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The Importance of the Volatility Risk
Premium for Volatility Forecasting

This version: January 2014

Abstract

In this paper, we study the role of the volatility risk premium for the forecasting

performance of implied volatility. We introduce a non-parametric and parsimonious

approach to adjust the model-free implied volatility for the volatility risk premium

and implement this methodology using more than 20 years of options and futures

data on three major energy markets. Using regression models and statistical loss

functions, we find compelling evidence to suggest that the risk premium adjusted

implied volatility significantly outperforms other models, including its unadjusted

counterpart. Our main finding holds for different choices of volatility estimators

and competing time-series models, underlying the robustness of our results.

JEL classification: G13, G17
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1 Introduction

A plethora of academic publications compare option implied to time-series forecasts of

realized volatility such as historical volatility and GARCH-type models.1 Surprisingly,

these studies pay little attention to the fact that implied volatility is obtained under the

risk-neutral measure, Q, whereas the quantity to be forecasted, i.e. realized volatility,

is observed under the physical measure, P . Thus, directly comparing option implied

volatility to time-series models of volatility requires the assumption that the market price

of volatility risk is zero. However, Carr and Wu (2009), Driessen et al. (2009), Trolle

and Schwartz (2010), Mueller et al. (2011), and Prokopczuk and Wese Simen (2012)

convincingly reject this assumption. They document a significant and time-varying

volatility risk premium that effectively drives a wedge between the volatility forecasted

under Q and subsequently realized under P . In light of this, it is natural to ask: can the

forecasting performance of implied volatility be improved by adjusting for the volatility

risk premium?

Our answer is “yes”. In reaching this conclusion, we make two important

contributions to the volatility forecasting literature. First, we build on the model-free

implied volatility (MFIV) of Jiang and Tian (2005) to propose a simple and

non-parametric adjustment to account for the market price of volatility risk. To the

best of our knowledge, we are the first to study the role of the volatility risk premium for

volatility forecasting in a model-free setting. This is in stark contrast with the approaches

of Lamoureux and Lastrapes (1993) and Poteshman (2000), who rely on explicit option

pricing models. Our approach also differs from that of Chernov (2007), in that we

neither rely on an approximation nor on a small subset of option prices, specifically

1See Poon and Granger (2003) for an excellent survey.

1



At-The-Money (ATM) options, as the author does.

Our second contribution consists of a thorough empirical assessment of the

importance of our adjustment. To do this, we proceed in three stages. We begin

by evaluating the relative information content of the volatility risk premium adjusted

model-free implied volatility (RMFIV) vis-à-vis other models that include historical

volatility (HIST) and GARCH-type models. We do this by estimating regressions of

realized volatility on alternative forecasts of volatility. We then use four statistical

loss functions, i.e. mean absolute errors (MAE), mean squared errors (MSE), mean

absolute percentage errors (MAPE) and mean squared percentage errors (MSPE) to

investigate the forecasting accuracy of each model. Lastly, we use the Diebold–Mariano

and the non-parametric Wilcoxon signed rank tests to assess the statistical significance

of differences between models.

In conducting our empirical analysis, we are careful to select three important

markets, namely crude oil, heating oil and natural gas, that are purged of the

host of data issues discussed in the volatility forecasting literature. These include

asynchronous trading times, irregular expiration cycles, potentially imprecise dividend

yield estimates, and limited range of strike prices to name but a few. We find compelling

evidence to suggest that accounting for volatility risk premium significantly improves

the volatility forecasting performance of MFIV. Typically, RMFIV yields the smallest

average forecasting errors of all models. This is true for all loss functions and markets.

More important, our formal statistical tests show that the difference between RMFIV

and its competitors is not only economically large but also statistically significant. Our

results are robust to alternative proxies for realized volatility and competing time-series

models, further highlighting the importance of our findings.
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The remainder of this paper proceeds as follows. Section 2 provides a brief overview

of extant studies on volatility forecasting. Section 3 describes our dataset and empirical

methodology. Section 4 discusses our main findings. Section 5 contains robustness checks.

Finally, Section 6 concludes.

2 Literature

Arguably, one of the most controversial studies on the information content of option

markets for volatility forecasting in equity markets is that by Canina and Figlewski

(1993). The authors study the information content of option implied volatility and find

that historical volatility forecasts are superior to option implied forecasts. Their findings

cast doubt on the informational efficiency of options markets. In a subsequent study,

Fleming (1998) reaches a different conclusion, reporting that forecasts based on option

implied volatility outperform those based on historical volatility. Using a more refined

econometric methodology based on non-overlapping data, Christensen and Prabhala

(1998) corroborate this finding by showing that implied volatility outperforms historical

forecasts.

Studying the US Dollar/Deutsche Mark and US Dollar/Yen markets, Guo (1996)

documents the superior forecasting power of implied variance extracted from the Hull

and White (1987) pricing formula. Similarly, Jorion (1995) examines the information

content and predictive power of option implied volatility in the Deutsche Mark, Yen,

and Swiss Franc markets. He reports that time-series models underperform option

implied forecasts even when given the advantage of calibration over the whole sample.

Relatedly, Martens and Zein (2004) compare the information content of implied volatility

to time-series models that exploit high-frequency data in several markets, including the
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Yen/US Dollar market. They report that, forecasts based on intra day data sometimes

outperform option implied forecasts. Finally, Charoenwong et al. (2009) assess the

predictive power of implied volatility extracted from options traded on different venues

namely the Philadelphia Stock Exchange, the Chicago Mercantile Exchange, and the

over-the-counter (OTC) market. Their study concludes that, irrespective of the trading

venue, implied volatility performs better than time-series forecasts. Szakmary et al.

(2003) provide a comprehensive investigation of the forecasting ability of implied volatility

for 20 commodity markets. They compare ATM implied volatility to GARCH and a

simple moving average model. Their results point to the superiority of ATM implied

forecasts compared to time-series models throughout the maturity of the contract. In a

related study, Agnolucci (2009) considers a richer set of GARCH models that includes

asymmetric specifications such as EGARCH and TGARCH and different distributions of

the error term. Contrary to Szakmary et al. (2003), Agnolucci concludes that time-series

models provide better forecasts than ATM IV in the crude oil market.

More recent work has improved the quality of option implied volatility forecasts by

avoiding to rely on a specific option pricing model and a particular strike price. In a

pioneering study, Jiang and Tian (2005) analyze the information content of MFIV in

the S&P 500 index market and show that it subsumes ATM IV and historical volatility.

Recent studies have investigated the robustness of this finding for international equity

markets. Efforts in this direction include the work of Frijns et al. (2010), who investigate

similar issues in the Australian stock market and report that MFIV outperforms GARCH

and EWMA models.2 In a similar vein, Cheng and Fung (2012) analyze the information

content of MFIV in Hong Kong and report that ATM IV outperforms MFIV which in turn

2It is worth noticing, however, that the implied volatility index of Frijns et al. (2010) is based on
the old rather than the new definition of VIX. Hence, their study should be viewed as a test of the
information content of ATM options rather than the MFIV defined in Jiang and Tian (2005).
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is superior to time-series models. Taylor et al. (2010) study the performances of ARCH,

GJR GARCH, ATM IV and MFIV for individual equities between 1996 and 1999. They

report that option implied forecasts outperform time-series models for the month ahead

forecasting horizon. However, they find that MFIV is inferior to ATM IV. This result

is most likely attributable to low liquidity and the small number of out-of-the-money

(OTM) option prices available for individual equity options.

The aforementioned studies can be criticized on the grounds that they ignore the

role of the volatility risk premium in their empirical investigations. This issue dates

back to the work of Lamoureux and Lastrapes (1993), who examine the forecast quality

of implied variance extracted from the option pricing model of Hull and White (1987)

and reject the null hypothesis that “available information cannot be used to improve

the market’s variance forecast embedded in observable prices.” This result leads them to

conclude that “one possible reason for the rejection of the null is that volatility risk is

priced.” Alas, this conjecture remains largely unexplored.

In fact, since the seminal work of Lamoureux and Lastrapes (1993), only two studies

have analyzed this hypothesis further. Favoring a fully parametric approach, Poteshman

(2000) estimates implied volatility from the Heston (1993) model which, unlike the model

of Hull and White (1987), allows for a volatility risk premium. Poteshman notes a

reduction in the biasedness of implied volatility, suggesting that volatility risk premium

might contribute to the reported bias. However, it is not entirely clear how robust this

result is to model misspecification. This is particularly important given the empirical

evidence of Bakshi et al. (1997) and Eraker et al. (2003), among others, that the Heston

model is misspecified.

Chernov (2007) devises a novel strategy which builds on an approximation linking the
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average implied volatilities of near-the-money (NTM) option contracts and the quadratic

variation. He shows, both theoretically and empirically, that the existence of a volatility

risk premium leads to biased volatility forecasts. However, by focusing on NTM options,

he neglects potentially useful information embedded in other option prices.

3 Data and Methodology

3.1. Data

Our survey of extant studies features mixed empirical evidence on the relative merits of

option implied volatility forecasts. This lack of consensus could be due to potential

measurement errors. First, in markets such as the S&P index option markets, the

option and underlying markets close at different times. As a result, the non-synchronous

closing times of stock and option markets introduce an error in the implementation of the

option pricing model used to extract implied volatility. For example, back-of-the-envelope

calculations in Jorion (1995) suggest that asynchronous trading times could bias implied

volatility estimates by 1.2%. Second, extracting implied volatility from stock options

requires dividend yield estimates. Unfortunately, these data are often difficult to obtain,

leaving researchers with no choice but to make ad hoc assumptions about dividend yields.

Third, the MFIV approach of Jiang and Tian (2005) requires integrating over an infinite

range of strike prices. As these integrals need to be approximated over a finite number of

discrete strike prices, they obviously depend on the existence of a sufficiently wide range

of OTM option contracts. Finally, most existing studies rely on relatively short sample

periods.3 However, few options markets have monthly expiration cycles. As a result,

3For example, Jiang and Tian (2005) consider data from 1988 to 1994. Likewise, Taylor et al. (2010)
consider data from 1996 to 1999.
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using non-overlapping samples may significantly lower the power of statistical tests.

In light of these concerns, we view energy futures markets as the perfect testing

ground for our study. They are well suited for our analysis, for several reasons. To

begin with, Marshall et al. (2012) note that these markets are highly liquid. Moreover,

more than 20 years of option data are available and wide ranges of strike prices are

traded in these markets. Furthermore, the options are written on the corresponding

futures contract, thus enabling us to avoid estimating storage costs and convenience

yields (or, equivalently, dividends if studying equity markets). Finally, the futures and

option contracts of these markets are traded on the same exchange and close at the same

time, allaying the concerns related to non-synchronous closing times often encountered

in equity indices.

Specifically, we consider futures and option settlement prices for crude oil, heating

oil, and natural gas traded at NYMEX.4 Our sample period extends from January

1989 to September 2011 and November 1978 until September 2011 for the options and

futures data, respectively.5 All data have been obtained from the Commodity Research

Bureau (CRB). As proxy for the risk-free rate, we employ three-month Treasury bill rates

obtained from the Federal Reserve’s website.

In order to mitigate problems due to stale option prices, we discard all observations

with prices lower than five times the minimum tick size set by the exchange. These

minimum values are $0.01, $0.0001, and $0.001 for crude oil, heating oil and natural gas,

respectively. The option dataset comprises American options. Therefore, we follow Trolle

and Schwartz (2009) and convert them into European option prices by approximating

4In 2008, NYMEX was acquired by the CME Group; however, the name NYMEX still prevails.
5Specifically, the futures dataset begins from 03/30/1983, 11/14/1978, and 04/04/1990 in the crude

oil, heating oil, and natural gas markets, respectively. Similarly, the options dataset is available from
01/11/1989, 01/11/1989, and 10/02/1992 for the crude oil, heating oil, and natural gas markets,
respectively.
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the early exercise premium using the method developed by Barone-Adesi and Whaley

(1987). Since futures contracts have specific maturity dates, particular caution must be

exerted when computing returns around rollover dates. To mitigate problems due to

spurious jumps around rollover dates, we discard all returns computed across different

futures contracts.

