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Abstract 17 

Context: Variation in photosynthetic activity of trees induced by climatic stress can be 18 

effectively evaluated using remote sensing data. Although adverse effects of climate on 19 

temperate forests have been subjected to increased scrutiny, the suitability of remote 20 

sensing imagery for identification of drought stress in such forests has not been explored 21 

fully.  22 

Aim: To evaluate the sensitivity of MODIS-based vegetation index to heat and drought 23 

stress in temperate forests, and explore the differences in stress response of oaks and 24 

beech. 25 

Methods: We identified 8 oak and 13 beech pure and mature stands, each covering 26 

between 4 and 13 MODIS pixels. For each pixel, we extracted a time series of MODIS 27 

NDVI from 2000 to 2010. We identified all sequences of continuous unseasonal NDVI 28 

decline to be used as the response variable indicative of environmental stress. Neural 29 
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Networks-based regression modelling was then applied to identify the climatic variables 30 

that best explain observed NDVI declines. 31 

Results: Tested variables explained 84–97% of the variation in NDVI, whilst air 32 

temperature-related climate extremes were found to be the most influential. Beech 33 

showed a linear response to the most influential climatic predictors, while oak responded 34 

in a unimodal pattern suggesting a better coping mechanism.  35 

Conclusions: MODIS NDVI has proved sufficiently sensitive as a stand-level indicator 36 

of climatic stress acting upon temperate broadleaf forests, leading to its potential use in 37 

predicting drought stress from meteorological observations and improving 38 

parameterisation of forest stress indices.  39 

Key words: drought stress, heat stress, NDVI, regression modelling, temperate forest, 40 

neural networks 41 

 42 

Executive summary 43 

This study explores the suitability of MODIS satellite imagery for the detection of intra-44 

seasonal heat and drought stress in temperate forests. It is clear that this data can provide 45 

valuable information complementary to forest stand-based ecophysiological research and 46 

allows for the quantification of inter-specific differences in stress response.47 
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Introduction 48 

The effect of extreme climate events on terrestrial ecosystems is being increasingly 49 

recognized as one of the first signs of impending climate change (Allen et al. 2010; 50 

Leuzinger et al. 2005). Survival of woody species within their present range is likely to 51 

be constrained by water availability, prolonged drought during vegetation season may 52 

induce episodes of large-scale tree decline (Allen et al. 2010; McDowel et al. 2011). 53 

Drought induced tree mortality has mainly been observed in the Mediterranean region, 54 

affecting a range of species (for an overview see Allen et al. 2010). Further north, lack of 55 

water has been identified chiefly as a predisposing factor for biotic stressors, for example 56 

drought periods repeatedly triggering large-scale pest outbreaks (Rouault at al. 2006). In 57 

temperate forests, repeated episodes of drought usually cause a decrease in leaf area index 58 

(Le Dantec et al. 2000), often resulting in a decline in forest productivity (Glenn et al. 59 

2008, Hlásny et al. 2011a). However, some recent observations such as drought induced 60 

mass beech mortality (Lakatos and Molnár 2010) or drought-triggered pest outbreaks 61 

(Mátyás et al. 2010) indicate the importance of drought as an emerging primary mortality 62 

agent in temperate Europe. This link is underlined by the presence of drought sensitive 63 

xeric limit of several temperate tree species, as well as by projections indicating drought 64 

induced retreat of some species (Czúcz et al. 2011, Hlásny et al. 2011a). European beech 65 

(Fagus sylvatica) and several oaks (Quercus sp.) overlap to a certain extent and together 66 

they constitute some of the ecologically and economically most important species. Oaks 67 

are favoured by a relatively warm and dry climates (Czúcz et al. 2011; Epron and Dreyer 68 

1993), while beech has been identified as sensitive to drought and potentially vulnerable 69 

to climate change (Geßler et al. 2007; Mátyás et al. 2010; Leuzinger et al. 2005). Since 70 

climate change may force a replacement of beech by oaks in some localities, the 71 

competitiveness and stress tolerance of beech and various oak species is being 72 
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increasingly recognized as central to future-proofing broadleaf temperate forests 73 

(Leuschner et al. 2001; Raftoyannis and Radoglou 2002; Scharnweber et al. 2011). 74 

Traditionally, the frequency and severity of drought has been evaluated by drought 75 

indices calculated from meteorological observations (Vicente-Serrano et al. 2012). Since 76 

forests are sparsely covered by meteorological stations (Caccamo et al. 2011), this 77 

approach does not allow for a reliable drought assessment of a large area or in a varied 78 

landscape. Variations in photosynthetic activity induced by climatic or other stress can, 79 

however, be effectively evaluated using remote sensing data (Glenn et al. 2008; Lobo et 80 

al. 2010). Fine spectral resolution in the water sensitive part of the electromagnetic 81 

spectrum  makes MODIS sensor (Moderate Resolution Imaging Spectroradiometer, 82 

NASA) outstandingly suitable for drought monitoring (Ceccato et al. 2001). During the 83 

MODIS mission (from 2000 onwards), the instrument has generated large amounts of 84 

data used for monitoring of drought and water availability at global to regional scales. To 85 

date, however, few studies have explored the utility of MODIS-type data to monitor 86 

drought in forested areas (Caccamo et al. 2011; Vacchiano et al. 2012; Wang et al. 2009), 87 

with Central Europe not covered at all. Spectral reflectance data are usually compressed 88 

into vegetation indices. One such index, the widely used Normalised Difference 89 

