 21, July 17, 2014 ª2014 The Authors 3



Figure 3. Functional Interactions between the ROC Domain and
Other Protein Domains Associated with It
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and need to be confirmed by demonstrating the existence of the

corresponding protein isoforms, it is noteworthy that this nucle-

otide region corresponds to the ROC-COR domain of LRRK2. It

could be speculated that these substantia-nigra-specific LRRK2

isoforms lacking part of the ROC-COR may play a pathological

function by acting, for instance, as dominant negative. It is likely

that these reports represent the tip of the iceberg with regard to

splicing of ROC domain containing genes, and much more

remains to be uncovered regarding all of the ROCO proteins.

Functional Conservation of ROC Domain Activity
With regard to the biological function of the ROC domain,

guanosine nucleotide binding and hydrolysis have been demon-

strated for several ROCO proteins. Guanosine nucleotide

binding has been reported for the four human ROCO proteins

(Carlessi et al., 2011; Dihanich et al., 2014; Ito et al., 2007; Jebelli

et al., 2012; Korr et al., 2006). Whether the ability to bind GTP is

conserved in other organisms has been tested in two cases—for

the D. discoideum ROCO protein GbpC (van Egmond et al.,

2008) and for the C. tepidum ROCO protein (Gotthardt et al.,

2008). Based upon sequence homology and extant functional

data, it is likely that ROC domains where key catalytic residues

are conserved are able to bind nucleotides.

The ability of ROC domains to hydrolyze GTP has been

investigated for a number of ROCO proteins. Several groups

have demonstrated that LRRK2 is able to bind and hydrolyze

GTP (Guo et al., 2007; Lewis et al., 2007; Li et al., 2007).

DAPK1 has also been reported to possess GTPase activity

(Carlessi et al., 2011).

An important aspect of ROC domain biology is the impact of

guanosine nucleotide binding on the structure and function of

neighboring domains. The majority of ROCO proteins have func-

tional domains (including enzymatic activities) in addition to their

ROC domains. An early observation was that manipulating the

GTP binding properties of LRRK1 had a major impact on the

kinase activity of this protein, leading the authors to propose a

model for LRRK1 function, and by implication the ROCOproteins

(Korr et al., 2006). In this model, the cycle between GTP-bound

and GDP-bound ROC controls the kinase activity of LRRK1 in

a manner analogous to the control of Raf kinase activity by the

Ras proteins. These data were supported by studies investi-

gating LRRK2, with artificial mutations excluding guanosine

nucleotides reducing kinase activity (Ito et al., 2007). More recent
4 Chemistry & Biology 21, July 17, 2014 ª2014 The Authors
data suggest that the kinase activity of this protein is dependent

upon whether a guanosine nucleotide of any type is bound to the

ROC domain (Taymans et al., 2011). This is consistent with a

model proposed by Gasper and coworkers, suggesting that

ROC domains act in a similar fashion to G proteins, dimerizing

upon GTP binding (Gasper et al., 2009). An insight into the rela-

tionship between ROC domains and the other functions of the

ROCO proteins is provided by two recent reports investigating

ROC domain function in DAPK1 (Carlessi et al., 2011; Jebelli

et al., 2012). The kinase domain of DAPK1 sits at the extreme

N terminus of the protein, in contrast to LRRK1 and LRRK2

where the kinase domain sits in the C terminus of the protein.

When guanosine nucleotide binding is disrupted by artificial

mutations in DAPK1, kinase activity does not decrease. This

clear divergence from the biology of LRRK2 suggests that the

role of ROC domains in controlling other enzymatic functions is

complicated and is likely to be dictated by the 3D organization

of these domains.

A final aspect of the relationship between the ROCdomain and

its flanking enzymatic activities or regulatory domains is the

reciprocity of these relationships. Data from LRRK2 have high-

lighted the presence of a number of autophosphorylation sites

within the ROC domain of this protein. While the physiological

role of these phosphorylation events remains unclear, their iden-

tification suggests that a complex pattern of regulation exists

between the different enzymatic activities of the ROCO proteins.