Studies on forecasting realized volatility are invariably faced with the issue of

overlapping observations bias induced by the rolling window used to estimate realized

volatility. Canina and Figlewski (1993) and Jorion (1995) estimate realized volatility on a

daily basis by employing rolling windows of returns, introducing overlapping observation

biases in their analysis. Although these studies account for the overlapping periods by

adjusting the standard errors, it is not entirely clear how effective this adjustment is.

Therefore, Christensen and Prabhala (1998) recommend using non-overlapping data.

We follow their advice. Whenever possible, we retain only options that mature in

exactly 30 days. If this is not possible, we select the nearest trading day.6 In these

instances, a small adjustment to the implied volatility is required. For example, if

the nearest time to maturity is 31 days, we adjust the corresponding implied volatility

so as to reflect the volatility of 30 days and not 31 days. Since the option markets

under consideration have monthly expiration cycles, our research design results in

non-overlapping observations, making our analysis robust to the overlapping observations

biases discussed by Christensen and Prabhala (1998).

6In selecting the nearest trading day, we restrict ourselves to maturities between 28 and 32 days.
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3.2. Methodology

Realized Volatility Following Jorion (1995) among many others, realized volatility

between t and T , RVt,T , is computed in the usual way:

RVt,T =

√

√

√

√

252

T

T
∑

t=1

(

log
Ft,T

Ft−1,T

)2

(1)

where Ft,T denotes the price at time t of the futures contract maturing at T .7

Time-Series Models We consider two time-series models namely HIST and asym-

metric GJR GARCH. HIST simply denotes the realized volatility defined in Equation

(1) over the preceding month. The GJR GARCH model is specified as follows:

yt = µ + ǫt; ǫt ∼ N(0, σ2
t ); σ2

t = ω + (α+ γIt−1)ǫ
2
t−1 + βh2

t−1 (2)

where yt is the daily log return of the underlying futures prices at date t. µ is the mean

return, and ǫt represents the price innovation, which is normally distributed with mean

zero and variance σ2
t . It−1 is an indicator function taking values one or zero if yt−1 is

lower or greater than µ, respectively. Notice that the model in Equation (2) nests the

simple GARCH model, which can be obtained by constraining γ to be equal to zero.8

We recursively estimate the model parameters using futures returns and iteratively

obtain 30 day ahead forecasts of realized variance.9 Specifically, our initial parameter

7In Section 5, we consider the alternative range estimator proposed by ? and refined by Yang and
Zhang (2000) as a robustness check.

8As a robustness check, we also repeated the entire analysis using the EGARCH and GARCH(1,1)
models. We also allow for an ARMA component in the return equation and obtain nearly identical
results. See Section 5 for further details.

9We adopt a recursive rather than a rolling window estimation because Lamoureux and Lastrapes
(1993) compare the two methods and find that the recursively estimated GARCH model provides better
performance.
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estimates are extracted from futures data until the first option observation.10 With the

parameter estimates at hand, we iteratively forecast variance for the next 30 days. Then,

we expand our estimation window by 30 days and re-estimate the time-series model.

Again, we make variance forecasts for the next 30 days and repeat our procedure until

the end of the sample.

Option Implied Forecasts We obtain ATM IV by averaging the Black (1976) implied

volatilities of options with moneyness ranging from 0.97 to 1.03, with moneyness being

defined as the ratio of the futures price over the strike price.11 To obtain MFIV, we

closely follow the steps outlined in Prokopczuk and Wese Simen (2012) and compute

MFIVt,T =

√

√

√

√

2ert(T−t)

T − t

[

∫ Ft,T

0

P (K)

K2
dK +

∫ +∞

Ft,T

C(K)

K2
dK

]

(3)

where MFIVt,T refers to the MFIV between days t and T . rt denotes the annualized

risk-free rate. P (K) and C(K) denote European put and call options struck at K and

expiring at T , respectively.

To obtain MFIVt,T , we proceed as follows. We rank all out-of-the-money (OTM)

options by time to maturity on a daily basis. Since energy options have a monthly

expiration cycle, the first two maturities always span a period of 30 days. Hence, we

retain options of the shortest (T1) and second shortest maturities (T2) only. Observations

on trading days with less than two OTM put and two OTM call options per maturity

are discarded. This step is important since the computation of MFIV requires several

OTM options. We truncate the two integrals in Equation (3) at the lower and upper

10This means that we obtain the first set of parameter estimates using 1546, 2501, and 637 returns
in the crude oil, heating oil, and natural gas futures markets, respectively.

11Our selection of the ATM range mirrors that of Bakshi et al. (1997).
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bounds (strike prices) Kl = Ft,Te
−10σT and Ku = Ft,T e

10σT , respectively. Here Ft,T refers

to the price at time t of the futures contract expiring at T , σ denotes the average implied

volatility of all OTM options maturing at T (either T1 or T2).

We perform a linear interpolation of all implied volatilities across the market strike

range for T1 and T2 (separately). For strikes outside of this range but between the

truncation points, we assume constant implied volatility. Overall, this approach yields

1,000 implied volatilities for each maturity, which we map into European option prices by

applying the Black (1976) option pricing formula. Next, we implement the trapezoidal

rule to numerically evaluate the integrands in Equation (3) using the 1,000 option prices.

By doing so, we obtain the risk-neutral expectation of variance for each maturity. Lastly,

we obtain the 30 day MFIV by performing a linear interpolation between the two risk-

neutral expectations of variance.

Risk Premium Adjusted MFIV The central theme of this study is the role

of volatility risk premium for volatility forecasting. We introduce a non-parametric

adjustment inspired by previous studies on variance risk premia. Specifically, Bollerslev

et al. (2009) estimate the market price of variance risk as the difference between the

risk-neutral and physical expectations of variance:

V RP 2
t,T = E

Q
t (V

2
t,T )− E

P
t (V

2
t,T ) (4)

where V RP 2
t,T refers to the variance risk premium between t and T . E

Q
t (V

2
t,T ) is the ex

ante forecast of variance under the risk-neutral measure. This is equivalent to MFIVt,T ,

defined as above. EP
t (V

2
t,T ) is the ex ante forecast of variance under the physical measure,

proxied by the ex post realized variance.
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Carr and Wu (2009) and Prokopczuk and Wese Simen (2012) show that variance

risk premia are significantly different from zero and, in absolute terms, increasing in

variance. This level dependency has profound implications for our analysis. To see why,

consider a two-period setting. Suppose periods one and two are characterized by high

and moderate variance, respectively. Everything else equal, the level dependency implies

a variance risk premium of larger magnitude in period one than in period two. Using this

high market price of variance risk of period one to forecast realized variance in period

two might lead to biased forecasts. Therefore, it is preferable to obtain relative estimates

of variance risk premia.

We obtain these relative variance risk premia by computing the ratio (instead of the

difference as in Equation (4)) of the expected variance under the risk-neutral measure

over the expectation of variance under the physical measure as follows:

RV RP 2
t,T =

E
Q
t (V

2
t,T )

EP
t (V

2
t,T )

(5)

where RVRP 2
t,T refers to the relative variance risk premium between t and T . Carr and

Wu (2009) and Trolle and Schwartz (2010) report that, contrary to the variance risk

premia defined as in Equation (4), relative variance risk premia are independent of the

level of variance. Building on these insights, we estimate the average relative variance

risk premium over a period of just under one year:

ARV RP 2
t =

1

252− τ

t−τ
∑

j=t−252

RVRP 2
j,j+τ (6)

=
1

252− τ

t−τ
∑

j=t−252

MFIV 2
j,j+τ

RV 2
j,j+τ

(7)

12



where ARV RP 2
t is the average relative variance risk premium between t− 252 and t− τ .

τ denotes the forecasting horizon. We refer to the square root of relative variance risk

premium as the volatility risk premium.12

We obtain the risk-premium adjusted MFIV for the period t to T (RMFIVt,T ) by

re-arranging Equation (5):13,14

RMFIVt,T =
√

E
P
t (V

2
t,T ) =

MFIVt,T

ARV RPt

. (8)

4 Empirical Evidence

In this section, we evaluate the information content and forecasting accuracy of competing

forecasts. The former basically answers the question whether there is some useful

information in the individual volatility forecasts. The latter addresses the question as to

which of the forecasts is the most accurate and might be considered more relevant for

practical application.

12Clearly, the length of the estimation window requires some trade-off. In particular, it must be large
enough so that the volatility risk premium can be estimated with sufficient precision. Yet, it should
not be too long in order to reflect recent market conditions. We view a period of just under one year
(approx. 232 days) as a good trade-off. We experimented with an 18-month estimation window and
obtained qualitatively similar results. These are available upon request.

13To obtain ex post estimates of RVRP, we assume that the ex ante forecast of realized volatility is
unbiased. In other words, the ex post realized volatility equals the ex ante forecast of volatility made
under the same probability measure. Similar assumptions are made in Carr and Wu (2009), for example.

14DeMiguel et al. (2012) employ a similar adjustment when studying the role of option implied
moments in an asset allocation context.
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4.1. Information Content

As is common in the forecasting literature, we estimate Mincer-Zarnowitz regressions.

Specifically, we regress monthly realized volatility on our volatility forecasts as follows:15

RVt,T = α+ βft,T + ǫt (9)

where RVt,T refers to the realized volatility from t to T and ft,T is either one volatility

forecast or a vector containing several competing forecasts for volatility until T at time

t. ǫt denotes the error term. These regressions are suitable for testing the unbiasedness

and efficiency of individual forecasts. Briefly, we test for unbiasedness in univariate

regressions (i.e. ft,T contains only one particular forecast) by imposing the restriction

that α and β are jointly equal to zero and one, respectively. Testing for efficiency consists

in ascertaining whether alternative models contain information beyond that of a baseline

model. To do so, we constrain the slope of alternative forecasts to zero in encompassing

regressions. Tables I–III present the results for the three markets considered.

Univariate Regressions If a volatility forecast contains some information for future

volatility, then in univariate regressions, its slope coefficients must be statistically

distinguishable from zero and, ideally close to one. The explanatory power should also

be sizable.

The upper parts of Tables I–III present the results of univariate regressions for

each market. We can observe statistically significant slope estimates in every instance,

implying that each model’s forecast is informative about next month’s volatility.

15Notice that some researchers prefer to estimate the model in logs. Our decision to estimate the
model in level terms rather than in logs is motivated by Poteshman (2000), who notes that the biasedness
of implied volatility might be due to the logarithmic transformation which introduces an upward bias.
Repeating our analysis using log volatility does not affect our main findings.
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However, the coefficients of the time-series models are far away from one. Considering

option implied forecasts, we can see that, as we move from ATM IV to RMFIV, the

slope estimates rise steadily. For the heating oil and natural gas markets, this steady

increase brings the coefficients much closer to one. Conversely, we notice a decrease in

the magnitude of the intercepts in the crude oil and heating oil futures markets. These

observations indicate that RMFIV is less biased than MFIV, which in turn is less biased

than ATM IV.

These findings motivate us to investigate the unbiasedness of individual forecasts

more formally. In doing so, we report in the column headed “Wald” the F-statistic

testing the null hypothesis of α and β being jointly equal to zero and one, respectively.

The corresponding p-values are given in square brackets. Our results indicate a rejection

of the null hypothesis at 5% in every instance, suggesting that all forecasts are biased

predictors of future volatility. Nonetheless, it is instructive to examine the values of

the test statistic more closely. The near monotonic decrease in the test statistic across

all markets is noteworthy. Overall, RMFIV yields the smallest test statistic in every

market. In the case of crude oil, the null hypothesis of unbiasedness cannot any longer

be rejected at the 2% level. Taken together, these findings conform to the theoretical

argument that the market price of volatility risk contributes to the biasedness of option

implied forecasts.