Vegetation Index (NDVI), exploits the variation in the absorption of photosynthetically 90 

active radiation by living plant foliage (Myneni and Williams 1994). Since photosynthetic 91 

activity is limited by resource availability, NDVI has also been used to investigate the 92 

incidence and severity of drought (Caccamo et al. 2011; Ji and Peters 2003).  93 

In the present study, we investigate the usability of MODIS-NDVI as an indicator of the 94 

severity of vegetation stress resulting from a potential water deficit  and excessive 95 

temperatures in mature beech and oak stands in Central Europe. We hypothesize that (i) 96 

specific stress episodes can be identified in time series of MODIS-NDVI localised to 97 
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forest stands, and (ii) these patterns are linked to specific intensity and duration of 98 

rainless and heat periods. We perform a regression modelling analysis to assess the 99 

usefulness of MODIS imagery for investigations of intra-seasonal variation of forest 100 

vigour and to identify environmental variables which best predict the stress response of 101 

beech and oak stands. 102 

 103 

1. Materials and methods 104 

2.1 Study region and experimental plots 105 

The research focuses on the territory of Slovakia (Central Europe) where a number of 106 

forest plots distributed across the whole country were identified. Forest management 107 

plans and other databases archived by the National Forest Centre, Slovakia, were used to 108 

localise experimental plots using criteria listed in Table 1.  109 

Table 1  110 

The purpose of stand selection was to create a database of mature and homogenous oak 111 

and beech stands seamlessly covering groups of MODIS pixels (250×250 m, see 112 

Appendix A). Oak stands contained mixtures of Sessile oak (Quercus petrea), 113 

Pedunculate oak (Quercus robur) and Pubescent oak (Quercus pubescens). Only single-114 

layer stands with closed canopy were considered for this study. Each selected stand was 115 

composed of at least 99% of the target species. This threshold was set arbitrarily high to 116 

allow for a reasonable confidence in inter-specific comparison. To reduce the variability 117 

of potential stress responses, we used digital forest soil maps to exclude forest stands on 118 

soils with extremely low or high water holding capacity. As a result, the only soil type 119 

under the final selection of stands is sandy loam or loam of medium depth (ca. up to 120 120 

cm in oak plots) or medium-to-high depth (ca. up to 200 cm in beech plots). 121 
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In total, 13 beech experimental plots covered by a total of 66 MODIS pixels, and 8 oak 122 

plots covered by 55 MODIS pixels met the selection criteria (Fig. 1, Table 2).  123 

 Fig. 1 124 

Table 2 125 

 126 

2.2 Time series of MODIS-NDVI 127 

NDVI is an approximately linear estimate of the fraction of photosynthetically active 128 

radiation (PAR) intercepted by photosynthesizing tissue of vegetation, provided that 129 

certain constraints on background, solar and view angles, and atmospheric transparency 130 

are fulfilled (Myneni and Williams 1994). NDVI is formulated as: 131 

 132 

NDVI = (ρNIR - ρRed)/(ρNIR + ρRed)  Eq. 1 133 

 134 

where ρNIR and ρRed are reflectance values of near infrared and red radiation. 135 

Hence, NDVI theoretically takes on values between –1 and 1, with values approaching 1 136 

indicating high density of green leaves with good photosynthesizing performance.  137 

For the purpose of this study, NDVI images with spatial resolution 250×250 m covering 138 

the period 2000–2010 were derived from MODIS product MOD09GQ (Source: NASA 139 

LP DAAC). Despite potentially adverse effect of anisotropical reflectance of vegetation 140 

on the use of daily MODIS data (e.g. Shuai et al. 2013), we made preference for this 141 

product over 16-day products with 500 m resolution which are free of this potentioal 142 

source of error. Since we strive to focus on the immediate vegetation dynamics at daily 143 

scale in the varied landscape of Central Europe, the spatial resolution of used imagery can 144 

critically limit the usability of such imagery. Indeed, Franch et al. (2013) suggested that 145 



7 
 

errors due to the Lambertian assumption in daily MODIS data are likely to be negligible 146 

in case of NDVI values. 147 

Since clouds and atmospheric aerosols can introduce substantial noise in MODIS NDVI 148 

data (Wang et al. 2003, Hmimina et al. 2013), a two-step quality control has been applied 149 

to remove observations contaminated by atmospheric or other interference. First, 150 

MOD09GA (500x500) product was used to exclude images taken under high sensor 151 

zenith angles, and pixels contaminated by clouds and aerosols. Despite lower resolution, 152 

MOD09GA is better suited for this step than MOD09GQ with 250 m resolution, since the 153 

latter product does not contain information on pixel contamination by aerosols. 154 

Moreover, MOD09GA contains information detected in all spectral bands of MODIS 155 

(range 459–2,155 nm), supporting its superior performance in the detection of 156 

contaminated pixels. Indeed, cloud masks based on this product have been shown to 157 

slightly overestimate real clouding (Kotarba et al. 2009). Despite a very conservative first 158 

step, a portion of noise can remain in the data even after the quality assurance image was 159 

applied (Hmimina et al. 2013, Wang et al. 2003). Therefore, we applied a follow-up 160 

manual quality control procedure aimed at removal of NDVI values which were 161 

inconsistent with the expected annual cycle of vegetation greenness (Bruce et al. 2006).  162 

