
Trans-floating-point arithmetic removes
nine quadrillion redundancies from 64-bit
IEEE 754 floating-point arithmetic
Conference or Workshop Item

Accepted Version

Anderson, J. A.D.W. (2014) Trans-floating-point arithmetic
removes nine quadrillion redundancies from 64-bit IEEE 754
floating-point arithmetic. In: International Conference on
Computer Science and Applications (WCECS 2014), 22-24
October, 2014, San Francisco, USA, pp. 80-85. Available at
https://centaur.reading.ac.uk/37222/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://www.iaeng.org/publication/WCECS2014/

Publisher: IAENG

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

Trans-Floating-Point Arithmetic

Removes Nine Quadrillion Redundancies

From 64-bit IEEE 754 Floating-Point Arithmetic

James A.D.W. Anderson
School of Systems Engineering

Reading University, England, RG6 6AY
e-mail: j.anderson@reading.ac.uk

Author’s Final Version 9 June 2014

Abstract

IEEE 754 floating-point arithmetic is widely used in modern, general-
purpose computers. It is based on real arithmetic and is made total by
adding both a positive and a negative infinity, a negative zero, and many
Not-a-Number (NaN) states. Transreal arithmetic is total. It also has
a positive and a negative infinity but no negative zero, and it has a sin-
gle, unordered number, nullity. Modifying the IEEE arithmetic so that
it uses transreal arithmetic has a number of advantages. It removes one
redundant binade from IEEE floating-point objects, doubling the numer-
ical precision of the arithmetic. It removes eight redundant, relational,
floating-point operations and removes the redundant total order opera-
tion. It replaces the non-reflexive, floating-point, equality operator with
a reflexive equality operator and it indicates that some of the exceptions
may be removed as redundant – subject to issues of backward compati-
bility and transient future compatibility as programmers migrate to the
transreal paradigm.

Keywords: transreal arithmetic, transreal numbers, floating-point arith-
metic.

1 Introduction

IEEE floating-point arithmetic [1] [2] is widely used in modern, general purpose
computers. This is both a strength, promoting interoperability of computer
programs on different hardware, and a weakness where the standard itself has
infelicities. The standard has been revised but its constant feature is that it
provides a total computing system in which any floating-point operation can
be applied to any floating-point objects, with the result being a floating-point
object. But, strictly speaking, it is not an arithmetic because it applies to
Not-a-Number objects, NaNs, that are not numbers.

The original IEEE standard [1] developed floating-point arithmetic in terms
of bit patterns that support a finite model of real arithmetic. But division by
zero is not defined in real arithmetic so, to make the floating-point model total,
both a positive infinity and a negative infinity were added, along with a negative
zero and many NaNs.

Here we develop a suggestion [4] to use transreal arithmetic [5] as the basis
for floating-point arithmetic. The next section summarises relevant features
of IEEE 754 floating-point arithmetic. We then develop a trans-floating-point
arithmetic. Next we compare the two floating-point systems and suggest that
a single conceptual failure explains all of the infelicities in the design of the
IEEE 754 system. Finally we conclude with a summary of the main original
contributions of the paper.

2 IEEE 754 Floating-Point Arithmetic

The IEEE floating-point arithmetic standard is quite complex, running to 58
pages [2]. We summarise only the parts that are immediately relevant to a
comparison with trans-floating-point arithmetic. A great deal more could be
said in a longer paper.

2.1 Redundancy

IEEE floating-point arithmetic is defined [1] in terms of floating-point operations
on bit patterns, interchange formats, that are stored in memory to represent
floating-point objects, and by a set of condition flags or exceptions that handle
exceptional cases. An operation may be carried out, in the processor, at a higher
precision than the floating-point object’s storage class. There are two kinds of
storage class: unextended and extended. The revised standard [2] also defines an
extendable binary format and a decimal format but we discuss only the binary
formats here because they have fewer redundancies. Thus the binary IEEE 754
formats provide stronger comparisons with trans-floating-point numbers, which
are irredundant.