Encompassing Regressions We now turn to the issue of relative informational

efficiency, which we address through encompassing regressions, i.e. we run regression (9)

with ft,T containing more than one volatility forecast. If one forecast is more informative

than another, then it will (i) exhibit a highly significant slope estimate in encompassing

regressions and/or (ii) significantly improve the explanatory power of the restricted

15



model.

The lower parts of Tables I–III present the results of these encompassing regressions.

We begin by assessing the relative merits of option implied forecasts. One can observe

that MFIV and RMFIV subsume ATM IV in all markets, i.e. the coefficient of MFIV or

RMFIV is significant and that of ATM IV is not. This is evidenced by the highly robust

test statistic of the slope estimate. The only exception to this pattern is the natural

gas market. Furthermore, the adjusted R2 of MFIV and RMFIV are unaffected by the

addition of ATM IV to the baseline models. To further validate our findings, we check

the efficiency of candidate models again through Wald tests. To this end, we restrict all

slope estimates, excluding that of the model to the right, to be equal to zero. The results

suggest that the null hypothesis cannot be rejected in all markets including natural gas,

providing more evidence that MFIV and RMFIV are relatively efficient compared to

ATM IV.

We now turn to the predictive power of the models. Our intuition is simple: if a

model has high predictive power, then it should be able to explain variations in realized

volatility. In this respect, the adjusted R2 reported in Tables I–III are particularly

enlightening. They show substantial variations in explanatory power across markets.

For example, the adjusted R2 fluctuates between 0.32 and 0.62 in the crude oil market.

In contrast, we observe a smaller range, from 0.14 to 0.29, for the heating oil market.

Focusing on individual models, we see that RMFIV yields the highest explanatory

power in the crude and heating oil markets. It is also worth highlighting that MFIV

always exhibits higher explanatory power than ATM IV. We also find that time-series

models do not explain as much variation in realized volatility as MFIV and RMFIV.

Taking the crude oil market as an example, we notice that RMFIV achieves an adjusted
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R2 of 62%. In contrast, GJR leads to a fit of 32%, almost 50% smaller than the

corresponding figure for RMFIV. Augmenting RMFIV with GJR results in a negligible

increase in goodness of fit from 62% to 64%.

In summary, all models are informative about next month’s volatility. In line with

previous studies, we find that all forecasts are biased, but to different degrees. Accounting

for the volatility risk premium reduces the magnitude of the bias. We also show that

RMFIV is highly efficient: it subsumes other forecasts. Finally, MFIV dominates ATM

IV and time-series models, confirming its theoretical potential.

4.2. Forecasting Accuracy

We now turn to the question of out-of-sample forecasting accuracy, which might be

considered more important in practice. To do this, we evaluate the forecasting errors by

four commonly employed loss functions. Specifically, we use the MAE, MSE, MAPE and

MSPE. These loss functions are defined as follows:

MAE =
1

n

n
∑

t=1

|RVt,T − ft,T | (10)

MSE =
1

n

n
∑

t=1

(RVt,T − ft,T )
2 (11)

MAPE =
1

n

n
∑

t=1

∣

∣

∣

∣

RVt,T − ft,T

RVt,T

∣

∣

∣

∣

(12)

MSPE =
1

n

n
∑

t=1

(

RVt,T − ft,T

RVt,T

)2

(13)

where n and RVt,T denote the number of forecast windows and realized volatility,

respectively. ft,T is a volatility forecast obtained from one of the following models:

HIST, GJR, ATM IV, MFIV, and RMFIV. Obviously, a good model should minimize

the forecasting error.
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Table IV summarizes the forecast errors. Starting with MAE in Panel A, we observe

that option markets produce more accurate forecasts than time-series models. The only

exception being that, in the crude oil futures market, ATM IV underperforms historical

volatility by as little as 0.01%.16 Interestingly, RMFIV yields the smallest forecast errors

in each market. Similarly, MFIV provides the second-best forecast of volatility. Directly

comparing MFIV to RMFIV sheds light on the importance of our volatility risk premium

adjustment. The results indicate that accounting for the market price of volatility risk

reduces the mean absolute forecast error of MFIV by a factor as high as 17.36% in the

crude oil market.

We report our findings based on MSE in Panel B. The main findings are unchanged.

Option markets provide more accurate volatility forecasts than time-series models. The

overall ranking is broadly identical: RMFIV, MFIV, ATM IV, GJR, and HIST, in

decreasing order of accuracy. There is, however, one exception in the natural gas futures

market. RMFIV leads to pricing errors of 2.37%, which are slightly higher than the

2.36% of MFIV.17 Again, the difference between ATM IV and MFIV is noticeable,

especially in the more volatile natural gas market where, ATM IV and MFIV yield

errors equal to 3.02% and 2.36%, respectively.

So far, our analysis has been concerned with the level of forecast errors. Interestingly,

the MAE reported for the natural gas futures market are an order of magnitude higher

than those of the crude oil and heating oil futures markets. This is not too surprising

given that the natural gas market counts among the most volatile commodity markets.

Against this backdrop, it is prudent to assess competing forecasts based on relative

forecast errors. Panel C of Table IV reports forecast errors based on MAPE. Notice that

16As one might suspect, further analysis shows that this difference is not statistically significant.
17As we shall see in Table V, this difference is not statistically significant.
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the errors reported for different markets are of the same order of magnitude. Again, this

loss function leads to a ranking similar to the one emanating from Panel A. Specifically,

MFIV and RMFIV outperform ATM IV and all the time-series models. The crude oil

market represents however a notable exception: historical volatility outperforms ATM IV

and MFIV. Notwithstanding this exception, RMFIV remains the best forecast. Adjusting

for the volatility risk premium substantially reduces the errors of MFIV from 26.31%,

23.66% and 25.67% to 19.43%, 20.18%, and 21.25% in the crude oil, heating oil, and

natural gas futures markets, respectively. Finally, Panel D reports results based on

MSPE. These results are broadly similar to those obtained from MAPE. Briefly, RMFIV

dominates its competitors: its forecast errors are an order of magnitude smaller than

those of all other forecasts, including MFIV.

In order to assess these important results in greater detail, we investigate whether

the observed differences in performance are statistically significant. Tables V and VI

present the mean differences in the absolute errors (AE), the squared errors (SE), the

absolute percentage errors (APE), and the squared percentage errors (SPE) in the upper

triangular matrices. As a robustness check, we present the median differences in forecast

errors in the lower triangular matrices. We compute the differences between the forecast

errors of model [name in row ] and those of model [name in column]. For example, looking

at Panel A of Table V, we can see that on average absolute forecast errors of RMFIV

are 1.46% smaller than those of MFIV. The median figures show that the absolute

forecast errors of RMFIV are 2.23% smaller than those of MFIV. The figures in bold

indicate statistical significance at the 5% level. The mean differences are tested with the

Diebold–Mariano statistic calculated with 2 lags. The median differences are assessed

through the non-parametric Wilcoxon signed rank test.
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Several observations are in order. First, the differences in performance between time-

series models are not statistically significant. Second, with the exception of the crude oil

market, there is a statistically significant difference between MFIV and ATM IV. Third,

and most importantly, RMFIV is statistically superior to all other forecasts. This is true

for all markets and loss functions. The AE and SE of the natural gas futures market,

where no significant differences between MFIV and RMFIV are observed, are the only

exceptions to this pattern. In most cases, the improvement in forecast accuracy achieved

after adjusting for the volatility risk premium is of substantial magnitude, showing that

the results are also economically significant.

5 Robustness Checks

In this section, we study the robustness of our results. We follow a three-pronged

approach. First, we investigate the robustness of our findings using the range estimator

of realized volatility proposed by ? and refined by Yang and Zhang (2000). Second, we

expand the pool of time-series models to include EGARCH and the simple GARCH(1,1).

We also investigate the effect of alternative specifications of the return equation by adding

an ARMA component. Third, we analyze the robustness of our main results to an

alternative approach to estimate the volatility risk premium.

5.1. Alternative Estimator of Realized Volatility

Accurately measuring realized volatility has been the focus of several studies.18 In a

pioneering study, Andersen and Bollerslev (1998) discuss the effect of noisy volatility

proxies on the forecasting performance of GARCH models. The authors demonstrate,

18See Andersen et al. (2010) for an excellent survey.

20



both theoretically and empirically, the “importance of proper ex-post evaluation criteria

when assessing volatility forecasts.”

In light of these considerations, we repeat our analysis after replacing the classical

volatility estimator described in Equation (1) with the more efficient estimator of

volatility developed by ? and refined by Yang and Zhang (2000). This estimator is

given as19

RV z
t,T =

√

√

√

√

252

T

T
∑

t=1

(logOt − logCt−1)
2 +

1

2
(logHt − logLt)

2 − (2 log 2− 1) (logCt − logOt)
2

(14)

where Ot, Ht, and Lt denote the opening, the daily high, and the daily low prices of the

underlying on trading day t, respectively; Ct−1 and Ct refer to the previous and current

closing prices, respectively. This estimator can be loosely described as a high-frequency

estimator. We specifically select this estimator because, in addition to capturing the

highest and lowest intra day prices, it also contains information from overnight returns.

Tables VII–IX repeat the regression analyses. It can be readily seen that the results

do not change significantly. If anything, they are more supportive of our main finding that

RMFIV provides the best volatility forecasts. Briefly, the intercept and slope estimates

converge toward zero and one as we progress from ATM IV to RMFIV, confirming that

RMFIV is less biased than MFIV and ATM IV. In fact, the Wald test p-value of 0.35 for

the crude oil futures market indicates that the RMFIV forecasts are unbiased. Although

the hypothesis is rejected in the other two markets, we still observe a sharp decline of

the F-statistic. Taking the natural gas futures market as an example, the F-statistic falls

19Alternatively, one could employ the realized volatility estimator described in Andersen and
Bollerslev (1998) and account for overnight returns as in Jiang and Tian (2005). Unfortunately, it
requires intra day data for a 20-year period which are not available. We view the range estimator
presented in Equation (14) as a viable alternative. Its good performance has been demonstrated in
multiple studies including ?, Yang and Zhang (2000) and Shu and Zhang (2006).
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from 21.95 to 6.32. Turning to the multivariate regressions, we observe that RMFIV

subsumes all models. This result is corroborated by the Wald statistics which cannot

reject the null of efficiency. These findings are true for all markets except natural gas,

where GJR remains statistically significant.

Table X repeats the tests of forecasting accuracy, i.e. it reports forecast errors

employing the range-based estimator of volatility. Comparing these figures to those

reported in Table IV sheds light on the importance of efficient volatility estimates.

Overall, the errors based on the range estimator are smaller than those obtained using

the classical estimator. This striking difference in magnitude highlights the importance

of efficient volatility estimates. Most importantly, our major findings are broadly

unchanged. In particular, RMFIV still dominates all rival forecasts with improvements

of substantial magnitude that should be considered economically significant. We have, of

course, also evaluated the statistical significance and the results are largely unchanged,

i.e. the forecast errors of RMFIV are significantly smaller than those of MFIV. We do

not report these results to save space but they are available upon request.

5.2. Different GARCH Models

Our study may be criticized on the grounds that the GJR–GARCH is only one

representative from a large family of potential models. Hence, it is important to

analyze other GARCH-type models to ensure our results are robust. Guided by this

idea, we consider the simple GARCH(1,1) and the EGARCH model in addition to the

GJR–GARCH model. Table XI reports the results of this analysis. Panels A, B, C and

D report the MAE, MSE, MAPE and MSPE, respectively. Columns 2 through 7 relate

to the EGARCH, GJR, GARCH, ATM IV, MFIV and RMFIV models, respectively.
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We observe some differences across GARCH-type models. For example, EGARCH,

GJR and the simple GARCH yield MSPE equal to 20.36%, 15.49% and 15.29% in

the crude oil market, respectively. More importantly, the RMFIV yields the smallest

MSPE (6.37%). Overall, we find that RMFIV is superior to all other models, including

EGARCH, GJR and GARCH. This is true for the MAE, MSE, MAPE and MSPE,

lending more credence to our main finding. Tables XII and XIII also formally show that

the RMFIV is not only economically but also statistically superior to all three GARCH

specifications. This result is supported by both the Diebold–Mariano (computed with 2

lags) and the Wilcoxon signed rank tests.