 163 

2.3 Climate data and definition of drought and heat periods 164 

Daily meteorological data collected at 46 meteorological stations in the vicinity of 165 

experimental plots (Fig. 1) (Source: Slovak Hydrometeorological Institute) were used for 166 

the identification of rainless periods and periods during which daily mean or maximum 167 

air temperature exceeded selected thresholds (Table 4). Meteorological stations indicative 168 

of conditions specific to each experimental plot were selected from the national network 169 

of stations using the following criteria: horizontal and vertical distance from selected 170 
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stands (Table 1); landscape orography and climatic variability of broader surroundings. 171 

The latter two criteria were included to prevent interpolation over mountain ridges and 172 

across climatically different regions.  173 

Daily average, minimum and maximum air temperature and daily precipitation data were 174 

interpolated to the centre position of each experimental plot. A rainless period was 175 

defined as a sequence of days during which no more than 5 mm of precipitation was 176 

recorded per day. This value represents precipitation with low probability of reaching the 177 

roots due to interception loss in the canopy (van de Salm et al. 2007), as well as 178 

evaporation from the ground. Since no information on actual soil or leaf water content is 179 

available at the desired scale and terrain cover, we use the duration of rainless periods as 180 

a proxy for drought. For the sake of simplicity, we use term “drought stress” for NDVI 181 

responses induced by prolonged rainless periods, being aware of the limitations of such 182 

interpretation. 183 

A heat period was defined as sequence of days with mean or maximum air temperature 184 

exceeding arbitrarily set thresholds (Table 4).  185 

2.4 Identification of stress episodes in MODIS-NDVI time series 2000-2010 186 

Stress episodes were defined as continuous sequences of declining NDVI values observed 187 

during the period of full foliage. Each NDVI value pertaining to a stress episode was 188 

expressed in terms of actual decline in NDVI relative to the overall permissible decline 189 

observed in each MODIS pixel (local amplitude) and calculated according to the 190 

following formula: 191 

 192 

NDVIdecline = 100-((NDVImax - NDVIstress)/(NDVImax - NDVImin)×100)  Eq. 2  193 

 194 
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where NDVImax represents the NDVI of unstressed vegetation and is calculated as the 195 

mean of 2-4 NDVI observations immediately preceding a stress episode, NDVIstress is a 196 

value in a sequence of declining NDVI values, and NDVImin is the lowest value of annual 197 

NDVI amplitude, correspondent with a period without foliage. NDVImin was constant 198 

during the investigated 10 year period, reaching 0.52 for beech and 0.44 for oak; these 199 

values were found to be uniform across all investigated plots and in all years. The 200 

difference between NDVImax and NDVImin defines the local amplitude for each pixel (Fig. 201 

2). Introducing local amplitudes allows for comparability of NDVI declines in spite of 202 

inter-annual and inter-pixel variability in NDVImax. In addition, NDVImax of unstressed 203 

vegetation constantly declines from spring to late summer, i.e. from ca. 1.0 to 0.9 204 

(Soudani et al. 2012); hence the need for data standardisation. As a consequence, the local 205 

amplitude of NDVI is smaller in beech (0.52 to local maximum) than in oak (0.44 to local 206 

maximum). 207 

Only stress episodes consisting of at least 3 sequentially declining values observed in at 208 

least two MODIS pixels from each experimental plot were considered. Also, the 209 

magnitude of each decline was set to exceed 5% of local NDVI amplitude. Stress 210 

episodes were extracted manually for each pixel during the vegetative season over the 211 

entire 10-year period. The length and timing of periods of full foliage differed between 212 

years and pixels, as indicated by the seasonal course of NDVI values. The fact that only 213 

the period of full foliage was considered, together with the strict stand selection criteria 214 

described earlier, implies that forest understory and herbaceous layer should not affect the 215 

evaluated spectral response.  216 

 217 

Fig. 2  218 

  219 
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2.5 Regression modelling of observed stress episodes and climate  220 

Three types of interaction between stress episodes and climatic extremes may occur in 221 

this type of studies; (i) climate extremes (rainless and/or heat periods) correspond with 222 

incidence of NDVI declines (True Responses, TRs), (ii) NDVI declines occur in periods 223 

when no heat and rainless period has occurred (False Responses, FRs), (iii) no NDVI 224 

decline is apparent during heat and rainless periods (False Triggers, FTs). An inclusion of 225 

FRs and FTs in the regression analysis is not possible because either the dependent or 226 

explanatory variable(s) would be missing. However, a very high occurrence of FRs and 227 

FTs in the dataset may hinder proper interpretation of results of regression modelling. To 228 

investigate this possibility, we quantified the frequency of FRs and FTs. 229 

Maximum NDVIdecline value observed in each stress episode (Eq. 2, Fig. 2) is used as the 230 

dependent variable and regressed against the list of explanatory variables given in Table 231 