An IEEE 754 floating-point object has three parts: a sign bit, an exponent,
and a significand (or mantissa). In interchange format, the exponent is an
unsigned integer from which a bias is subtracted to provide positive, zero and
negative exponents during a floating-point calculation in the processor. Two
exponents are reserved: the smallest exponent indicates subnormal numbers and
the largest indicates infinities and NaNs. There are two kinds of NaNs, silent
NaNs that propagate and signalling NaNs that trigger an exception which may
or may not terminate execution depending on how the end-user programmer
implements a program. Zero and negative zero have the smallest exponent
and all significand bits zero. The zeros are distinguished by the sign bit. The
infinities have the highest exponent and all significand bits zero: positive and
negative infinity are distinguished by the sign bit. The NaNs also have the
highest exponent but the significand has at least one non-zero bit. The NaNs

are not distinguished by the sign bit. Taking m as the number of significand
or mantissa bits, the number of bit patterns reserved for NaNs is given in [4]
as 2m+1 − 2. The +1 term arises from the sign bit and the −2 term from the
two codes reserved for the signed infinities; of these NaN states, only 2m−1 are
distinguished so a total of 2m − 1 states are redundant. With a 64-bit storage
class, m = 52 and the redundancy is approximately 4.5× 1015 states, in words,
four and a half quadrillion states are redundant! The eventual redundancy is
twice this number.

2.2 Relational Operators

IEEE 754 floating-point arithmetic has both a bitwise relational operator and
many floating-point relational operators.

The bitwise operator is implemented as the predicate totalOrder(x, y) which
implements a total order, x � y, on floating-point objects in canonical form. The
unextended, binary formats enforce canonical form so they are totally ordered.
The extended and extendable binary formats may or may not enforce a canonical
form so they may or may not be totally ordered. The decimal formats do not
enforce a canonical form so they are not totally ordered. Here we write binary
equality as x ' y. Binary equality holds, i.e. x ' y, when x and y are in
canonical form and totalOrder(x, y) is true and totalOrder(y, x) is true.

The floating-point relational operators are constructed from the four basic
relations: less than (<), equal to (=), greater than (>), unordered (?) which are
said to be mutually exclusive. Of the possible 2× 24 = 32 operators, including
negations, only 22 are defined explicitly. The remaining 10 operators are not
useful and are not all functionally distinct. For example, the standard [1] [2]
states that not equal to is identical to unordered or greater than or less than. But
any lack of distinctness implies that the four, basic, relations are not mutually
exclusive, contradicting the claim made in the standard.

The floating-point equality operator, =, is not reflexive. Firstly the unequal
bit patterns for negative and positive zero compare equal. Secondly all NaN bit
patterns compare unequal, even if the bit patterns are identical. The bitwise
equality, x ' y is reflexive when x, y are in canonical form but is not reflexive
otherwise. Thus it is guaranteed to be reflexive only in the unextended, binary
formats.

If a floating-point relational operator, without ?, is applied to any NaN
object then the result is a signalling NaN which, depending on how the end-
user program handles it, will or will not terminate execution.

2.3 Arithmetic

IEEE 754 ‘arithmetic’ defines a finite model of real arithmetic, augmented with
an arithmetic of positive and negative infinity, which is consistent with the
handling of infinite limits in mathematics (measure theory and extended real-
analysis). It also defines operations on the many NaN objects. Let the binary

operator, ◦, stand for an arbitrary one of the IEEE 754 binary operations of addi-
tion, subtraction, multiplication and division; let f be a non-NaN floating-point
object and assume that all floating-point arguments are in the same canonical
format then NaNi ◦ f ' NaNi ' f ◦NaNi so the result of operating on exactly
one NaN is that NaN but (NaNi ◦ NaNj ' NaNi) or (NaNi ◦ NaNj ' NaNj)
so that the result of operating on two NaNs is some, unspecified, one of them.

2.4 Exceptions

IEEE 754 ‘arithmetic’ has both control-flow exceptions, such as an invalid op-
eration or other error, and behavioural exceptions, i.e. corner cases. According
to the IEEE 754 standard [1] [2], there are many invalid operations and other
exceptional states. There are also many corner cases. We give one corner case
here: the function negate(f) is not the same as subtraction(0, f) so −f is not
always identical to 0− f .