One may also question the specification of the return equation in the GARCH-type

models. Since commodity prices exhibit price trends and mean reverting patterns, it

may be interesting to include an autoregressive moving average (ARMA) component in

the return equation to capture these features. We modify the return equation of all

three time-series models, i.e. EGARCH, GJR and GARCH, to include an ARMA(1,1)

component. Specifically, we analyze the ARMA–EGARCH, the ARMA–GJR and the

ARMA–GARCH model.

Table XIV summarizes our findings. We can directly compare these results to those

of Table XI, which deals with time-series models that feature a constant return. We

do not discern big differences between the baseline models with a constant return and

their extensions with an ARMA component in the return equation. Taking the MAE

of the crude oil market for example, the baseline (with a constant return) EGARCH,

GJR and GARCH models yield 10.37%, 9.52% and 9.44%, respectively. Augmenting

the return equation with an ARMA process results in roughly similar MAE 10.36%,

9.63% and 9.46% for the ARMA–EGARCH, ARMA–GJR and ARMA–GARCH models,
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respectively. More important for our analysis, RMFIV outperforms all time-series

models, indicating that our results are robust to alternative specifications of the return

process of GARCH-type models. We also report the results of the Diebold–Mariano

(computed with 2 lags) and the Wilcoxon signed rank tests in Tables XV and XVI.

These tests unequivocally show that RMFIV provides significantly better forecasts than

its competitors.

5.3. Modeling the Volatility Risk Premium

Finally, we also analyze the robustness of our key findings to the approach used to

estimate the volatility risk premium.20 Each day, we estimate the average relative

variance risk premium over a period of just under one year (see Equation (7)). We

then fit an ARMA(1,1) model to the time-series of average relative variance risk premia

observed from the beginning of our sample right until time t − τ , where τ denotes the

30-day forecasting horizon. We then use these parameter estimates to forecast the 30-day

ahead risk premium, which we use to adjust the MFIV.

Table XVII reports the forecasting errors of individual models. Panels A through

D present the MAE, MSE, MAPE and MSPE, respectively. Columns 2–6 report the

results of HIST, GJR, ATM IV, MFIV and RMFIV. Looking at Panels A through D,

we can observe that RMFIV always yields the smallest forecasting errors, confirming the

importance of the volatility risk premium for volatility forecasting.

It is worth noticing that the magnitude of the forecasting errors reported in Tables

XVII–XIX are comparable but slightly different from those shown in Tables IV–VI. The

main difference stems from the fact that we use several observations (at the beginning of

20We thank a referee for this suggestion.
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the sample) to estimate the parameters of the ARMA process. As a result, our sample

changes slightly. In our baseline analysis, we have 220, 216 and 189 data points for the

crude oil, heating oil and natural gas markets, respectively. When we explicitly model

the dynamics of the risk premium, we obtain a sample of 212, 203 and 177 observations

for the crude oil, heating oil and natural gas markets, respectively.

To further appreciate the importance of explicitly modeling the dynamics of the

volatility risk premium, we look at the differences between pairs of models. Tables XVIII

and XIX presents these results. We can see that the difference between RMFIV and

MFIV is statistically significant, indicating that explicitly modeling the volatility risk

premium improves the predictive power of implied volatility. The bottom right entry of

each panel, which reports the median of the difference between RMFIV and MFIV is

particularly revealing. We can see that the entries are always more negative in Tables

XVIII and XIX than in Tables V–VI. This suggests that explicitly modeling the dynamics

of the volatility risk premium leads to further improvements in the forecasting power of

the baseline RMFIV.

6 Conclusion

This paper analyzes the role of the volatility risk premium for volatility forecasting.

Specifically, we investigate the extent to which the biasedness of option implied volatility

forecasts might be attributable to the wedge between the risk-neutral and the physical

measures. We propose a simple model-free adjustment to account for the market price

of volatility risk. Empirically examining the effect of our adjustment, the evidence

convincingly shows that accounting for the volatility risk premium results in superior

volatility forecasting performance. We also analyze the extent to which MFIV is superior
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to ATM IV. Generally, MFIV provides the second-best volatility forecast. In particular,

it subsumes ATM IV and exhibits higher predictive power than ATM IV.

Our study can be extended in several directions. First, a natural extension would

consist in applying our adjustment to other markets. Second, our arguments could

be extended to forecasting covariance matrices. In particular, adjusting both implied

correlation and volatility by their respective risk premia might improve covariance

forecasts. Asset allocation would be a potential application. Finally, although our

study shows that the volatility risk premium attenuates the biasedness of option implied

volatility, it does not entirely eliminate such bias. Thus, further research is needed.

Exploring the role of trading frictions, as suggested by Figlewski (1997), could prove a

fruitful avenue.
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Table I: Univariate and Encompassing Forecasts for Crude Oil’s 30-Day
Realized Volatility

This table presents results from regressions of realized volatility on competing forecasts for the

crude oil futures market. The dependent variable is realized volatility, estimated as follows:

RVt,T =

√

√

√

√

252

T

T
∑

t=1

(

log
Ft,T

Ft−1,T

)2

where RVt,T refers to realized volatility between t and T . Ft,T denotes the price at time t of

the futures contract maturing at T . α and βHIST denote the intercept and slope coefficients of

historical volatility. Likewise, βGJR, βATM , βMFIV , and βRMFIV refer to the slope coefficients of

GJR, ATM IV, MFIV, and RMFIV, respectively. We report Newey–West t-statistics in brackets,

computed with two lags. Adj R2 reports the adjusted R2 of the corresponding regression. Column

“Wald” reports the Wald test statistic and associated p-value in square brackets. In univariate

regressions, we restrict the intercept and slope estimates to be equal to zero and one, respectively.

In multivariate regressions, we restrict the slope estimate of the model to the left to be equal to zero.

DW and Nobs report the Durbin–Watson test statistic and the number of observations, respectively.

Figures in bold indicate statistical significance at 5%.

α βHIST βGJR βATM βMFIV βRMFIV Adj R2 Wald DW Nobs

HIST 0.11 0.69 0.47 19.18 2.33 220
(3.85) (7.52) [0.00]

GJR 0.17 0.48 0.32 64.25 1.81 220
(3.28) (3.19) [0.00]

ATM IV 0.00 0.92 0.44 4.68 1.58 220
(0.08) (7.84) [0.01]

MFIV -0.06 1.07 0.57 11.27 1.75 220
(-1.41) (8.03) [0.00]

RMFIV -0.01 1.08 0.62 3.83 2.05 220
(-0.28) (9.67) [0.02]

HIST + ATM IV 0.01 0.48 0.45 0.53 44.78 2.30 220
(0.46) (5.89) (4.53) [0.00]

HIST + MFIV -0.04 0.20 0.83 0.58 6.69 2.04 220
(-1.15) (2.12) (6.37) [0.01]

HIST + RMFIV -0.01 -0.06 1.15 0.62 0.39 1.99 220
(-0.35) (-0.39) (4.87) [0.53]

GJR + ATM IV 0.01 0.19 0.71 0.46 12.39 1.94 220
(0.35) (1.64) (5.19) [0.00]

GJR + MFIV -0.06 -0.01 1.07 0.57 0.01 1.74 220
(-1.25) (-0.07) (5.17) [0.93]

GJR + RMFIV -0.02 -0.19 1.34 0.64 10.71 1.80 220
(-0.59) (-1.85) (5.47) [0.00]

ATM + MFIV -0.06 -0.04 1.10 0.57 0.08 1.74 220
(-1.47) (-0.16) (3.77) [0.77]

ATM + RMFIV -0.01 0.02 1.06 0.62 0.05 2.06 220
(-0.40) (0.11) (4.50) [0.83]
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Table II: Univariate and Encompassing Forecasts for Heating Oil’s 30-Day
Realized Volatility

This table presents results from regressions of realized volatility on competing forecasts for the

heating oil oil futures market. The dependent variable is realized volatility, estimated as follows:

RVt,T =

√

√

√

√

252

T

T
∑

t=1

(

log
Ft,T

Ft−1,T

)2

where RVt,T refers to realized volatility between t and T . Ft,T denotes the price at time t of

the futures contract maturing at T . α and βHIST denote the intercept and slope coefficients of

historical volatility. Likewise, βGJR, βATM , βMFIV , and βRMFIV refer to the slope coefficients of

GJR, ATM IV, MFIV, and RMFIV, respectively. We report Newey–West t-statistics in brackets,

computed with two lags. Adj R2 reports the adjusted R2 of the corresponding regression. Column

“Wald” reports the Wald test statistic and associated p-value in square brackets. In univariate

regressions, we restrict the intercept and slope estimates to be equal to zero and one, respectively.

In multivariate regressions, we restrict the slope estimate of the model to the left to be equal to zero.

DW and Nobs report the Durbin–Watson test statistic and the number of observations, respectively.

Figures in bold indicate statistical significance at 5%.

α βHIST βGJR βATM βMFIV βRMFIV Adj R2 Wald DW Nobs

HIST 0.20 0.40 0.15 44.19 1.93 216
(7.11) (4.82) [0.00]

GJR 0.19 0.42 0.14 35.42 1.86 216
(5.95) (5.04) [0.00]

ATM IV 0.15 0.54 0.18 17.87 1.62 216
(5.64) (7.92) [0.00]

MFIV 0.11 0.66 0.23 9.32 1.71 216
(4.13) (9.23) [0.00]

RMFIV 0.08 0.80 0.29 6.04 2.02 216
(3.58) (9.90) [0.00]

HIST + ATM IV 0.14 0.37 0.21 0.20 6.48 1.91 216
(5.31) (3.29) (2.23) [0.01]

HIST + MFIV 0.11 0.11 0.55 0.23 1.72 1.86 216
(4.15) (1.37) (5.45) [0.19]

HIST + RMFIV 0.08 -0.11 0.93 0.29 1.23 1.93 216
(3.17) (-1.83) (8.11) [0.27]

GJR + ATM IV 0.13 0.17 0.41 0.19 3.51 1.82 216
(4.97) (2.31) (4.37) [0.06]

GJR + MFIV 0.10 0.04 0.63 0.23 0.12 1.75 216
(4.08) (0.55) (7.42) [0.73]

GJR + RMFIV 0.09 -0.27 1.10 0.30 5.65 1.84 216
(3.22) (-2.45) (5.94) [0.02]

ATM + MFIV 0.10 -0.25 0.92 0.23 1.39 1.72 216
(4.00) (-0.74) (2.50) [0.24]

ATM + RMFIV 0.09 -0.12 0.92 0.29 0.82 2.03 216
(3.80) (-0.48) (3.11) [0.37]
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Table III: Univariate and Encompassing Forecasts for Natural Gas’s 30-Day
Realized Volatility

This table presents results from regressions of realized volatility on competing forecasts for the

natural gas futures market. The dependent variable is realized volatility, estimated as follows:

RVt,T =

√

√

√

√

252

T

T
∑

t=1

(

log
Ft,T

Ft−1,T

)2

where RVt,T refers to realized volatility between t and T . Ft,T denotes the price at time t of

the futures contract maturing at T . α and βHIST denote the intercept and slope coefficients of

historical volatility. Likewise, βGJR, βATM , βMFIV , and βRMFIV refer to the slope coefficients of

GJR, ATM IV, MFIV, and RMFIV, respectively. We report Newey–West t-statistics in brackets,

computed with two lags. Adj R2 reports the adjusted R2 of the corresponding regression. Column

“Wald” reports the Wald test statistic and associated p-value in square brackets. In univariate

regressions, we restrict the intercept and slope estimates to be equal to zero and one, respectively.

In multivariate regressions, we restrict the slope estimate of the model to the left to be equal to zero.

DW and Nobs report the Durbin–Watson test statistic and the number of observations, respectively.

Figures in bold indicate statistical significance at 5%.