4. Regression modelling was run independently for the two species to facilitate an 232 

evaluation of inter-specific differences in stress response. First, bootstrap sampling was 233 

applied repeatedly to randomly split input data into training, testing, and validation sets in 234 

the ratio of 70:15:15. Then, Neural Network-based modelling was used, following the 235 

workflow described by Hlásny et al. (2011b). In total, 2,000 Neural Networks with 236 

varying architecture were trained for each species; the training represents an iterative 237 

fitting of a neural network-based model into parameterisation data while controlled by 238 

testing and validation samples. Correlation coefficients between NDVIdecline values 239 

predicted by trained Neural Networks and observations allocated to testing and validation 240 

sets were calculated to assess the predictive power of trained networks. Subsequently, an 241 

ensemble of 15 best-performing networks (i.e. those reaching the highest correlation 242 

coefficients between observed and predicted NDVIdecline values) out of the initial set of 243 
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2,000 trained networks was used to identify the most influential predictors and to rank 244 

them using the sensitivity analysis procedure. 245 

The sensitivity analysis used in this study iteratively discards an input variable at a time 246 

and assesses overall network error. A measure of sensitivity then is the ratio of the error 247 

produced by a Neural Network with a missing variable relative to the error of a Network 248 

with the full set of input variables. The more sensitive the network is to the inclusion of a 249 

particular input, the greater the measured deterioration of prediction and therefore the 250 

greater the error ratio (1 represents a neutral relationship).  251 

Since each of the 15 retained networks generates one set of sensitivity scores (SS), the 252 

stability of regression models in terms of prediction consistency can be tested. We used 253 

the Principal Component Analysis (PCA) to evaluate the inter-model consistency of 254 

sensitivity scores on the basis of correlation of all 15 SS sets with the Principal 255 

Component 1 (PC1); high correlations of all SS with PC1 indicate consistent signal 256 

produced by all models (Hlásny et al. 2011b). All statistical analyses were performed in 257 

Statistica Neural Networks v.10 (StatSoft Inc., 2004). 258 

 259 
2. Results 260 

3.1 Stress episodes 261 

The mean length of observed continuous declines in NDVI was 10.6 days in beech and 262 

12.5 in oak stands (P=0.023), while the longest observed period of continuous NDVI 263 

decline was 27 days in beech and 24 days in oak (see Appendix B for an example). 264 

The most severe declines of NDVI during a stress episode (NDVIdecline) reached 25–30% 265 

of the local NDVI amplitude in beech and 40–45% in oak stands. The variability of 266 

NDVIdecline was larger in oak stands; standard deviation of declines reached 57% of mean 267 

in beech and 70% in oak (Table 3). We found that each NDVIdecline episode was 268 

associated with a single rainless period, while several heat periods from one to several 269 
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days long occurred within its duration. None of the heat periods identified by the 270 

thresholds specified for this research (Table 4) was sufficiently long to induce an 271 

observable decline in NDVI values. Stress episodes always ended at first precipitation 272 

event which cancelled the respective rainless period. NDVI recovered to its local 273 

maximum shortly after and no irreversible changes were observed.  274 

Table 3   275 

 As a technical verification study, we explored spectral responses of foliage to drought in 276 

the red (620-670 nm) and near infrared band (840-876 nm, Appendix C). The same bands 277 

were used to calculate NDVI values in the main objective of this manuscript (Eq. 1). 278 

Bench-top NDVI declines are mainly related to an increased reflectance in the red band, 279 

which is indicative of reduced photosynthetic performance of vegetation (i.e. lesser 280 

absorption and higher reflectance of photosyntheticaly active radiation,Reflectance in the 281 

near infrared band was found to increase as well, although the pattern of increase was not 282 

as clear as that of the red band. We observed more than threefold increase in the 283 

reflectance in the red band at the end of stress periods lasting from 10 to 20 days, as 284 

compared to unstressed vegetation. Increased absorption in the near infrared band, which 285 

could be indicative of drought induced changes in leave cell walls, was not observed in 286 

the current investigation.  287 

  288 

 3.2 Regression modelling 289 

Correlations between predicted and observed values, calculated as the mean of 15 best 290 

performing networks for each tree species (Table 5) show only small inter-network 291 

variability and were very similar between training, testing and validation sets. The range 292 

of correlation coefficients between 0.84–0.97 implies stable and well performing 293 
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regression models. The coefficients suggest that explanatory variables utilised in this 294 

analysis explain a significant portion of the variability of identified stress episodes. 295 

Table 5  296 

Sensitivity scores (SS) produced by the 15 best-performing regression models were found 297 

to be highly consistent among the models. PC1 explained 81% of the total variability of 298 

SS in beech and 76% in oaks and SS of no model differed significantly from the main 299 

pattern represented by PC1. Differences in mean sensitivity scores indicated variation in 300 

the predictive power of explanatory variables between the two tree species, suggesting 301 

diverging physiological capacity to respond to heat and drought stress (Table 6). The 302 

largest difference was observed for GDD, which was the most influential predictor in 303 

beech (SS=4.62), while occupying only the 5
th
 position in oak (SS=1.61). The number of 304 

days with average air temperature above 24°C was the most influential variable in oak 305 

(SS=5.60), whilst in beech the number of days with maximum air temperature above 29 306 

and 20°C were the most influential of temperature related predictors (SS=4.00 and 3.90).  307 

The duration of rainless periods was not found to affect the stress response significantly 308 