Phosphorylation of the ROC domain may act to regulate guano-

sine nucleotide binding (Webber et al., 2011). One caveat is that

mutation of individual autophosphorylation sites may have a

structural rather than functional impact, as suggested by the

fact that kinase-inactive mutants are competent in binding and

hydrolyzing GTP (Biosa et al., 2013). The possible interactions

between the ROC-COR domain and surrounding domains are

summarized in Figure 3. This area of ROC biology bears greater

scrutiny: for example, the D. discoideum ROCO protein Gbpc,

which possesses a C-terminal guanine exchange factor (GEF)

domain in addition to its ROC and kinase activities. Examination

of Gbpc biology suggests that this GEF domain interacts with

and regulates the ROC activity of this protein, adding further

complexity (van Egmond et al., 2008).

Structural Perspective
The production of highly pure, full-length recombinant ROCO

proteins for structural studies is challenging. To date, no full-

length ROCO protein structures have been solved, with limited

data available for the ROC-COR or ROC alone (Deng et al.,

2008; Gotthardt et al., 2008; Liao et al., 2014). Published in

2008, the first structure of the ROC domain from the human

ROCO protein LRRK2 revealed a dimeric GTPase (Deng et al.,

2008). Although the proposed model describes a canonical

GTPase fold, the catalytic core of LRRK2-ROC adopts an

unusual topology because of domain swapping, in which the

N-terminal part of one domain interacts with the C-terminal

one of the other. In the same year, a crystallographic study of

the ROC-COR unit from the bacteria C. tepidum was published

confirming the dimeric organization of the ROCO proteins. In

contrast to the previously determined structure of the human

ROC domain, the structural analysis revealed a canonical G pro-

tein domain where dimerization is mediated by the C-terminal
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half of the COR domain and by highly conserved residues on the

ROC-ROC interface (Gotthardt et al., 2008). More recently, Liao

and coworkers derived a monomeric model structure for the hu-

man ROC domain (Liao et al., 2014). While the nucleotide free

formof this protein formed amixture of themonomer and dimeric

complex, GDP or GppNHp binding caused the ROC domain to

adopt a monomeric conformation, potentially consistent with

data investigating the kinase activity of LRRK2 and the G protein

activated by the nucleotide-dependent dimerization (GAD)

model for ROCO function. Studies of isolated ROC domains

are obviously limited with regard to the quaternary structure of

ROCO proteins. As described for dynamins, other domains

may be required for dimerization and/or oligomerization.

Although high-resolution data for ROCO protein tertiary struc-

tures are limited, it is probably that LRRK2 and other members of

the ROCO family are functional dimers (Berger et al., 2010; Greg-

gio et al., 2008; Jebelli et al., 2012; Klein et al., 2009; Sen et al.,

2009). The hypothesis of a homodimeric or heterodimeric

conformation by the ROCO family is also supported by a growing

body of literature based on size exclusion chromatography

assays and immunogold labeling transmission electron micro-

scopy analysis of full-length purified proteins (Carlessi et al.,

2011; Civiero et al., 2012; Dihanich et al., 2014; Greggio et al.,

2008; Jebelli et al., 2012).

Due to their low affinity (in the range of mM) for nucleotides (Civ-

iero et al., 2012; Gotthardt et al., 2008) and to their capability to

dimerize or oligomerize (Civiero et al., 2012; Sen et al., 2009),

the ROCO proteins were recently suggested to act as GADs, a

category including dynamin and septins (Gasper et al., 2009).

GADs are a group of proteins that do not require GEFs to

exchange GDP for GTP (Gasper et al., 2009). The GTP-bound

dimer is the active form that is responsible for the biological pro-

cess, which is terminated by hydrolysis of GTP. Supporting the

hypothesis of ROCO proteins as functional dimers, it was shown

that the ROC-COR module from C. tepidum depends on a

dimeric conformation to hydrolize GTP, with mutations analo-

gous to the ROC-COR Parkinson disease mutations (R1441C,

Y1699C, I1371V) located in the ROC-COR interface leading to a

reduction of GTPase activity (Gotthardt et al., 2008). In addition,

human LRRK2 purified proteins carrying R1441C or Y1699C

mutations that show a disrupted GTPase activity (Daniëls et al.,

2011; Lewis et al., 2007) bind the ROC domain with less affinity

in vitro compared to the wild-type protein (Li et al., 2009a).