α βHIST βGJR βATM βMFIV βRMFIV Adj R2 Wald DW Nobs

HIST 0.22 0.57 0.32 26.07 1.88 189
(7.24) (8.56) [0.00]

GJR 0.16 0.60 0.38 36.76 1.90 189
(5.35) (10.02) [0.00]

ATM IV 0.15 0.65 0.37 20.54 1.46 189
(3.80) (8.46) [0.00]

MFIV 0.08 0.78 0.48 15.02 1.58 189
(2.38) (11.96) [0.00]

RMFIV 0.10 0.85 0.44 7.69 1.58 189
(3.20) (10.95) [0.00]

HIST + ATM IV 0.12 0.45 0.29 0.42 14.93 1.78 189
(3.28) (5.40) (3.19) [0.00]

HIST + MFIV 0.08 0.07 0.72 0.48 0.69 1.67 189
(2.36) (0.57) (6.56) [0.41]

HIST + RMFIV 0.10 0.08 0.77 0.44 0.77 1.66 189
(3.23) (0.64) (5.52) [0.38]

GJR + ATM IV 0.09 0.37 0.38 0.45 26.41 1.84 189
(2.48) (3.43) (3.53) [0.00]

GJR + MFIV 0.06 0.20 0.61 0.50 6.32 1.81 189
(1.87) (1.16) (3.70) [0.01]

GJR + RMFIV 0.09 0.22 0.62 0.46 6.65 1.79 189
(2.74) (1.23) (2.90) [0.01]

ATM + MFIV 0.08 0.01 0.77 0.48 0.01 1.58 189
(2.29) (0.11) (9.08) [0.94]

ATM + RMFIV 0.09 0.19 0.66 0.45 3.37 1.58 189
(2.66) (2.14) (5.99) [0.07]
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Table IV: Forecasting errors: 30-Day Horizon

This table reports the out-of-sample forecast errors of each volatility model for realized volatility

over a horizon of 30 days. Realized volatility is defined as:

RVt,T =

√

√

√

√

252

T

T
∑

t=1

(

log
Ft,T

Ft−1,T

)2

where RVt,T refers to realized volatility between t and T . Ft,T denotes the price at time t of the

futures contract maturing at T . Panels A and B report the mean absolute errors (MAE) and mean

squared errors (MSE) of individual models, respectively. Panels C and D report the mean absolute

percentage errors (MAPE) and mean squared percentage errors (MSPE), respectively.

Panel A: Mean Absolute Errors (MAE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 8.84% 9.52% 8.85% 8.41% 6.95%
Heating Oil 9.92% 9.67% 8.78% 8.11% 7.41%
Natural Gas 14.02% 14.50% 13.11% 11.73% 10.78%

Panel B: Mean Squared Errors (MSE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 1.90% 3.32% 1.81% 1.47% 1.20%
Heating Oil 2.98% 2.86% 2.38% 2.08% 1.87%
Natural Gas 3.44% 3.41% 3.02% 2.36% 2.37%

Panel C: Mean Absolute Percentage Errors (MAPE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 24.36% 27.30% 26.62% 26.31% 19.43%
Heating Oil 28.74% 29.78% 25.36% 23.66% 20.18%
Natural Gas 29.05% 31.88% 28.07% 25.67% 21.25%

Panel D: Mean Squared Percentage Errors (MSPE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 9.68% 15.49% 12.15% 11.75% 6.37%
Heating Oil 17.07% 18.91% 11.22% 9.85% 6.92%
Natural Gas 14.52% 17.43% 13.19% 11.32% 7.37%
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Table V: Differences of Forecasting Errors: AE and SE

This table reports relative differences in the performance of competing models. The upper triangular

matrices report the mean difference of absolute (AE) and squared (SE) forecasting errors,

respectively. Similarly, the lower triangular matrices report the median difference of forecasting

errors. We compute the difference between the errors of model [ name in row] and those of model

[ name in column]. For example, the first row of Panel A presents the average difference in the AE

of HIST vis-à-vis GJR, ATM IV, MFIV, and RMFIV, respectively. The numbers in bold indicate

statistically significant differences at 5% as indicated by the Diebold–Mariano (computed with 2

lags) and the Wilcoxon signed rank tests for the upper and lower triangular matrices, respectively.

Panel A: Crude Oil (AE)

HIST GJR ATM IV MFIV RMFIV
HIST -0.69% -0.01% 0.42% 1.89%
GJR -0.02% 0.68% 1.11% 2.57%
ATM IV 0.21% -0.52% 0.43% 1.90%
MFIV 0.53% -0.40% 0.07% 1.46%
RMFIV -1.03% -1.28% -1.98% -2.23%

Panel B: Crude Oil (SE)

HIST GJR ATM IV MFIV RMFIV
HIST -1.41% 0.10% 0.44% 0.70%
GJR 0.00% 1.51% 1.85% 2.11%
ATM IV 0.02% -0.02% 0.34% 0.60%
MFIV 0.04% -0.03% 0.00% 0.26%
RMFIV -0.07% -0.08% -0.15% -0.18%

Panel C: Heating Oil (AE)

HIST GJR ATM IV MFIV RMFIV
HIST 0.25% 1.14% 1.81% 2.51%
GJR -0.37% 0.89% 1.56% 2.25%
ATM IV -0.59% -0.53% 0.67% 1.36%
MFIV -0.71% -0.55% -0.29% 0.69%
RMFIV -1.71% -1.27% -1.02% -0.56%

Panel D: Heating Oil (SE)

HIST GJR ATM IV MFIV RMFIV
HIST 0.12% 0.60% 0.90% 1.10%
GJR -0.03% 0.48% 0.78% 0.99%
ATM IV -0.03% -0.03% 0.30% 0.51%
MFIV -0.06% -0.03% -0.02% 0.21%
RMFIV -0.13% -0.08% -0.07% -0.04%

Panel E: Natural Gas (AE)

HIST GJR ATM IV MFIV RMFIV
HIST -0.49% 0.91% 2.28% 3.23%
GJR 0.31% 1.39% 2.77% 3.72%
ATM IV -0.01% -1.49% 1.38% 2.33%
MFIV -1.73% -2.55% -0.75% 0.95%
RMFIV -2.74% -3.02% -2.91% -1.99%

Panel F: Natural Gas (SE)

HIST GJR ATM IV MFIV RMFIV
HIST 0.03% 0.42% 1.08% 1.07%
GJR 0.04% 0.39% 1.04% 1.04%
ATM IV 0.00% -0.18% 0.65% 0.65%
MFIV -0.23% -0.35% -0.07% 0.00%
RMFIV -0.39% -0.37% -0.40% -0.26%

35



Table VI: Differences of Forecasting Errors: APE and SPE

This table reports relative differences in the performance of competing models. The upper

triangular matrices report the mean difference of absolute percentage (APE) and squared percentage

(SPE) forecasting errors, respectively. Similarly, the lower triangular matrices report the median

difference of forecasting errors. We compute the difference between the errors of model [ name

in row] and those of model [ name in column]. For example, the first row of Panel A presents

the average difference in the APE of HIST vis-à-vis GJR, ATM IV, MFIV, and RMFIV,

respectively. The numbers in bold indicate statistically significant differences at 5% as indicated

by the Diebold–Mariano (computed with 2 lags) and the Wilcoxon signed rank tests for the upper

and lower triangular matrices, respectively.

Panel A: Crude Oil (APE)

HIST GJR ATM IV MFIV RMFIV
HIST -2.94% -2.26% -1.95% 4.93%
GJR -0.10% 0.68% 0.99% 7.87%
ATM IV 0.63% -2.14% 0.31% 7.19%
MFIV 2.05% -1.27% 0.17% 6.88%
RMFIV -3.14% -4.08% -6.62% -7.81%

Panel B: Crude Oil (SPE)

HIST GJR ATM IV MFIV RMFIV
HIST -5.82% -2.47% -2.07% 3.31%
GJR -0.02% 3.34% 3.75% 9.12%
ATM IV 0.20% -0.38% 0.41% 5.78%
MFIV 0.52% -0.33% 0.03% 5.38%
RMFIV -0.71% -0.99% -1.73% -2.21%

Panel C: Heating Oil (APE)

HIST GJR ATM IV MFIV RMFIV
HIST -1.04% 3.38% 5.07% 8.55%
GJR -1.26% 4.42% 6.12% 9.59%
ATM IV -1.73% -1.59% 1.70% 5.18%
MFIV -2.37% -1.74% -0.96% 3.48%
RMFIV -5.14% -4.03% -3.83% -1.99%

Panel D: Heating Oil (SPE)

HIST GJR ATM IV MFIV RMFIV
HIST -1.83% 5.85% 7.22% 10.16%
GJR -0.20% 7.69% 9.05% 11.99%
ATM IV -0.27% -0.27% 1.37% 4.30%
MFIV -0.71% -0.34% -0.23% 2.94%
RMFIV -1.38% -1.03% -0.97% -0.45%

Panel E: Natural Gas (APE)

HIST GJR ATM IV MFIV RMFIV
HIST -2.84% 0.98% 3.38% 7.80%
GJR 0.69% 3.81% 6.21% 10.63%
ATM IV -0.04% -3.88% 2.40% 6.82%
MFIV -3.74% -5.96% -1.88% 4.42%
RMFIV -6.05% -6.54% -6.31% -4.93%

Panel F: Natural Gas (SPE)

HIST GJR ATM IV MFIV RMFIV
HIST -2.92% 1.32% 3.20% 7.15%
GJR 0.16% 4.24% 6.12% 10.06%
ATM IV -0.01% -1.33% 1.88% 5.82%
MFIV -1.06% -1.85% -0.43% 3.95%
RMFIV -2.11% -1.48% -1.63% -1.25%
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Table VII: Univariate and Encompassing Forecasts for Crude Oil’s 30-Day
Realized Volatility (Range Estimator)

This table presents results from regressions of realized volatility on competing forecasts for the

crude oil market. The dependent variable is realized volatility, estimated as follows:

RV z
t,T =

√

√

√

√

252

T

T
∑

t=1

(logOt − logCt−1)
2
+

1

2
(logHt − logLt)

2
− (2 log 2− 1) (logCt − logOt)

2

Where Ot, Ht, and Lt denote the opening, intra day high, and low prices of the underlying

on trading day t, respectively. Ct−1 and Ct refer to the previous and current closing prices,

respectively. α and βHIST denote the intercept and slope coefficients of historical volatility.

Likewise, βGJR, βATM , βMFIV , and βRMFIV refer to the slope coefficients of GJR, ATM IV,

MFIV, and RMFIV, respectively. We report Newey–West t-statistics computed with 2 lags in

brackets. Adj R2 reports the adjusted R2 of the corresponding regression. Column “Wald” reports

the Wald test statistic and associated p-value in square brackets. In univariate regressions, we

restrict the intercept and slope estimates to be equal to zero and one, respectively. In multivariate

regressions, we restrict the slope estimate of the model to the left to be equal to zero. DW and Nobs

report the Durbin–Watson test statistic and the number of observations, respectively. Figures in

bold indicate statistical significance at 5%.