(15
th
 order with SS=1.27 in beech, and 12

th
 order with SS=1.32 in oak), and its 309 

importance was greatly subdued by heat-related variables. Non-climatic variables such as 310 

elevation and stand age did not affect declines of NDVI. In oaks, mean SS of the most 311 

influential variables (N-Tavg>24°C, N-Tmax>32°C, N-Tmax>29°C) differed 312 

significantly from each other, as well as from all lower-rank variables (α=0.05, Tab. 6). In 313 

beech, the decrease in SS from the first to the last-ranked variable was not so apparent, 314 

however the mean SS of the group of most influential variables was significantly 315 

different from the lower-rank variables. 316 

Table 6  317 

 318 
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3.3 Univariate responses 320 

In order to understand the phenological and physiological implications of the most 321 

influential explanatory variables, we further analysed dominant relationships. Diverging 322 

response to the most influential climatic variables was found in oak, which has shown 323 

highest NDVI declines at short to medium duration of unfavourable climate, while longer 324 

duration stress events were accompanied by less severe NDVI declines. The largest 325 

decreases of NDVI were induced by 1-2 hot days accumulated during stress episodes 326 

with average daily air temperature above 24°C (the most influential variable, SS=5.60), 327 

though the variability of responses was high (Fig. 3a). Unimodal response was observed 328 

at N-Tmax>29°C (SS=2.51) with maximum NDVI declines at around 2-4 days (Fig. 3b). 329 

Linearly decreasing response was observed at N-Tmax>32°C (SS=3.18) (Fig. 3c), with 330 

extreme variability at 0 days (i.e. at NDVI declines with no observation of temperature 331 

above 32°C); the reason for this is the low number of stress episodes during which days 332 

with air temperature exceeded the threshold of 32°C.  333 

Fig. 3  334 

In contrast to oak, increasing the severity or the duration of heat stress in beech increased 335 

the magnitudes of NDVI declines in linear fashion. The main univariate relationships 336 

between the most influential climatic variables and the stress response of beech are 337 

presented in Fig. 4. 338 

Fig. 4  339 

The only explanatory variable to which we observed a unimodal response in both species 340 

was GDD (Fig. 3e, 4e). Interestingly, the GDD value denoting the highest NDVI 341 

sensitivity was between 900-1,000 in both beech and oak. Observed length of a drought 342 

period was not influential in either species (SS=1.27 in beech and SS=1.32 in oak), it is 343 

however functionally associated to all observed stress episodes. A drought ends at a 344 
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precipitation event and NDVI recovers to its local and seasonal maximum shortly after. 345 

Considering it on a univariate basis indicates a linear relationship between the length of 346 

drought and corresponding magnitude of NDVI declines in beech, but a quadratic 347 

relationship in oak (Fig. 3d, 4d).  348 

 349 

3.4 Incidence of False Responses and False Triggers 350 

Relationships between frequencies of rainless periods longer than 4 days which were 351 

characterised by at least 3 non-declining NDVI observations and rainless periods 352 

inducing a stress response were studied. The 4-day criterion was chosen to avoid 353 

affecting the analysis by a large number (in the order of thousands) of rainless periods of 354 

short duration which are largely irrelevant for tree stress assessment. In beech, a 355 

remarkably strong prevalence of rainless periods up to 20 days long with non-declining 356 

NDVI values was identified (Fig. 5). In rainless periods longer than 20 days, however, a 357 

relatively equal frequency of FTs and TR was observed. In oaks, the frequency of FTs is 358 

substantially higher than the frequency of rainless periods inducing stress response for all 359 

durations of rainless periods.  360 

Fig. 5  361 

 362 

3. Discussion 363 

4.1 Ecophysiological inference and applicability 364 

Currently, even small changes in precipitation regime are thought to have a considerable 365 

impact on beech, raising the possibility of co-occurring species such as oak gaining a 366 

competitive advantage under projected climatic changes (Scharnweber et al. 2011). 367 

Oaks appear to possess the capacity to better tolerate drought, an array of efficient 368 

protection mechanisms against permanent high irradiance damage under drought stress 369 
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has been identified (Epron and Dreyer 1993; Raftoyannis and Radoglou 2002; Wamelink 370 

et al. 2009).  371 

As indicated in our analysis, drought approximated by the duration of rainless periods 372 

induced a reduction in photosynthetic activity indicated by NDVI in both species. 373 

Observed climatic stress did not result in irreversible tree decline and mortality in either 374 

species, such an event would have been evidenced by a discontinuity in the investigated 375 

NDVI time series. Generally, drought-induced damage may lead to organ dysfunction, 376 

but it only seldom results in direct and immediate induction of tree decline and death 377 

(Bréda et al. 2006). Hence, continuous decline of NDVI values in years following 378 

extreme droughts is more likely to occur than intra-seasonal abrupt change not followed 379 

by a recovery, as reported in France when a substantial increase in tree mortality occurred 380 

in years after the 2003 heat wave (Renaud et al. 2006).  381 

In this study, the variability of maximum NDVI declines was higher in oak than in beech, 382 

possibly related to differences in the plasticity of response, but also the presence of 383 

several oak species in oak experimental plots (Q. petrea, Q. robur, Q. pubescens). 384 

Differential response of oak species to drought has been reported by Epron and Dreyer 385 