3 Trans-Floating-Point Arithmetic

The format of trans-floating-point numbers is given in [4] by specifying modi-
fications to the unextended, binary formats for IEEE 754 floating-point arith-
metic. Specifically nullity, Φ = 0/0, replaces negative zero so that it is encoded
with non-zero sign bit and all other bits zero. The signed transreal infinities,
−∞ = −1/0 and ∞ = 1/0, are distinguished by the sign bit and have all
other bits non-zero, that is they have the largest representable exponent and
magnitude. This format is irredundant so every bit pattern encodes a unique
transreal number. This lack of redundancy almost doubles the range of real
numbers encoded, falling short by a single unit in each of the positive and neg-
ative ranges. Incrementing the exponent’s bias, by unity, keeps the real range
almost the same, falling short by one unit in each of the positive and negative
ranges, but exactly halves the magnitude of the smallest, representable, non-
zero number. Compared to IEEE 754 floating-point arithmetic, this trades a
total of two units of range for a doubling in precision (it being understood that
precision is measured here in terms of the magnitude of the least, non-zero,
representable number).

Numerical algorithms usually terminate on a tolerance which is a mod-
est function of the least, representable, positive number. Trans-floating-point
arithmetic halves the size of this number, compared to IEEE 754 floating-point
arithmetic, so implementations have the possibility of proceeding to twice the
accuracy in the same number of bits.

One must take care with negation to avoid the problem that IEEE 754
floating-point arithmetic has where −f 6= 0− f . Negation shall toggle the sign
bit of a trans-floating-point number if and only if at least one other bit is non-
zero. Hence negate(Φ) = Φ and negate(0) = 0 by identity (the sign bit is not
toggled) and all other numbers have negate(f) = −f where the signs of f and

−f are made opposite by toggling. This correctly negates all transreal numbers
and is very cheap to implement in hardware, with very fast execution.

Transreal arithmetic [5] is then implemented in the processor and, subject to
the IEEE 754 floating-point prescriptions on taking the result to specified units
in the last place, the processor should implement the arithmetic at a higher
precision and may do so in a redundant format, converting the result to an
irredundant, transfer format when the result is transferred to memory or to an
output device.

The earlier proposal [4] does not give much consideration to rounding modes
and the flagging of exceptions. Space prevents us from doing that here but we
could do so in a longer paper. In essence one should keep all of the rounding
modes, should add the exception underflow from negative, but may dispense
with some of the current exceptions. The semantics of transreal arithmetic lead
to a clear indication of which exceptions to dispense with, for example division
by zero is never exceptional and invalid operation never occurs so they may be
removed as being entirely redundant. Nonetheless they may be desired for back-
ward compatibility or transient compatibility as programmers move from the
IEEE 754 paradigm to the transreal paradigm. These issues call for fine judge-
ments of human psychology, commercial priorities and scientific correctness. It
would take considerable space to give them proper consideration and would,
almost certainly, require consensus building, in various communities, before a
de jure standard should be established.

4 Discussion

Real arithmetic is partial – it fails on division by zero. There are two ways to
address the problem of partial performance in any system: one can develop a
total system or one can seek to correct each of the, generally, infinitely many
consequences of partial performance. Transreal arithmetic and trans-floating-
point arithmetic take the former approach and, the evidence examined here
suggests, the IEEE 754 standard takes the latter approach. We now compare
the two floating-point arithmetics and illustrate how the design goal of totality
explains their differences in performance.

Trans-real arithmetic was designed to be a total arithmetic which is consis-
tent with real arithmetic and with infinite limits as used in measure theory and
(extended) real analysis. It adds three definite numbers to the reals: negative
infinity (−∞ = −1/0), positive infinity (∞ = 1/0) and nullity (Φ = 0/0). There
is a machine proof that transreal arithmetic is consistent [5]. By contrast IEEE
754 arithmetic is totalised in an ad hoc way, which leads it into a number of
difficulties, some of which are discussed here. Nonetheless the two arithmetics
agree on all real and infinite calculations, except those infinite calculations that
involve IEEE 754’s negative zero. Transreal arithmetic does not have a negative
zero so it has no expression corresponding to 1/(−0) = −∞ and where IEEE
754 has 1/(−∞) = −0, transreal arithmetic has 1/(−∞) = 0. The two arith-
metics disagree in every calculation that involves transreal nullity and IEEE

754 NaNs. For example transreal arithmetic has ∞−∞ = Φ but IEEE 754 has
∞−∞ → NaNi 6= NaNi. To be clear, subtracting two transreal infinities pro-
duces the unique number nullity as a result, which, like all transreal numbers,
is equal to itself. This justifies writing the equals sign (=) in ∞−∞ = Φ. By
contrast, subtracting two IEEE 754 infinities produces some unspecified NaN,
which justifies both the production rule arrow (→) and the index (i) on the
NaN, but no NaN is equal to itself, which justifies the not-equals sign (6=) in
∞−∞→ NaNi 6= NaNi. In short, transreal arithmetic has ∞−∞ = Φ where
IEEE 754 has ∞−∞ 6= NaNi for all i.