α βHIST βGJR βATM βMFIV βRMFIV Adj R2 Wald DW Nobs

HIST 0.09 0.75 0.57 16.77 2.22 220
(3.21) (8.53) [0.00]

GJR 0.18 0.44 0.36 100.53 1.66 220
(3.63) (3.04) [0.00]

ATM IV 0.04 0.81 0.44 10.27 1.54 220
(1.39) (8.23) [0.00]

MFIV -0.02 0.96 0.60 16.03 1.71 220
(-0.63) (8.66) [0.00]

RMFIV 0.02 0.97 0.64 1.04 1.93 220
(0.70) (10.32) [0.35]

HIST + ATM IV 0.03 0.31 0.57 0.60 89.77 2.29 220
(1.34) (4.12) (5.55) [0.00]

HIST + MFIV 0.00 0.34 0.60 0.63 17.65 2.07 220
(0.01) (2.48) (3.80) [0.00]

HIST + RMFIV 0.02 0.18 0.77 0.64 3.59 2.06 220
(0.89) (0.91) (3.22) [0.06]

GJR + ATM IV 0.05 0.21 0.58 0.48 19.31 1.90 220
(1.83) (1.57) (4.25) [0.00]

GJR + MFIV -0.02 0.02 0.94 0.60 0.15 1.74 220
(-0.50) (0.20) (4.95) [0.70]

GJR + RMFIV 0.01 -0.09 1.09 0.64 3.30 1.80 220
(0.36) (-1.08) (5.80) [0.07]

ATM + MFIV -0.02 -0.14 1.09 0.60 1.52 1.69 220
(-0.57) (-0.66) (4.19) [0.22]

ATM + RMFIV 0.02 -0.06 1.01 0.64 0.38 1.91 220
(1.00) (-0.38) (5.36) [0.54]
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Table VIII: Univariate and Encompassing Forecasts for Heating Oil’s 30-Day
Realized Volatility (Range Estimator)

This table presents results from regressions of realized volatility on competing forecasts for the

heating oil market. The dependent variable is realized volatility, estimated as follows:

RV z
t,T =

√

√

√

√

252

T

T
∑

t=1

(logOt − logCt−1)
2
+

1

2
(logHt − logLt)

2
− (2 log 2− 1) (logCt − logOt)

2

Where Ot, Ht, and Lt denote the opening, intra day high, and low prices of the underlying

on trading day t, respectively. Ct−1 and Ct refer to the previous and current closing prices,

respectively. α and βHIST denote the intercept and slope coefficients of historical volatility.

Likewise, βGJR, βATM , βMFIV , and βRMFIV refer to the slope coefficients of GJR, ATM IV,

MFIV, and RMFIV, respectively. We report Newey–West t-statistics computed with 2 lags in

brackets. Adj R2 reports the adjusted R2 of the corresponding regression. Column “Wald” reports

the Wald test statistic and associated p-value in square brackets. In univariate regressions, we

restrict the intercept and slope estimates to be equal to zero and one, respectively. In multivariate

regressions, we restrict the slope estimate of the model to the left to be equal to zero. DW and Nobs

report the Durbin–Watson test statistic and the number of observations, respectively. Figures in

bold indicate statistical significance at 5%.

α βHIST βGJR βATM βMFIV βRMFIV Adj R2 Wald DW Nobs

HIST 0.15 0.55 0.28 28.58 2.03 216
(4.35) (5.09) [0.00]

GJR 0.17 0.45 0.21 45.34 1.81 216
(5.29) (5.02) [0.00]

ATM IV 0.16 0.53 0.23 26.14 1.47 216
(5.99) (7.81) [0.00]

MFIV 0.10 0.67 0.32 12.67 1.59 216
(4.62) (10.78) [0.00]

RMFIV 0.09 0.76 0.39 8.60 1.96 216
(4.86) (12.99) [0.00]

HIST + ATM IV 0.12 0.25 0.38 0.30 23.12 1.99 216
(4.64) (2.26) (3.00) [0.00]

HIST + MFIV 0.09 0.25 0.46 0.34 8.54 1.93 216
(4.45) (2.34) (4.26) [0.00]

HIST + RMFIV 0.09 0.02 0.74 0.39 0.04 1.98 216
(4.89) (0.19) (6.08) [0.84]

GJR + ATM IV 0.13 0.25 0.34 0.26 10.31 1.79 216
(5.01) (2.85) (3.40) [0.00]

GJR + MFIV 0.10 0.09 0.59 0.32 1.33 1.71 216
(4.47) (1.94) (7.46) [0.25]

GJR + RMFIV 0.09 -0.13 0.89 0.39 2.03 1.85 216
(4.80) (-1.41) (7.33) [0.16]

ATM + MFIV 0.10 -0.42 1.10 0.33 5.85 1.63 216
(4.40) (-1.30) (3.20) [0.02]

ATM + RMFIV 0.10 -0.17 0.92 0.39 2.51 1.98 216
(4.49) (-0.91) (4.75) [0.11]
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Table IX: Univariate and Encompassing Forecasts for Natural Gas’s 30-Day
Realized Volatility (Range Estimator)

This table presents results from regressions of realized volatility on competing forecasts for the

natural gas market. The dependent variable is realized volatility, estimated as follows:

RV z
t,T =

√

√

√

√
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T

T
∑
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(logOt − logCt−1)
2
+

1

2
(logHt − logLt)

2
− (2 log 2− 1) (logCt − logOt)

2

Where Ot, Ht, and Lt denote the opening, intra day high, and low prices of the underlying

on trading day t, respectively. Ct−1 and Ct refer to the previous and current closing prices,

respectively. α and βHIST denote the intercept and slope coefficients of historical volatility.

Likewise, βGJR, βATM , βMFIV , and βRMFIV refer to the slope coefficients of GJR, ATM IV,

MFIV, and RMFIV, respectively. We report Newey–West t-statistics computed with 2 lags in

brackets. Adj R2 reports the adjusted R2 of the corresponding regression. Column “Wald” reports

the Wald test statistic and associated p-value in square brackets. In univariate regressions, we

restrict the intercept and slope estimates to be equal to zero and one, respectively. In multivariate

regressions, we restrict the slope estimate of the model to the left to be equal to zero. DW and Nobs

report the Durbin–Watson test statistic and the number of observations, respectively. Figures in

bold indicate statistical significance at 5%.

α βHIST βGJR βATM βMFIV βRMFIV Adj R2 Wald DW Nobs

HIST 0.22 0.57 0.33 26.49 1.84 189
(6.17) (7.46) [0.00]

GJR 0.17 0.60 0.46 49.90 1.84 189
(6.08) (11.30) [0.00]

ATM IV 0.15 0.66 0.46 27.47 1.43 189
(4.44) (9.73) [0.00]

MFIV 0.10 0.75 0.55 21.95 1.62 189
(3.61) (14.24) [0.00]

RMFIV 0.10 0.83 0.52 6.32 1.67 189
(3.94) (14.89) [0.00]

HIST + ATM IV 0.11 0.50 0.24 0.49 13.13 1.70 189
(3.64) (6.16) (2.56) [0.00]

HIST + MFIV 0.09 0.02 0.74 0.55 0.05 1.65 189
(3.29) (0.14) (7.60) [0.82]

HIST + RMFIV 0.10 0.01 0.82 0.52 0.02 1.68 189
(3.74) (0.10) (6.86) [0.88]

GJR + ATM IV 0.09 0.36 0.39 0.55 38.89 1.79 189
(2.95) (3.66) (4.08) [0.00]

GJR + MFIV 0.08 0.24 0.54 0.58 13.79 1.87 189
(2.83) (1.57) (3.84) [0.00]

GJR + RMFIV 0.08 0.26 0.57 0.55 14.22 1.88 189
(3.35) (1.57) (3.19) [0.00]

ATM + MFIV 0.09 0.12 0.64 0.55 1.55 1.59 189
(3.35) (1.36) (7.19) [0.22]

ATM + RMFIV 0.09 0.21 0.62 0.53 4.95 1.61 189
(3.46) (2.21) (6.20) [0.03]

39



Table X: Forecast errors: 30-Day Horizon (Range Estimator)

This table reports the out-of-sample forecast errors of each volatility model for realized volatility

over a horizon of 30 days. We estimate realized volatility using the estimator proposed by ? and

refined by Yang and Zhang (2000):

RV z
t,T =

√

√

√

√
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T

T
∑
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2
+
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(logHt − logLt)

2
− (2 log 2− 1) (logCt − logOt)

2

Where Ot, Ht, and Lt denote the opening, intra day high, and low prices of the underlying

on trading day t, respectively. Ct−1 and Ct refer to the previous and current closing prices,

respectively. Panels A and B report the mean absolute errors (MAE) and mean squared errors

(MSE) of individual models, respectively. Panels C and D report the mean absolute percentage

errors (MAPE) and mean squared percentage errors (MSPE), respectively.

Panel A: Mean Absolute Errors (MAE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 6.71% 8.14% 7.90% 7.29% 5.78%
Heating Oil 7.12% 8.02% 7.76% 6.89% 5.99%
Natural Gas 11.58% 12.39% 11.22% 10.11% 8.64%

Panel B: Mean Squared Errors (MSE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 1.17% 2.92% 1.45% 1.08% 0.86%
Heating Oil 1.72% 2.11% 1.80% 1.43% 1.24%
Natural Gas 2.76% 2.66% 2.26% 1.80% 1.65%

Panel C: Mean Absolute Percentage Errors (MAPE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 18.18% 22.78% 23.07% 21.89% 15.76%
Heating Oil 19.72% 23.12% 21.44% 19.24% 15.79%
Natural Gas 22.99% 25.48% 22.77% 20.46% 16.41%

Panel D: Mean Squared Percentage Errors (MSPE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 5.26% 12.10% 8.86% 7.61% 4.03%
Heating Oil 9.27% 11.69% 7.86% 6.01% 4.36%
Natural Gas 10.84% 10.70% 8.10% 6.41% 4.43%
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Table XI: Forecasting Errors: 30-Day Horizon (More GARCH Models)

This table reports the out-of-sample forecast errors of each volatility model for realized volatility

over a horizon of 30 days. Realized volatility is defined as:

RVt,T =

√

√

√

√

252

T

T
∑
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(

log
Ft,T

Ft−1,T

)2

where RVt,T refers to realized volatility between t and T . Ft,T denotes the price at time t of the

futures contract maturing at T . Panels A and B report the mean absolute errors (MAE) and mean

squared errors (MSE) of individual models, respectively. Panels C and D report the mean absolute

percentage errors (MAPE) and mean squared percentage errors (MSPE), respectively.

Panel A: Mean Absolute Errors (MAE)

EGARCH GJR GARCH ATM IV MFIV RMFIV

Crude Oil 10.37% 9.52% 9.44% 8.85% 8.41% 6.95%
Heating Oil 8.76% 9.67% 9.72% 8.78% 8.11% 7.41%
Natural Gas 12.42% 14.50% 14.39% 13.11% 11.73% 10.78%

Panel B: Mean Squared Errors (MSE)

EGARCH GJR GARCH ATM IV MFIV RMFIV

Crude Oil 3.93% 3.32% 3.19% 1.81% 1.47% 1.20%
Heating Oil 2.22% 2.86% 2.92% 2.38% 2.08% 1.87%
Natural Gas 2.59% 3.41% 3.39% 3.02% 2.36% 2.37%

Panel C: Mean Absolute Percentage Errors (MAPE)

EGARCH GJR GARCH ATM IV MFIV RMFIV

Crude Oil 31.49% 27.30% 27.13% 26.62% 26.31% 19.43%
Heating Oil 27.42% 29.78% 29.92% 25.36% 23.66% 20.18%
Natural Gas 27.43% 31.88% 31.92% 28.07% 25.67% 21.25%

Panel D: Mean Squared Percentage Errors (MSPE)

EGARCH GJR GARCH ATM IV MFIV RMFIV

Crude Oil 20.36% 15.49% 15.29% 12.15% 11.75% 6.37%
Heating Oil 14.16% 18.91% 19.28% 11.22% 9.85% 6.92%
Natural Gas 12.51% 17.43% 17.62% 13.19% 11.32% 7.37%
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Table XII: Differences of Forecasting Errors: AE and SE (More GARCH Models)

This table reports relative differences in the performance of competing models. The upper triangular

matrices report the mean difference of absolute (AE) and squared (SE) forecasting errors,

respectively. Similarly, the lower triangular matrices report the median difference of forecasting

errors. We compute the difference between the errors of model [ name in row] and those of model

[ name in column]. For example, the first row of Panel A presents the average difference in the AE

of HIST vis-à-vis GJR, ATM IV, MFIV, and RMFIV, respectively. The numbers in bold indicate

statistically significant differences at 5% as indicated by the Diebold–Mariano (computed with 2

lags) and the Wilcoxon signed rank tests for the upper and lower triangular matrices, respectively.