(1993) or Raftoyannis and Radoglou (2002). Mean and maximum observed NDVI 386 

declines were greater in oak than in beech, even though the photosynthetic rate of beech 387 

was found to significantly decrease at low water potentials, while oaks maintained high 388 

rates of photosynthesis even under very low leaf water potentials and high air 389 

temperatures (Raftoyannis and Radoglou 2002). 390 

Our investigation revealed that NDVI response to climatic stress was related to an 391 

increase in the reflectance in both red and near infrared band. While the increase in the 392 

red band can be related to the reduced rate of absorption of the photosyntheticaly active 393 

radiation (Glenn et al. 2008), increased reflectance in the near infrared band currently 394 

lacks an acceptable interpretation. This spectral range is mainly sensitive to internal leaf 395 
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structure and leaf dry matter content (Ceccato et al. 2001), and is normally expected to 396 

increase with vegetation curing (drying and dying; Cheney and Sullivan 1997). However, 397 

in our verification experiment (Appendix C), the increase in the reflectance in the near 398 

infrared band was minor compared to that of the red band. Caccamo et al. (2011) stated 399 

that the evaluation of performance of MODIS-derived spectral indices in the visible, near 400 

infrared and short wave infrared bands has only been conducted in agricultural areas but 401 

not for high biomass ecosystems; therefore further research is needed to understand such 402 

responses thoroughly. 403 

The sensitivity analysis indicated that the two species respond to slightly different drivers 404 

of environmental stress. GDD, and mean and maximum daily temperatures above 20 and 405 

24°C respectively, concurrent to rainless periods, were the most important variables in 406 

driving the observed declines in NDVI in beech stands. In temperate climate the 407 

probability of physiological drought is closely correlated with the period of greatest 408 

photosynthetic activity, the fact that GDD is the best predictor of NDVI decline in beech 409 

suggests a strong link to phenology with diminished potential for adaptation to the 410 

environmental stress driver. The strong link of observed stress episodes to GDD may thus 411 

imply that beech – in contrast to oak – may lack sufficient phenotypic plasticity to 412 

mitigate the effects of expected climate change. In this regard, Nahm et al. (2007) found 413 

uniform drought response of beech stands distributed from southern France to central 414 

Germany.  Mátyás et al. (2010) suggest that phenotypic plasticity of beech populations is 415 

considerable, but ceases to buffer stress near the xeric limit of the species. On the other 416 

hand, Weber et al. (2013) suggested that beech near their dry distribution limit are 417 

adapted to extreme conditions already and should be less affected physiologically, while 418 

changes in the growth patterns of beech under mesic conditions have to be expected. 419 

Strong effect of GDD on beech stress response may be related to the functionality of 420 

antioxidant systems (Rennenberg et al. 2006). Polle et al. (2001) claim that under 421 
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extended periods of drought and elevated air temperatures, mature beech leaves which 422 

were normally highly stress-tolerant became very susceptible to oxidative stress, what 423 

may be the case of our observations. 424 

The relationship between the length of drought periods and NDVI declines in our beech 425 

stands is linear, supporting the assertion of Leuzinger et al. (2005) that beech does not 426 

possess a coping mechanism which would limit the effect of cumulative damage. Nahm 427 

et al. (2007), however, argue in their investigation of beech performance after extreme 428 

heat and drought in summer 2003 that beech possess effective regulation mechanisms 429 

when facing even severe drought and heat periods. This issue does not appear to be 430 

settled yet, other authors found adverse effects of heat and drought on beech 431 

physiological performance (e.g. Epron and Dreyer 1993; Raftoyannis and Radoglou 432 

2002; Wamelink et al. 2009), including effect on tree growth (Scharnweber et al. 2011).  433 

In contrast to beech, the magnitude of NDVI declines in oak stands was found to be 434 

sensitive primarily to increased temperature in a unimodal pattern. Our data show that 435 

increasing the number of days which exceed a temperature threshold and/or prolonging 436 

the rainless period does not have a linear effect on the decrease of NDVI. Species which 437 

evolved to colonise drier environments tend to cope better with episodes of drought 438 

accompanied by high temperatures than mesic-adapted species (Sack, 439 

2004; Engelbrecht et al., 2005). A crucial difference in the physiology of beech and oak 440 

might explain the reduction of photosynthetic activity observed in this study in response 441 

to drought (Figure 3). Beech typically displays isohydric behaviour of progressively 442 

limiting stomatal conductance to maintain water potential (Cochard 1999), which is likely 443 

reflected in linearly decreasing rate of photosynthesis. Oaks, on the other hand, have been 444 

shown to use their extensive root systems to support anisohydric behaviour of tolerating 445 

decreasing water potential (Thomsen 2013). Stomata closure would initially limit 446 
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transpiration as water availability decreases at the onset of drought, but do not close 447 

completely to maintain limited carbon fixation as the drought continues. 448 

 449 
4.2 Methodological comments and limitations 450 

Daily observations of MODIS sensor with spatial resolution 250×250 meters can provide 451 

highly valuable data in many fields of vegetation science. There are, however, numerous 452 

obstacles which need to be overcome to gain reasonable confidence in the inferences 453 

based on such data. The substantial noise present in the data requires a comprehensive 454 

quality control to facilitate their use (Wang et al. 2003, Hmimina et al. 2013). The 455 

anisotropy in the spectral reflectance of vegetation has also been recognized as factor 456 

potentially limiting the use of daily NDVI data, and corrections to reduce this effect have 457 

been proposed (e.g. Shuai et al. 2013). While quality assurance metadata and other QA 458 