Cellular and Organismal Function
The ROCO proteins have been implicated in a range of cellular

processes. In slime molds, the key phenotype with which they

are linked is chemotaxis (Bosgraaf et al., 2002). KO of GbpC

and Pats1 modulate chemotaxis and cytokinesis, respectively

(Bosgraaf et al., 2005; Abysalh et al., 2003). Studies of both

GbpC and Pats1 highlight one of the major confounding issues

in studying ROC domain biology: separating out whether a given

phenotype is associated with the activity of the ROC domain of a

protein or dependent upon the function of the holoprotein in toto.

Whole gene KO represents a robustmethod to examine function;

however, elucidating the contribution of individual domains to

KO phenotypes is not straightforward. In the ROCO proteins,

this is complicated by the interactions between multiple enzy-

matic activities. In D. discoideum studies have been carried
out on GbpC to address this issue, investigating the contribution

of the various domains of GbpC to the chemotaxis pheno-

type (van Egmond et al., 2008). More recently, Roco4, the

D. discoideum protein most closely related to LRRK2, has

been studied as a system for modeling the impact of mutations

in LRRK2 (Gilsbach et al., 2012). Ablation of Roco4 results in

an inability to synthesize cellulose under starvation conditions,

preventing the formation of functional fruiting bodies. Finally,

the ROCO kinase QkgA has been implicated in chemotaxis

and cell proliferation although the precise mechanisms regu-

lating these links have not yet been defined (Phillips and Gomer,

2010, 2012).

Research using more complex organisms has implicated

ROCO proteins in a number of cellular phenotypes. Knockout

of LRK-1, the C. elegans LRRK ortholog, is associated with

altered polarized sorting of synaptic vesicles (Sakaguchi-Naka-

shima et al., 2007). Using a kinase dead form of LRK-1, the

authors report a kinase dependency of this phenotype; however,

the role of the ROCdomain of LRK-1 has not been directly exam-

ined. A study by Sämann and coworkers examined LRK-1 in the

context of stress response and neurite outgrowth, an area of

great interest with regard to LRRK2 in human models (see

below), with their results suggesting that LRK-1 is involved in

the response to endoplasmic reticulum stress caused by expo-

sure to tunicamycin (Sämann et al., 2009). Subsequent studies

have used C. elegans as a system to examine the function of

human LRRK2, a number of which have examined Parkinson’s

disease mutations located in the ROC domain (Saha et al.,

2014; Yao et al., 2013).

C. elegans also possesses a DAPK1 ortholog, with several

reports implicating this in the control of macroautophagy and

wound closure (Chuang and Chisholm, 2014; Kang and Avery,

2010). Kang and colleagues demonstrated that DAPK1 operates

downstream of the muscarinic receptors in the worm to control

the autophagic response to starvation, with knockdown or

knockout of this gene leading to reduced response (Kang

et al., 2007). An analysis of the role of DAPK1 in wound closure

in C. elegans revealed that it acts as a negative regulator of

this process, downstream of Ca+ signaling (Tong et al., 2009;

Xu and Chisholm, 2011).