Panel A: Crude Oil (AE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH 0.85% 0.93% 1.52% 1.96% 3.42%
GJR -1.28% 0.08% 0.68% 1.11% 2.57%
GARCH -1.03% -0.02% 0.59% 1.03% 2.49%
ATM IV -0.93% -0.52% -0.28% 0.43% 1.90%
MFIV -1.11% -0.40% -0.46% 0.07% 1.46%
RMFIV -1.98% -1.28% -1.23% -1.98% -2.23%

Panel B: Crude Oil (SE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH 0.61% 0.74% 2.12% 2.46% 2.72%
GJR -0.08% 0.13% 1.51% 1.85% 2.11%
GARCH -0.09% 0.00% 1.38% 1.72% 1.98%
ATM -0.06% -0.02% -0.02% 0.34% 0.60%
MFIV -0.11% -0.03% -0.04% 0.00% 0.26%
RMFIV -0.22% -0.08% -0.07% -0.15% -0.18%

Panel C: Heating Oil (AE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH -0.90% -0.95% -0.02% 0.66% 1.35%
GJR 0.18% -0.05% 0.89% 1.56% 2.25%
GARCH 0.15% 0.01% 0.94% 1.61% 2.30%
ATM IV -0.11% -0.53% -0.41% 0.67% 1.36%
MFIV -0.70% -0.55% -0.53% -0.29% 0.69%
RMFIV -1.09% -1.27% -1.35% -1.02% -0.56%

Panel D: Heating Oil (SE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH -0.64% -0.70% -0.16% 0.14% 0.34%
GJR 0.01% -0.06% 0.48% 0.78% 0.99%
GARCH 0.01% 0.00% 0.54% 0.84% 1.04%
ATM IV 0.00% -0.03% -0.02% 0.30% 0.51%
MFIV -0.04% -0.03% -0.03% -0.02% 0.21%
RMFIV -0.08% -0.08% -0.07% -0.07% -0.04%

Panel E: Natural Gas (AE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH -2.08% -1.97% -0.69% 0.69% 1.64%
GJR 1.07% 0.11% 1.39% 2.77% 3.72%
GARCH 0.83% -0.04% 1.28% 2.66% 3.61%
ATM IV -0.29% -1.49% -1.45% 1.38% 2.33%
MFIV -1.16% -2.55% -2.15% -0.75% 0.95%
RMFIV -1.92% -3.02% -3.15% -2.91% -1.99%

Panel F: Natural Gas (SE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH -0.82% -0.80% -0.43% 0.23% 0.22%
GJR 0.14% 0.02% 0.39% 1.04% 1.04%
GARCH 0.08% -0.01% 0.38% 1.03% 1.02%
ATM IV -0.04% -0.18% -0.20% 0.65% 0.65%
MFIV -0.14% -0.35% -0.28% -0.07% 0.00%
RMFIV -0.23% -0.37% -0.34% -0.40% -0.26%
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Table XIII: Differences of Forecasting Errors: APE and SPE (More GARCH Models)

This table reports relative differences in the performance of competing models. The upper

triangular matrices report the mean difference of absolute percentage (APE) and squared percentage

(SPE) forecasting errors, respectively. Similarly, the lower triangular matrices report the median

difference of forecasting errors. We compute the difference between the errors of model [ name

in row] and those of model [ name in column]. For example, the first row of Panel A presents

the average difference in the APE of HIST vis-à-vis GJR, ATM IV, MFIV, and RMFIV,

respectively. The numbers in bold indicate statistically significant differences at 5% as indicated

by the Diebold–Mariano (computed with 2 lags) and the Wilcoxon signed rank tests for the upper

and lower triangular matrices, respectively.

Panel A: Crude Oil (APE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH 4.19% 4.36% 4.87% 5.18% 12.06%
GJR -3.59% 0.17% 0.68% 0.99% 7.87%
GARCH -3.59% -0.07% 0.51% 0.82% 7.70%
ATM IV -2.69% -2.14% -0.99% 0.31% 7.19%
MFIV -3.24% -1.27% -1.30% 0.17% 6.88%
RMFIV -6.40% -4.08% -4.33% -6.62% -7.81%

Panel B: Crude Oil (SPE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH 4.86% 5.06% 8.21% 8.61% 13.99%
GJR -0.83% 0.20% 3.34% 3.75% 9.12%
GARCH -0.95% -0.02% 3.14% 3.55% 8.92%
ATM IV -0.68% -0.38% -0.36% 0.41% 5.78%
MFIV -0.94% -0.33% -0.35% 0.03% 5.38%
RMFIV -2.09% -0.99% -0.69% -1.73% -2.21%

Panel C: Heating Oil (APE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH -2.36% -2.50% 2.06% 3.76% 7.24%
GJR 0.50% -0.14% 4.42% 6.12% 9.59%
GARCH 0.48% 0.03% 4.56% 6.26% 9.74%
ATM IV -0.36% -1.59% -0.94% 1.70% 5.18%
MFIV -1.93% -1.74% -1.56% -0.96% 3.48%
RMFIV -3.35% -4.03% -4.20% -3.83% -1.99%

Panel D: Heating Oil (SPE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH -4.74% -5.12% 2.94% 4.31% 7.25%
GJR 0.07% -0.37% 7.69% 9.05% 11.99%
GARCH 0.06% 0.01% 8.06% 9.43% 12.36%
ATM IV -0.03% -0.27% -0.12% 1.37% 4.30%
MFIV -0.42% -0.34% -0.32% -0.23% 2.94%
RMFIV -0.77% -1.03% -0.92% -0.97% -0.45%

Panel E: Natural Gas (APE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH -4.45% -4.48% -0.64% 1.76% 6.18%
GJR 1.78% -0.03% 3.81% 6.21% 10.63%
GARCH 1.89% -0.12% 3.85% 6.24% 10.67%
ATM IV -0.85% -3.88% -3.68% 2.40% 6.82%
MFIV -1.95% -5.96% -4.58% -1.88% 4.42%
RMFIV -3.34% -6.54% -6.90% -6.31% -4.93%

Panel F: Natural Gas (SPE)

EGARCH GJR GARCH ATM IV MFIV RMFIV
EGARCH -4.92% -5.10% -0.68% 1.20% 5.14%
GJR 0.57% -0.18% 4.24% 6.12% 10.06%
GARCH 0.46% -0.05% 4.42% 6.30% 10.25%
ATM IV -0.14% -1.33% -1.26% 1.88% 5.82%
MFIV -0.60% -1.85% -1.26% -0.43% 3.95%
RMFIV -1.16% -1.48% -2.09% -1.63% -1.25%
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Table XIV: Forecasting Errors: 30-Day Horizon (ARMA-GARCH Models)

This table reports the out-of-sample forecast errors of each volatility model for realized volatility

over a horizon of 30 days. Realized volatility is defined as:

RVt,T =

√

√

√

√

252

T

T
∑

t=1

(

log
Ft,T

Ft−1,T

)2

where RVt,T refers to realized volatility between t and T . Ft,T denotes the price at time t of the

futures contract maturing at T . Panels A and B report the mean absolute errors (MAE) and mean

squared errors (MSE) of individual models, respectively. Panels C and D report the mean absolute

percentage errors (MAPE) and mean squared percentage errors (MSPE), respectively.

Panel A: Mean Absolute Errors (MAE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV

Crude Oil 10.36% 9.63% 9.46% 8.85% 8.41% 6.95%
Heating Oil 8.80% 9.71% 9.76% 8.78% 8.11% 7.41%
Natural Gas 12.56% 14.55% 14.55% 13.11% 11.73% 10.78%

Panel B: Mean Squared Errors (MSE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV

Crude Oil 3.97% 3.48% 3.30% 1.81% 1.47% 1.20%
Heating Oil 2.23% 2.88% 2.94% 2.38% 2.08% 1.87%
Natural Gas 2.68% 3.46% 3.47% 3.02% 2.36% 2.37%

Panel C: Mean Absolute Percentage Errors (MAPE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV

Crude Oil 31.46% 27.46% 27.18% 26.62% 26.31% 19.43%
Heating Oil 27.57% 29.91% 30.08% 25.36% 23.66% 20.18%
Natural Gas 27.58% 32.00% 32.24% 28.07% 25.67% 21.25%

Panel D: Mean Squared Percentage Errors (MSPE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV

Crude Oil 20.45% 15.85% 15.58% 12.15% 11.75% 6.37%
Heating Oil 14.36% 19.01% 19.40% 11.22% 9.85% 6.92%
Natural Gas 12.61% 17.44% 17.76% 13.19% 11.32% 7.37%
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Table XV: Differences of Forecasting Errors: AE and SE (ARMA-GARCH Models)

This table reports relative differences in the performance of competing models. The upper triangular

matrices report the mean difference of absolute (AE) and squared (SE) forecasting errors,

respectively. Similarly, the lower triangular matrices report the median difference of forecasting

errors. We compute the difference between the errors of model [ name in row] and those of model

[ name in column]. For example, the first row of Panel A presents the average difference in the AE

of HIST vis-à-vis GJR, ATM IV, MFIV, and RMFIV, respectively. The numbers in bold indicate

statistically significant differences at 5% as indicated by the Diebold–Mariano (computed with 2

lags) and the Wilcoxon signed rank tests for the upper and lower triangular matrices, respectively.

Panel A: Crude Oil (AE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH 0.73% 0.90% 1.52% 1.95% 3.41%
ARMA–GJR -1.20% 0.17% 0.79% 1.22% 2.68%
ARMA–GARCH -1.13% -0.01% 0.61% 1.05% 2.51%
ATM IV -0.95% -0.49% -0.19% 0.43% 1.90%
MFIV -1.20% -0.56% -0.41% 0.07% 1.46%
RMFIV -1.87% -1.33% -1.22% -1.98% -2.23%

Panel B: Crude Oil (SE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH 0.49% 0.67% 2.16% 2.50% 2.77%
ARMA–GJR -0.08% 0.18% 1.67% 2.01% 2.27%
ARMA–GARCH -0.10% 0.00% 1.49% 1.83% 2.09%
ATM IV -0.05% -0.03% -0.01% 0.34% 0.60%
MFIV -0.11% -0.03% -0.04% 0.00% 0.26%
RMFIV -0.20% -0.09% -0.07% -0.15% -0.18%

Panel C: Heating Oil (AE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH -0.91% -0.96% 0.02% 0.69% 1.39%
ARMA–GJR 0.18% -0.05% 0.93% 1.60% 2.30%
ARMA–GARCH 0.17% 0.03% 0.98% 1.65% 2.35%
ATM IV -0.10% -0.50% -0.32% 0.67% 1.36%
MFIV -0.74% -0.43% -0.46% -0.29% 0.69%
RMFIV -1.17% -1.23% -1.40% -1.02% -0.56%

Panel D: Heating Oil (SE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH -0.65% -0.71% -0.15% 0.15% 0.36%
ARMA–GJR 0.01% -0.06% 0.50% 0.80% 1.01%
ARMA–GARCH 0.01% 0.00% 0.56% 0.86% 1.07%
ATM IV 0.00% -0.03% -0.02% 0.30% 0.51%
MFIV -0.03% -0.04% -0.03% -0.02% 0.21%
RMFIV -0.09% -0.09% -0.07% -0.07% -0.04%

Panel E: Natural Gas (AE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH -1.99% -1.99% -0.55% 0.83% 1.78%
ARMA–GJR 0.86% 0.00% 1.44% 2.82% 3.76%
ARMA–GARCH 0.99% 0.03% 1.44% 2.82% 3.77%
ATM IV -0.28% -1.67% -1.77% 1.38% 2.33%
MFIV -0.95% -2.38% -2.52% -0.75% 0.95%
RMFIV -2.08% -3.25% -3.42% -2.91% -1.99%

Panel F: Natural Gas (SE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH -0.78% -0.79% -0.34% 0.32% 0.31%
ARMA–GJR 0.15% -0.02% 0.44% 1.09% 1.09%
ARMA–GARCH 0.15% 0.00% 0.46% 1.11% 1.10%
ATM IV -0.05% -0.22% -0.26% 0.65% 0.65%
MFIV -0.17% -0.33% -0.39% -0.07% 0.00%
RMFIV -0.28% -0.43% -0.38% -0.40% -0.26%
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Table XVI: Differences of Forecasting Errors: APE and SPE (ARMA-GARCH Models)

This table reports relative differences in the performance of competing models. The upper

triangular matrices report the mean difference of absolute percentage (APE) and squared percentage

(SPE) forecasting errors, respectively. Similarly, the lower triangular matrices report the median

difference of forecasting errors. We compute the difference between the errors of model [ name

in row] and those of model [ name in column]. For example, the first row of Panel A presents

the average difference in the APE of HIST vis-à-vis GJR, ATM IV, MFIV, and RMFIV,

respectively. The numbers in bold indicate statistically significant differences at 5% as indicated

by the Diebold–Mariano (computed with 2 lags) and the Wilcoxon signed rank tests for the upper

and lower triangular matrices, respectively.