As an abstract mathematical system, transreal arithmetic does not need
a negative zero, nor do finite computer models of transreal arithmetic. It is
sufficient to switch execution paths on an underflow from a negative number
to zero so that any division by that zero operates on a negated numerator.
Suppose we want to compute k/0 for some positive k. In the case that the zero
is exact or produced by an underflow from a positive number, both arithmetics
compute k/0 = ∞. In the case that the zero is produced by underflow from a
negative number, IEEE 754 floating-point arithmetic computes k/(−0) = −∞ in
a single execution path and trans-floating-point arithmetic switches to a second
execution path to compute −k/0 = −∞. Thus both arithmetics compute an
equivalent result. The switch on underflow from negative is an additional cost
that trans-floating-point arithmetic pays, conditionally, when dividing by zero.
This is a consequence of taking a finite approximation to transreal arithmetic.
The benefit is that it gains a simpler semantics than IEEE 754 floating-point
arithmetic. This is an issue which would take a great deal of space to explore
in a longer paper.

There are three basic, transreal, relational operators: less than (<), equal
to (=), greater than, (>). All combinations of these operators and logical nega-
tion (!) are distinct and are, therefore, useful. Distinctness is proved in the
Appendix. Nullity is the only transreal number which compares not less than
zero, not equal to zero and not greater than zero so transreal arithmetic does
not require an unordered operator (?). But this counter example proves that
unordered is logically redundant in IEEE 754 arithmetic.

Let us digress into a brief discussion of the meta theory of mathematics and
computer science because this may be of interest to historians and philosophers
of science, as well as to those mathematicians and scientists who use meta theory
to direct their own research. What prevented computer scientists from noticing
that the unordered operator is redundant? Those who did not read the standard
would not be aware of the claim that the floating-point, relational operators are
mutually distinct and would not be aware of the contrary evidence that only 22
relations are defined, where combinatorics requires 32. Those scientists would,
however, be faced with the difficulty of using the operators but resolving their
difficulties would require them to direct their attentions away from the object of
their study to a study of the IEEE 754 standard. It is entirely understandable
that many would regard this as an unacceptable distraction. But what of those
who did read the standard? How can such an elementary error escape the many
computer scientists who have worked on the standard and who have produced

formal proofs of its correctness? An historian would ask them and read their
notes, a philosopher might hypothesise that division by zero is an exceptional
case that is handled sui generis so that it is not subjected to the usual tests of
correctness. Quite simply, most scientists do not know how to divide by zero so
they cannot test proposed properties of division by zero. To guard against this
class of failures, one might explicitly propose that all sui generis cases should
be examined with a view to embracing them in a total theory. We do this, here,
by proposing the design goal of totality.

Our position is that the unordered operator of IEEE 754 floating-point arith-
metic is logically redundant. If it has any role, it can only be in IEEE 754’s
model of exception handling but, as transreal arithmetic demonstrates, divi-
sion by zero need not be taken as an exception so IEEE 754’s error handling is
redundant, in this case, making the unordered operator entirely redundant.

Let us count the number of compound IEEE 754 floating-point operations
that are made redundant. IEEE 754 has 22 compound operators, transreal
arithmetic and trans-floating-point arithmetic have 16 so at least 22−16 = 6 of
the operators are redundant but of the 16 transreal operators two, Epsilon and
Not Epsilon, are not floating-point operators so trans-floating-point arithmetic
has only 14 floating-point, relational operators. Hence 22− 14 = 8 of the IEEE
floating-point, relational operators are redundant.