procedures can be used to substantially reduce the noise in daily data, effect of 459 

anisotropical reflectance persists. The use of 16-day MODIS products is suggested to 460 

avoid this effect, this product however does not offer the potential to study immediate 461 

vegetation responses to climatic and other stresses. The fact that we accepted an 462 

assumption of forest vegetation representing a Lambertian surface (i.e. with isotropic 463 

reflectance) should not significantly affect our analysis. Franch et al. (2013) found that 464 

while relative errors due to the Lambertian assumption in daily MODIS data are 3-12% in 465 

visible and 0.7-5% in infrared spectrum, they reach only 1% in NDVI. Indeed, this effect 466 

could have been further reduced by removing images taken under high zenith angles as 467 

was applied in this study. 468 

The aforementioned factors may indeed have affected the stress patterns observed in this 469 

study. We argue that such effects are random and cannot therefore generate a skewed 470 

pattern which could be interpreted as a continuous NDVI decline. In reality, this type of 471 

noise increases the variability in the data and potentially covers some less distinct stress 472 

patterns, thus contributing to the portion of variability which could not have been 473 
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explained by the regression models developed in this study. To address this issue in 474 

greater detail, we conducted a supplementary investigation of the spectral response of 475 

drying oak leaves using laboratory hemispheric spectroradiometer. In spite of limited 476 

comparability of MODIS-based and laboratory-acquired spectral responses, our 477 

experiment generated response which was highly consistent with that of MODIS (see 478 

Appendix C for details). This finding supports our inferences and suggests that a 479 

deviation from Lambertian assumption should not prevent the daily MODIS NDVI data 480 

from being used in the research of diurnal vegetation dynamics. 481 

High performance of tested regression models implies strong control of climatic variables 482 

over the physiological response of beech and oak, leading to their potential use in 483 

predicting drought stress from meteorological observations and improving 484 

parameterisation of forest drought-stress indices. However, we identified a large number 485 

of rainless periods of various duration, which did not induce an observable stress 486 

response. Some are due to the inherent variability in tree response to moderate 487 

environmental stress driven by the phenotypic plasticity (Valladares et al. 2007) and 488 

environmental heterogeneity beyond the scale of observation. Others are generated by 489 

missing or discarded NDVI observations due to pixel contamination or other reasons.  490 

The use of rainless periods as indicators of drought stress in forest ecosystems has certain 491 

limitations due to varying soils characteristics and landscape topography, which both 492 

affect water availability to trees. In this study such effects were controlled for by 493 

considering relief and soils in the initial plot selection, however caution must be exercised 494 

when applying this methodology to a large or heterogeneous area. Precipitation measured 495 

with rain gauges can be used as highly reliable input data, vegetation vigour was 496 

repeatedly found very responsive to precipitation regime (e.g. Clifford et al. 2013; Plaut 497 

et al. 2013). Although not feasible in this study, meteorological indicators of drought 498 

should be verified and parameterised by direct measurements of soil water content for 499 

best reliability of stress prediction. 500 
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The forest area covered in this study extends to ca. 20,000 km
2
, however for the purpose 501 

of this study we identified only 121 MODIS pixels (250×250 m) which met the selection 502 

criteria. The spatial resolution of MODIS data was a factor severely limiting the number 503 

of suitable forest stands, chiefly due to our criterion of at least 99% cover of target 504 

species in each MODIS pixel, but also due to limits on stand exposition, elevation and 505 

soil type. Such strict selection, however, was applied for the purpose of inter-specific 506 

comparison of stress responses and may not be necessary for different goals, such as 507 

assessing stress status of large tracts of forests. The presented approach is suitable for tree 508 

species with continuous cover, rather than for species with scattered distribution or for 509 

open canopy situations. 510 

 511 
5. Conclusion 512 

Our analysis shows that MODIS-derived data describing intra-seasonal variation in NDVI 513 

values can indicate periods of environmental stress in beech and oak forests. We show 514 

that the incidence and magnitude of observed stress episodes can be explained by a set of 515 

environmental variables describing temperature and precipitation patterns. Having 516 

dissected the sensitivity of outlined methodology, we argue that MODIS data can be used 517 

to infer and verify interactions between climate and forest vigour and productivity in 518 

temperate broadleaf species with continuous distribution. In addition, a close examination 519 

of stand-specific time series of MODIS-NDVI can provide ecophysiological data 520 

complementary to terrestrial forest monitoring.  521 

  522 
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Table 1 Criteria for the selection of forest stands used for the assessment of heat and 667 
drought effect on beech and oak stands 668 
 669 
 670 

 671 
 672 
 673 

 674 
675 

Criterion Limits 

Percentage of investigated species >99% 

Altitude <670 m a.s.l. for oak; <850 m a.s.l. for beech 

Relief aspect southern slopes 

Stand age >50 years 

Distance from meteorological station 

<15 km from station with air temperature data;  

< 7 km from station with precipitation data 

Vertical structure of stands Single-storey stands only 

Soil and bedrock Homogenous across the pixels within group 
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Table 2 Descriptive data of beech and oak forest stands covered by the clusters of 676 

MODIS pixels used in the investigation NDVI response to drought and heat stress. Mean 677 

values and standard deviations are given. 678 

- EP NoP Altitude Slope Aspect Age Density DifAltT DifAltP DifT DifP 

B
E

E
C

H
 E

X
P

E
R

IM
E

N
T

A
L

 P
L

O
T

S
 

  [m a.s.l.] [%] [°] [years] [–] [m a.s.l.] [m a.s.l.] [m] [m] 