Panel A: Crude Oil (APE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH 4.00% 4.28% 4.83% 5.15% 12.03%
ARMA–GJR -3.30% 0.28% 0.84% 1.15% 8.03%
ARMA–GARCH -3.54% -0.06% 0.56% 0.87% 7.75%
ATM IV -2.87% -1.99% -0.85% 0.31% 7.19%
MFIV -3.44% -1.63% -1.27% 0.17% 6.88%
RMFIV -6.42% -3.93% -4.69% -6.62% -7.81%

Panel B: Crude Oil (SPE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH 4.60% 4.87% 8.30% 8.71% 14.09%
ARMA–GJR -0.76% 0.27% 3.70% 4.11% 9.49%
ARMA–GARCH -0.84% -0.01% 3.43% 3.83% 9.21%
ATM IV -0.61% -0.46% -0.35% 0.41% 5.78%
MFIV -1.13% -0.41% -0.38% 0.03% 5.38%
RMFIV -2.00% -1.14% -0.74% -1.73% -2.21%

Panel C: Heating Oil (APE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH -2.34% -2.50% 2.21% 3.91% 7.39%
ARMA–GJR 0.48% -0.17% 4.55% 6.25% 9.72%
ARMA–GARCH 0.49% 0.10% 4.72% 6.42% 9.89%
ATM IV -0.40% -1.54% -0.91% 1.70% 5.18%
MFIV -1.86% -1.60% -1.45% -0.96% 3.48%
RMFIV -3.64% -4.06% -4.01% -3.83% -1.99%

Panel D: Heating Oil (SPE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH -4.65% -5.04% 3.14% 4.51% 7.45%
ARMA–GJR 0.07% -0.39% 7.79% 9.15% 12.09%
ARMA–GARCH 0.12% 0.01% 8.18% 9.55% 12.49%
ATM IV -0.04% -0.26% -0.16% 1.37% 4.30%
MFIV -0.36% -0.29% -0.33% -0.23% 2.94%
RMFIV -0.95% -1.11% -0.94% -0.97% -0.45%

Panel E: Natural Gas (APE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH -4.42% -4.66% -0.49% 1.91% 6.33%
ARMA–GJR 1.83% -0.24% 3.93% 6.33% 10.76%
ARMA–GARCH 2.07% 0.06% 4.17% 6.57% 10.99%
ATM IV -0.67% -3.92% -3.63% 2.40% 6.82%
MFIV -2.57% -5.82% -5.27% -1.88% 4.42%
RMFIV -3.49% -6.75% -7.08% -6.31% -4.93%

Panel F: Natural Gas (SPE)

ARMA–EGARCH ARMA–GJR ARMA–GARCH ATM IV MFIV RMFIV
ARMA–EGARCH -4.83% -5.15% -0.59% 1.29% 5.24%
ARMA–GJR 0.62% -0.32% 4.24% 6.12% 10.07%
ARMA–GARCH 0.85% 0.01% 4.57% 6.44% 10.39%
ATM IV -0.29% -1.32% -1.14% 1.88% 5.82%
MFIV -0.57% -1.92% -1.44% -0.43% 3.95%
RMFIV -1.31% -1.85% -1.91% -1.63% -1.25%
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Table XVII: Forecasting Errors: 30-Day Horizon (ARMA Model for RVRP)

This table reports the out-of-sample forecast errors of each volatility model for realized volatility

over a horizon of 30 days. Realized volatility is defined as:

RVt,T =

√

√

√

√

252

T

T
∑

t=1

(

log
Ft,T

Ft−1,T

)2

where RVt,T refers to realized volatility between t and T . Ft,T denotes the price at time t of the

futures contract maturing at T . Panels A and B report the mean absolute errors (MAE) and mean

squared errors (MSE) of individual models, respectively. Panels C and D report the mean absolute

percentage errors (MAPE) and mean squared percentage errors (MSPE), respectively.

Panel A: Mean Absolute Errors (MAE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 8.36% 9.00% 8.01% 7.66% 6.18%
Heating Oil 8.57% 8.39% 7.39% 6.88% 6.07%
Natural Gas 14.22% 14.66% 13.31% 11.84% 10.43%

Panel B: Mean Squared Errors (MSE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 1.54% 2.87% 1.09% 0.93% 0.75%
Heating Oil 1.79% 1.61% 0.99% 0.82% 0.71%
Natural Gas 3.53% 3.50% 3.11% 2.41% 2.27%

Panel C: Mean Absolute Percentage Errors (MAPE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 24.46% 27.45% 26.23% 26.06% 18.84%
Heating Oil 27.15% 28.82% 24.15% 22.92% 18.86%
Natural Gas 29.07% 31.71% 28.45% 25.87% 20.21%

Panel D: Mean Squared Percentage Errors (MSPE)

HIST GJR ATM IV MFIV RMFIV

Crude Oil 9.75% 15.72% 11.65% 11.73% 6.16%
Heating Oil 14.22% 17.68% 10.19% 9.29% 6.01%
Natural Gas 14.46% 17.29% 13.62% 11.61% 6.63%
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Table XVIII: Differences of Forecasting Errors: AE and SE (ARMA Model for RVRP)

This table reports relative differences in the performance of competing models. The upper triangular

matrices report the mean difference of absolute (AE) and squared (SE) forecasting errors,

respectively. Similarly, the lower triangular matrices report the median difference of forecasting

errors. We compute the difference between the errors of model [ name in row] and those of model

[ name in column]. For example, the first row of Panel A presents the average difference in the AE

of HIST vis-à-vis GJR, ATM IV, MFIV, and RMFIV, respectively. The numbers in bold indicate

statistically significant differences at 5% as indicated by the Diebold–Mariano (computed with 2

lags) and the Wilcoxon signed rank tests for the upper and lower triangular matrices, respectively.

Panel A: Crude Oil (AE)

HIST GJR ATM IV MFIV RMFIV
HIST -0.63% 0.35% 0.71% 2.18%
GJR -0.04% 0.98% 1.34% 2.81%
ATM IV 0.09% -0.61% 0.36% 1.83%
MFIV 0.40% -0.49% 0.08% 1.47%
RMFIV -1.25% -1.40% -2.06% -2.57%

Panel B: Crude Oil (SE)

HIST GJR ATM IV MFIV RMFIV
HIST -1.33% 0.45% 0.61% 0.79%
GJR 0.00% 1.77% 1.93% 2.12%
ATM IV 0.01% -0.04% 0.16% 0.34%
MFIV 0.02% -0.04% 0.00% 0.18%
RMFIV -0.10% -0.08% -0.14% -0.18%

Panel C: Heating Oil (AE)

HIST GJR ATM IV MFIV RMFIV
HIST 0.18% 1.18% 1.69% 2.50%
GJR -0.32% 1.00% 1.51% 2.32%
ATM IV -0.72% -0.74% 0.51% 1.32%
MFIV -0.76% -0.75% -0.28% 0.81%
RMFIV -1.55% -1.40% -0.95% -0.89%

Panel D: Heating Oil (SE)

HIST GJR ATM IV MFIV RMFIV
HIST 0.18% 0.80% 0.97% 1.08%
GJR -0.02% 0.62% 0.79% 0.90%
ATM IV -0.06% -0.05% 0.17% 0.28%
MFIV -0.07% -0.05% -0.01% 0.11%
RMFIV -0.13% -0.09% -0.08% -0.06%

Panel E: Natural Gas (AE)

HIST GJR ATM IV MFIV RMFIV
HIST -0.44% 0.91% 2.38% 3.80%
GJR 0.29% 1.35% 2.82% 4.24%
ATM IV -0.07% -1.49% 1.48% 2.89%
MFIV -1.86% -2.55% -0.83% 1.41%
RMFIV -2.82% -2.71% -4.12% -3.77%

Panel F: Natural Gas (SE)

HIST GJR ATM IV MFIV RMFIV
HIST 0.03% 0.42% 1.12% 1.26%
GJR 0.03% 0.39% 1.09% 1.23%
ATM IV -0.01% -0.18% 0.70% 0.84%
MFIV -0.24% -0.35% -0.09% 0.14%
RMFIV -0.43% -0.41% -0.46% -0.32%
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Table XIX: Differences of Forecasting Errors: APE and SPE (ARMA Model for RVRP)

This table reports relative differences in the performance of competing models. The upper

triangular matrices report the mean difference of absolute percentage (APE) and squared percentage

(SPE) forecasting errors, respectively. Similarly, the lower triangular matrices report the median

difference of forecasting errors. We compute the difference between the errors of model [ name

in row] and those of model [ name in column]. For example, the first row of Panel A presents

the average difference in the APE of HIST vis-à-vis GJR, ATM IV, MFIV, and RMFIV,

respectively. The numbers in bold indicate statistically significant differences at 5% as indicated

by the Diebold–Mariano (computed with 2 lags) and the Wilcoxon signed rank tests for the upper

and lower triangular matrices, respectively.

Panel A: Crude Oil (APE)

HIST GJR ATM IV MFIV RMFIV
HIST -2.99% -1.78% -1.60% 5.62%
GJR -0.15% 1.21% 1.39% 8.61%
ATM IV 0.32% -2.28% 0.17% 7.39%
MFIV 1.52% -1.40% 0.25% 7.22%
RMFIV -4.31% -4.32% -7.41% -9.41%

Panel B: Crude Oil (SPE)

HIST GJR ATM IV MFIV RMFIV
HIST -5.97% -1.90% -1.97% 3.59%
GJR -0.04% 4.07% 4.00% 9.56%
ATM IV 0.17% -0.45% -0.08% 5.49%
MFIV 0.36% -0.48% 0.04% 5.57%
RMFIV -1.14% -0.96% -1.58% -2.48%

Panel C: Heating Oil (APE)

HIST GJR ATM IV MFIV RMFIV
HIST -1.67% 3.00% 4.23% 8.29%
GJR -1.16% 4.67% 5.90% 9.96%
ATM IV -2.21% -2.24% 1.23% 5.29%
MFIV -2.78% -3.19% -0.88% 4.06%
RMFIV -5.37% -4.48% -3.13% -2.97%

Panel D: Heating Oil (SPE)

HIST GJR ATM IV MFIV RMFIV
HIST -3.46% 4.03% 4.93% 8.21%
GJR -0.19% 7.49% 8.39% 11.67%
ATM IV -0.62% -0.40% 0.90% 4.18%
MFIV -0.76% -0.54% -0.10% 3.28%
RMFIV -1.24% -0.98% -1.10% -0.79%

Panel E: Natural Gas (APE)

HIST GJR ATM IV MFIV RMFIV
HIST -2.64% 0.62% 3.20% 8.86%
GJR 0.27% 3.26% 5.84% 11.50%
ATM IV -0.15% -3.88% 2.58% 8.24%
MFIV -4.02% -5.96% -1.95% 5.66%
RMFIV -5.86% -5.60% -7.72% -7.61%

Panel F: Natural Gas (SPE)

HIST GJR ATM IV MFIV RMFIV
HIST -2.82% 0.85% 2.85% 7.83%
GJR 0.04% 3.67% 5.68% 10.65%
ATM IV -0.03% -1.33% 2.01% 6.98%
MFIV -1.10% -1.85% -0.47% 4.98%
RMFIV -2.09% -1.84% -2.29% -1.47%
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