Observe that transreal arithmetic takes less than, equal to and greater than
as total operators that apply to all transreal numbers where IEEE 754 introduces
a special operator, unordered, to handle the sui generis category of NaNs. The
IEEE 754 standard [1] fails, here, because it does not observe the design goal
of totality. This failure gives rise to further exceptional cases which are tackled
in a revision of the standard. The revised IEEE 754 standard [2] provides a
special operator, totalOrder(x, y), that imposes a total order, x � y, on those
x, y that are in canonical form. Taking NaNi with the sign bit zero and −NaNi

with the sign bit non-zero and rj a positive, represented, real number, we have
a total ordering −NaNi ≺ −∞ ≺ −rj ≺ 0 ≺ rj ≺ ∞ ≺ NaNi for specified i, j.
This produces a correct, total ordering of the bit patterns but, perversely, it
makes all of the abstract objects encoded by the bit patterns unordered. Recall
that IEEE 754 does not distinguish between NaNs with different signs so the bit
patterns −NaNi and NaNi provide two representatives of each abstract NaNi.
Now any real or infinite number nj is both greater and less than some abstract
NaNi because −NaNi ≺ nj ≺ NaNi and any abstract NaNi is both greater and
less than itself, both of which cases are proved by −NaNi ≺ NaNi. Taking these
cases together, every abstract object represented by IEEE 754 bits is totally
unordered. This is perverse and having a function called totalOrder produce a
total unorder is both ironic and anti-mnemonic for programmers. It succeeds
only at the level of bit patterns, not at the level of abstract objects, so it is an
example of data anti-abstraction and one which is mandated by the standard!

Transreal arithmetic does not have a total order operator: nullity is the
only unordered number and all other transreal numbers are totally ordered by
the transreal, relational operators. This entire order is encoded by these same
relational operators so no additional information is needed. If an end user wants

a particular total order, he of she is at liberty to put nullity anywhere in the
sequence; we generally recommend taking it first so that the unique number
nullity is processed before arbitrarily many of the ordered numbers.

Now let us consider the cognitive burden on programmers, further to the
exceptions, anti-mnemonic and data anti-abstraction noted above.

The ordering of transreal numbers is shared with trans-floating-point arith-
metic and trans-two’s-complement arithmetic [3] so the same relational opera-
tors and control exceptions, such as inexact result, apply to both systems. The
programmer does not have to learn separate relations and control exceptions for
each system. Even better, the ordering relations are just the ordering relations
of real arithmetic so the programmer, who is familiar with real arithmetic, need
only learn that nullity is the uniquely unordered number.

The transreal, relational operators are orthogonal in the sense that every
combination of operators is allowed. Hence the programmer does not have to
learn exceptions. Can the reader say which 10 relational operators are not
supported by IEEE 754 floating-point arithmetic or explain the circumstances
in which −f 6= 0 − f? How much work will it take the reader to answer these
questions and what profit is there in that labour? What is the cost to society
in demanding such unproductive labour of programmers?

Transreal arithmetic is total and can be used to totalise certain functions so
that they have no exceptions. For example we may totalise the hardware square-
root function so that the square root of a negative number returns nullity. In this
case the number nullity is being used as a flag but as nullity is absorptive over
the transreal operations of arithmetic, so that all sums, differences, products and
quotients of nullity are nullity, the flag, nullity, will propagate. Its meaning, in
this model, is that there is no extended-real number that is the square root of
a negative number. As nullity is not an extended-real number, it carries this
information faithfully. We expect that similar arguments can be made for all of
the real functions of elementary algebra.

Of course transreal arithmetic cannot be used to totalise all functions. For
example the function f(a, b) = c that returns some one transreal number, c,
such that a <= c and c <= b produces no result for f(1, 0). Such mathematical
functions can be totalised by operating on sets so that, in this example, the
solution set is empty. Another approach is to use a separate, say Boolean, flag
to indicate whether the result of a function is valid or not. This is equivalent to
using a hardware invalid opearation exception but it remains to be established
that the transreal versions of any of the IEEE 754 floating-point functions do
have such exceptions.

The reader is faced with a paradigm shift. The reader was educated at a
time when division by zero was generally considered impossible. Consequently
the reader was taught a partial arithmetic that fails on division by zero and
partial mathematics that fail similarly. Working in that paradigm the reader
has little guidance on how to develop a total arithmetic and so is thrown back
on a series of ad hoc decisions; each time an infelicitous decision is made, further
ad hoc additions must be made to try to correct them. By contrast transreal
arithmetic is now available. It supports division by zero, is total, and is being

developed, systematically, into a transmathematics. If the reader makes the
paradigm shift to the new system, he or she will work from the basis of a total
system and will have the systematic guidance of mathematical derivations to
develop total computing systems. This paper offers a deal: accept division by
zero and gain a simpler programming system with up to twice the accuracy of
IEEE 754 floating-point arithmetic or reject the deal and carry on as now.