Although the D. melanogaster genome does include a DAPK

ortholog (encoded by the DRAK gene), this protein does not

possess an ROC domain (Chuang and Chisholm, 2014). In

contrast, the Drosophila LRRK ortholog (dLRRK2) has been the

subject of detailed investigations, with knockout and targeted

mutation models developed. An observation directly relevant

to the biology of the ROC domain is that dLRRK KO results in

a neurodegenerative phenotype (Lee et al., 2007). However, if

just the kinase domain is removed (and the ROC domain

remains), then there is no neuronal cell death (Wang et al.,

2008). This suggests that the cellular triggers leading to cell

death following the loss of dLRRK depend upon the activity of

the ROC domain. Several studies have used Drosophila as

a model system to examine pathways linked to LRRK2

biology—for example, by identifying 4EBP1 as a putative sub-

strate (Imai et al., 2008), implicating LRRK2 in microRNA regula-

tion of translation (Gehrke et al., 2010), and suggesting that

LRRK2 is involved in membrane fusion involving the endophilin

proteins (Matta et al., 2012).
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There are numerous rodent models for ROCOprotein function.

Both DAPK1 and LRRK1 KO mice have been developed. The

former have no obvious gross phenotype; however, Tu and col-

leagues used the model to examine a role for DAPK1 in NMDA

mediated brain damage following a ischemic stroke (Tu et al.,

2010). KO of LRRK1 results in osteopetrosis, although the

altered pathways leading to this are unclear (Xing et al., 2013).

KO of LRRK2 results in disruption of kidney, lung, and liver func-

tion, including the accumulation of vesicles and a-synuclein

within cells in these tissues and alterations in markers for auto-

phagy (Tong et al., 2010, 2012). Data from subsequent studies

suggest that this may be a kinase-dependent phenotype (Herzig

et al., 2011), and it is reproduced in rats lacking LRRK2 (Baptista

et al., 2013). LRRK2 KO mice have also been reported to display

increased susceptibility to an experimentally induced form of

inflammatory bowel disease, possibly due to altered nuclear

factor of activated T cells (NFAT) transcriptional regulation (Liu

et al., 2011). A number of transgenic and knockin mouse models

for LRRK2 display some neuronal phenotypes, with marked tau

pathology a characteristic of a bacterial artificial chromosome

transgenic mouse with a mutation in the ROC (the R1441G

mutation) (Li et al., 2009b).

The cellular functions of the four human ROCO proteins have

been the subject of intense scrutiny. Several reports have linked

the cellular function of LRRK1 to endosomal sorting, in particular

to trafficking of the epidermal growth factor receptor (Hanafusa

et al., 2011; Ishikawa et al., 2012). Human genetics has linked

LRRK2 to Parkinson’s disease, Crohn’s disease, multibacillary

leprosy, and cancer (Lewis andManzoni, 2012).While themolec-

ular mechanisms underpinning these associations are unclear,

there are a number of common themes that emerge. These

include inflammation, the immune system, and cell fate. How

the ROC domain contributes to these disease phenotypes is

not clear, although the location of mutations (for example, the

R1441C mutation) in the ROC domain causative for Parkinson’s

disease has focused a great deal of research on this aspect of

LRRK2 biology. At a cellular level, LRRK2 has been implicated

in a wide range of cell processes including mitochondrial

biology, synaptic vesicle cycling, macroautophagy, cytoskeletal

dynamics, and the control of translation (Cookson, 2010). A

recurring observation is an association of LRRK2 with mem-

branes, including mitochondria, autophagosomes, and synaptic

vesicles (Alegre-Abarrategui et al., 2009; Berger et al., 2010;

Biskup et al., 2006). LRRK2 has been linked to the RabGTPases,

involved in the regulation of intracellular membrane fusion events

(Beilina et al., 2014; MacLeod et al., 2013). Given the localization

of LRRK2 to membranous structures, it is possible that the ROC

domainmay fulfil a similar role to the Rabs, despite the sequence

divergence between these domains. Insights into the biological

function of the LRRK2 ROC domain are provided by experiments

studying PD mutations in the ROC and kinase domain. Several

of these investigations report a divergence between the

impact of mutations in the ROC and the kinase domains. These

data—for example, the differential impact of the R1441C and

G2019S on translational phenotypes linked to LRRK2 (Gehrke

et al., 2010)—suggest that the cellular function of the ROC

domain may be distinct from that of the kinase domain.