5 Conclusion

IEEE 754 floating-point arithmetic is widely used but it is based on an ad hoc
totalisation of real arithmetic with many infelicities, some of which are dis-
cussed above. From a mathematical point of view, the worst infelicity is that
the equality operator is not reflexive so that x1 = x2 is true for some unequal
bit patterns x1, x2 and is false for some equal bit patterns x1, x2. It is certainly
possible to maintain a consistent semantics in the face of this and related diffi-
culties but it is not easy to do. The practical difficulty of achieving consistency
is demonstrated by inconsistent floating-point behaviour between commercially
important programming languages that adhere to the relevant programming
language standards. A longer version of this paper could demonstrate this fact
with source code and could suggest software ameliorations based on the seman-
tics of transreal arithmetic, thereby demonstrating its utility as a superior total
arithmetic.

The IEEE 754 floating-point arithmetic standard acknowledges that some
failures of interoperability are caused by the Not-a-Number, NaN, elements. We
have proved that the standard is wrong when it says that its basic relational
operators - less than, equal to, greater than, unordered - are mutually exclusive.
Specifically we prove that the unordered relation is logically redundant, having
utility only in the IEEE 754 model of error handling; then we show that this
error model is redundant when transreal arithmetic, which has no NaNs, is used
as the basis of floating-point arithmetic. Thus transreal arithmetic simplifies
the relational operators, simplifies programming and removes an entire class of
errors; all of which supports our view that trans-floating-point arithmetic is a
superior model of floating-point arithmetic. We expect that trans-floating-point
arithmetic will be better suited to safety critical applications, especially where
formal verification of code is mandatory.

Transreal arithmetic is controversial but it offers both practical and theo-
retical advantages. For its proponents, the transreal numbers −∞ = −1/0,
∞ = 1/0 and Φ = 0/0 are all valid numbers with well defined mathemati-
cal properties and well defined semantics in mathematical models of practical
systems. We emphasise just two of its practical advantages. Firstly transreal
arithmetic uses only the ordinary relational operators for less than, equal to and
greater than, taking Φ as the uniquely unordered number. When implemented
as a computer arithmetic, this reduces the number of relational operators, as
compared to IEEE 754 arithmetic, and removes all exceptions from them. This
makes programming both simpler and safer, with fewer cases to verify. Sec-

ondly using transreal arithmetic as a basis for floating-point arithmetic would
provide numerical computations with up to twice the accuracy of IEEE 754
floating-point arithmetic. These practical advantages ought to be of scientific
and commercial interest.

Finally we propose that there is a single, conceptual failure in the design of
IEEE 754 floating-point arithmetic that explains all of its infelicities: the stan-
dard fails to impose totality and instead attempts to impose solutions to each of
the consequences of partiality. As there are infinitely many such consequences,
all revisions of the standard will fail, until totallity is accepted as a design goal.
We observe that this failure is almost universal in software design so adopt-
ing the design goal of totality would improve the performance and reliability of
almost all software.

6 Appendix: Transreal Relational Operators

There are three basic, transreal, relational operators: less than (<), equal to
(=), grater than, (>). These operators are mutually exclusive so they can be
combined in 23 = 8 ways. All 8 combinations are distinct and meaningful,
including the empty operator with no occurrences of the basic operators. All
8 combinations can be combined with the logical negation operator (!). This
yields 2 × 23 = 24 = 16 distinct and meaningful operators. The multiplication
table for each operator is given here.