DAPK1 has been implicated in cell death pathways—in partic-

ular, type II autophagic cell death (Bialik and Kimchi, 2006; Deiss
6 Chemistry & Biology 21, July 17, 2014 ª2014 The Authors
et al., 1995). Several themes emerge from studies of DAPK1,

including macroautophagy and the regulation of membrane

vesicle biology (Inbal et al., 2002). Both autophagy and wound

healing, identified as being linked to DAPK1 in C. elegans,

have been linked to the function of the mammalian gene (Bialik

and Kimchi, 2010; Kuo et al., 2006). Although the biochemistry

of the ROC domain of DAPK1 has been investigated, the impact

of this domain on pathways downstream of this protein has not

and is likely to be a highly fruitful line of enquiry in the future.

The cellular function of MASL1 is the least understood of the

human ROCO proteins. MASL1 was originally identified as a

gene amplified in malignant fibrous histiocytomas, implicating

it in the control of cell fate and division (Sakabe et al., 1999).

The cellular studies that have been carried out since then

support this implication, suggesting a role for MASL1 in the

regulation of the ERK pathway to influence erythroid differentia-

tion of CD34 (+) cells (Kumkhaek et al., 2013) and in necrotic cell

death (Dihanich et al., 2014).

ROC Domains as Pharmacological Targets
Given the important role played in human disease by proteins

containing ROC domains, it is perhaps unsurprising that ROC

domains are considered as potential therapeutic targets. At

present, the prevailing strategy to target LRRK2 and DAPK1 in

a disease context is tomodulate kinase activity. Kinase inhibitors

have been developed for both LRRK2 and DAPK1 (Deng et al.,

2011; Okamoto et al., 2009), with a large number of small

molecule inhibitors reported for LRRK2 (Choi et al., 2012; Reith

et al., 2012; Zhang et al., 2012). In contrast, there is a single pub-

lished report of targeting ROC biology, investigating both LRRK2

and DAPK1 (Klein et al., 2009). Klein and coworkers expressed

the ROC domain of LRRK2 as a transgene alongside full-length

LRRK2 and observed an inhibition of LRRK2 activity. This

echoes an earlier report targeting the Dictyostelium protein

Pats1 (Abysalh et al., 2003). In this study, expression of the

Pats1 ROC domain was able to exert a dominant negative effect

on downstream cytokinetic pathways, suggesting that the inter-

ruption of complex formation acts to inhibit function. These data

have a number of implications for ROC domain biology; howev-

er, the transgenic approaches required to translate these

findings into a viable in vivo therapeutic strategy are not yet

amenable for application in a clinical setting.

As our understanding of the function of the ROC domain

increases, so do opportunities to target its biology and patholog-

ical consequences (Figure 4). In particular, there is the potential

to benefit from previous attempts to target the activity of

GTPases. Two case studies are instructive: that of Ras in human

cancer and that of G protein a subunits in G protein coupled

receptor-signaling pathways.

Following the identification of the Ras genes (H-Ras, K-Ras,

and N-Ras), and the close association between point mutations

in these genes and human cancer, substantial efforts have been

made to correct their oncogenic activity (Karnoub andWeinberg,

2008). As it became clear that the biochemical fault linking these

proteins to tumor formation was a reduction in GTPase activity,

altering the downstream effects of this become a priority target

for the cancer research field. Although a great deal is now known

about the structural basis for GTP hydrolysis by Ras proteins,

efforts to target this pathway have focused on the downstream



Figure 4. Strategies to Target ROC Domain Activity
Image of C. tepidum ROCO protein derived from Protein Data Bank reference
3PDU (Gotthardt et al., 2008).
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effectors of Ras, intervening in the interactions between Ras

proteins and these effectors, altering the binding of proteins

directly regulating GTP hydrolysis or guanine exchange factors,

or by manipulating the processing and cellular location of Ras

proteins. This strategy derives from the intrinsic difficulties of

altering the rate of GTP hydrolysis in a specific manner and the

lack of potential small molecule binding pockets on Ras to facil-

itate allosteric regulation (Downward, 2003). Recent successes

include using small molecules to modulate the interaction

between K-Ras and Son of Sevenless (SOS), a GEF (Maurer

et al., 2012), directly inhibiting the interactions between H-Ras

and Raf with small molecules derived from an in silico screen

(Shima et al., 2013) and disrupting the interaction between

K-Ras and PDEd, a prenyl binding protein that acts to govern

the cellular localization of K-Ras (Zimmermann et al., 2013).