The relational operators can be formalised as production rules of the form
a • b → c, where • is the operator. Hence “a • b” is replaced by “c”. The
empty operator is indicated by epsilon (ε) so “aεb” is identical to “ab” whence
the empty operator implements the identity concatenation ab → ab. This is
shown in the first multiplication table, entitled Epsilon. This operator occurs,
trivially, in all written languages, including computer languages. Combining the
empty operator with the logical negation operator yields “a!εb” which is identical
to “a!b” and, following custom, we take the operator “!” as a unary, right
associative operator, so that, for example, “X!T” is replaced by “XF” where T
stands for True, F stands for False and X stands for an arbitrary symbol. This
is shown in the second multiplication table, entitled Not Epsilon. This operator,
with a possibly different glyph, occurs in most high-level, computer languages.
The remaining multiplication tables are truth tables. The labels on the rows
and columns indicate the arguments: negative infinity (−∞), an arbitrary real
number (ri), positive infinity (∞), nullity (Φ). As usual T stands for True and F
stands for False. In a departure from the usual notation, an asterisk (*) stands
for a conditional truth value. For example, in the third table, entitled Less, the
asterisk in the row labeled r1 and column labeled r2 is to be replaced by the
truth value of r1 < r2, and similarly in the other tables. This recruitment of
the real relation, less than, to define the corresponding transreal relation, is a
context-sensitive reading of the symbol <. Computer scientists are generally
comfortable with context-sensitive readings but many mathematicians regard
them as an abuse of notation; even so, such notations are very common and are

easily understood.
It can be seen, by inspection, that the multiplication tables are distinct. The

labour of inspecting the tables can be reduced by exploiting symmetries. It is
sufficient to notice that the first two elements, respectively FT, TF, FF of the
first row of the tables Less, Equal, Greater are distinct and, similarly, TT, FT,
TF of Less or Equal, Less or Greater, Greater or Equal are distinct.

Epsilon

ε b

a ab

Not Epsilon

!ε F T

a aT aF

Less

< −∞ r1 ∞ Φ

−∞ F T T F

r1 F * T F

∞ F F F F

Φ F F F F

Equal

= −∞ r1 ∞ Φ

−∞ T F F F

r1 F * F F

∞ F F T F

Φ F F F T

Greater

> −∞ r1 ∞ Φ

−∞ F F F F

r1 T * F F

∞ T T F F

Φ F F F F

Less or Equal

<= −∞ r1 ∞ Φ

−∞ T T T F

r1 F * T F

∞ F F T F

Φ F F F T

Less or Greater

<> −∞ r1 ∞ Φ

−∞ F T T F

r1 T * T F

∞ T T F F

Φ F F F F

Greater or Equal

>= −∞ r1 ∞ Φ

−∞ T F F F

r1 T * F F

∞ T T T F

Φ F F F T

Less or Equal or Greater

<=> −∞ r1 ∞ Φ

−∞ T T T F

r1 T T T F

∞ T T T F

Φ F F F T

Not Less

! < −∞ r1 ∞ Φ

−∞ T F F T

r1 T * F T

∞ T T T T

Φ T T T T

Not Equal

! = −∞ r1 ∞ Φ

−∞ F T T T

r1 T * T T

∞ T T F T

Φ F F F T

Not Greater

! > −∞ r1 ∞ Φ

−∞ T T T T

r1 F * T T

∞ F F T T

Φ T T T T

Not Less or Equal

! <= −∞ r1 ∞ Φ

−∞ F F F T

r1 T * F T

∞ T T F T

Φ T T T T

Not Less or Greater

! <> −∞ r1 ∞ Φ

−∞ T F F T

r1 F * F T

∞ F F T T

Φ T T T T

Not Greater or Equal

! >= −∞ r1 ∞ Φ

−∞ F T T T

r1 F * T T

∞ F F F T

Φ T T T F

Not Less or Equal or Greater

! <=> −∞ r1 ∞ Φ

−∞ F F F T

r1 F F F T

∞ F F F T

Φ T T T F

Acknowledgment

The author would like to thank the members of Transmathematica for many
helpful discussions.

References

[1] Ieee standard for binary floating-point arithmetic. 1985.

[2] Ieee standard for floating-point arithmetic. 2008.

[3] James A.D.W. Anderson. Perspex machine xi: Topology of the transreal
numbers. In S.I. Ao, Oscar Castillo, Craig Douglas, David Dagan Feng, and
Jeong-A Lee, editors, IMECS 2008, pages 330–33, March 2008.

[4] James A.D.W. Anderson. Evolutionary and revolutionary effects of
transcomputation. In 2nd IMA Conference on Mathematics in Defence.
Institute of Mathematics and its Applications, Oct. 2011.

[5] James A.D.W. Anderson, Norbert Völker, and Andrew A. Adams. Perspex
machine viii: Axioms of transreal arithmetic. In Longin Jan Lateki, David M.
Mount, and Angela Y. Wu, editors, Vision Geometry XV, volume 6499 of
Proceedings of SPIE, pages 2.1–2.12, 2007.