Most recently, Ostrem and coworkers have demonstrated that

pharmacological targeting of K-Ras via an allosteric approach

is tractable, and they were able to demonstrate mutation-spe-

cific inhibition—a finding of obvious relevance to LRRK2 (Ostrem

et al., 2013). While it is important not to underestimate the scale

of the challenge, these advances provide hope for targeting ROC

domain biology.

Heterotrimeric G proteins are involved in the control of a range

of cellular functions, and similar to Ras the pathways within

which they function have been implicated in oncogenesis. Efforts

to target G protein a subunits, the subunit of the heterotrimeric G

protein complex responsible for the binding and hydrolysis of

GTP, have resulted in the derivation of a number of compounds

that modulate the release and exchange of guanosine nucleo-

tides. Examples include suramin (Butler et al., 1988) and imida-

zopyrazines (Ayoub et al., 2009), molecules that are thought to

inhibit nucleotide exchange (Smrcka, 2013). YM-254890 oper-

ates via a similar mechanism and has been cocrystalized with

Gaq (Nishimura et al., 2010). This provides a molecular insight

into the mechanism of action, suggesting that YM-254890

restricts the freedom of movement for the subunit and inhibits

the release of GDP from the active site.

What is revealing about the experience of targeting G proteins

and Ras is that advances have been achieved not by directly

targeting the active site of these proteins but by acting on
protein-protein interactions or regulatory mechanisms. For the

ROCO proteins, this is hindered by the lack of validated interact-

ing proteins that modulate guanosine nucleotide hydrolysis or

exchange. Candidate GAPs and/or GEFs have been identified

for LRRK2; however, the spatial details of these relationships

remain obscure (Biosa et al., 2013; Haebig et al., 2010). Further-

more, due to the low affinity of ROCO proteins for guanine

nucleotides (in the mM range), it is still controversial whether

ROCO require GEFs for nucleotide exchange. Therefore, robust

validation of authentic in vivo GEFs and/or GAPs for ROCO pro-

teins is needed before considering them as potential targets.

More optimistically, the multidomain proteins containing ROC

domains benefit from having a number of putative protein-pro-

tein interaction candidates within the same open reading frame.

Indeed, what structural data exist for proteins containing ROC

domains suggest that these interactions are critical for function.

It is also notable that the sequence divergence between ROC

domains and the small GTPases suggests that it may be possible

to design molecules that will interact specifically with ROCO

proteins. On a cautionary note, there are still major gaps in our

understanding of the consequences of inhibiting or potentiating

signaling pathways regulated by ROC domain GTP and GDP

binding. Even for those proteins studied most intensely,

DAPK1 and LRRK2, we do not have a validated model for the in-

teractions between the enzymatic activities of these proteins.

Given the important boost to research provided by the availabil-

ity of specific kinase inhibitor tools for these proteins, it is likely

that the development of tool compounds specifically targeting

ROC domain function will prove invaluable for delineating regu-

latory mechanisms centered on this domain.

Conclusions
From a standing start in 2002, our understanding of ROC domain

structure and function has advanced at a startling rate, primarily

driven by the realization of the role that ROC-domain-containing

proteins play in human disease. It is likely that the coming years

will provide even greater insights into the function of this domain,

in particular with higher resolution structural data in the context

of multidomain fragments of ROCO proteins. The urgent require-

ment for novel therapies to treat the disorders linked to proteins

containing ROC domains highlights the need to examine the

feasibility of targeting ROC biology, despite the huge challenge

that this represents, and this is sure to be a major focus of

research into the proteins in the future.
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