1 6 479±26 13±3.8 235±8 62±13 0.9±0.1 484 226 5,247 2,681 

2 4 515±25 16±2.8 189±18 97±41 0.8±0.1 533 533 5,182 5,186 

3 4 526±17 9±1.3 159±28 95±18 0.8±0.1 533 533 4,397 4,401 

4 5 433±34 10±2.7 148±32 113±7 0.8±0.1 533 225 11,812 5,625 

5 4 655±72 29±2.6 150±36 121±9 0.6±0.1 254 315 9,177 3,331 

6 4 688±63 31±3.2 192±38 139±3 0.7±0.0 254 650 11,047 2,585 

7 7 714±68 29±1.8 174±62 103±6 0.8±0.0 411 502 7,902 3,283 

8 5 742±106 26±4.3 138±19 114±7 0.7±0.0 875 583 5,535 4,620 

9 4 686±22 11±1.2 237±8 88±6 0.8±0.1 140 397 14,481 2,906 

10 10 491±26 13±1.8 212±27 97±10 0.7±0.1 305 287 5,792 5,263 

11 4 443±31 16±1.6 239±14 92±5 0.7±0.0 305 262 6,216 3,305 

12 2 398±21 17±1.5 126±13 100±0 0.7±0.0 305 232 16,275 6,633 

13 7 505±24 14±1.3 196±55 78±6 0.8±0.0 122 338 12,631 2,566 

O
A

K
 E

X
P

E
R

IM
E

N
T

A
L

 P
L

O
T

S
+

 

1 10 397±31 11±2.6 170±16 93±13 0.8±0.1 180 315 13,564 4,806 

2 5 410±28 13±2.0 225±0 98±13 0.7±0.1 318 191 10,406 5,066 

3 4 544±8 6±3.6 201±36 54±2 0.9±0.1 139 241 13,290 5,987 

4 10 574±57 15±2.4 176±41 83±17 0.7±0.0 318 338 2,676 2,241 

5 7 186±7 2±0.4 141±16 71±13 0.7±0.0 110 117 8,550 6,878 

6 6 376±24 8±1.8 176±63 85±1 0.8±0.0 100 160 9,005 2,923 

7 6 295±22 11±1.2 78±23 75±15 0.8±0.0 100 160 7,475 3,925 

8 7 174±4 3±1.7 92±107 67±9 0.7±0.0 100 100 7,116 1,916 

Abbreviations: EP – Experimental Plot; NoP – Number of MODIS Pixels covering an EP; Slope – mean relief slope within an EP; Aspect – mean relief 679 

aspect within an EP; Density – mean stand density within an EP; DiffAltT – mean altitudinal difference between an EP and meteorological stations used 680 

for the air temperature interpolation; DifAltP – altitudinal difference between an EP and the meteorological station used for the calculation of rainless 681 

periods; DiftT – mean horizontal distance between an EP and meteorological stations used for the calculation of air temperature-related extremes; DifP 682 

– mean horizontal distance between an EP and the meteorological station used for the calculation of rainless periods 683 

684 
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Table 3 Descriptive statistics of maximum observed NDVI declines, described in terms 685 

of percentage decline from the total NDVI amplitude, that occurred as a result of potential 686 

drought and heat stress during the period 2000–2010 in oak and beech stands in Central 687 

Europe. The variable describes the maximum stress induced by climatic factors to beech 688 

and oak that was recorded using MODIS imagery. 689 

 690 

 691 

 692 

693 

 
N Mean Med Min Max 0.25 0.75 StDev 

Beech 166.00 10.59 8.88 5.00 27.55 6.59 12.74 6.11 

Oak 173.00 12.47 9.71 5.00 41.81 6.86 14.53 8.70 
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Table 4 Descriptive statistics of explanatory variables used in the regression modelling of 694 

drought and heat effects on the variation in MODIS NDVI in oak and beech stands in 695 

Central Europe 696 

 697 

 
BEECH EXPERIMENTAL PLOTS OAK EXPERIMENTAL PLOTS 

Variables N Mean Med Min Max StDev N Mean Med Min Max StDev 

GDD 167 767 703 349 1443 332 173 917 954 334 1410 334 

Tavg 167 19.37 18.90 13.50 24.20 2.56 173 19.39 19.30 15.90 23.20 1.84 

Tmax 167 31.57 32.10 27.40 35.20 2.33 173 31.35 31.70 26.60 35.00 2.24 

Tmin 167 8.25 8.60 -0.50 15.90 4.55 173 8.43 8.60 3.60 13.10 2.71 

N-Tavg >15°C 167 10.59 9.00 4.00 27.00 4.97 173 12.31 11.00 4.00 42.00 5.57 

N-Tavg >18°C 167 8.10 7.00 2.00 18.00 4.02 173 9.52 9.00 2.00 32.00 4.93 

N-Tavg >21°C 167 4.62 5.00 0.00 13.00 3.93 173 4.62 4.00 0.00 14.00 2.94 

N-Tavg >24°C 167 1.80 1.00 0.00 6.00 2.10 173 1.24 1.00 0.00 8.00 1.53 

N-Tavg >27°C 167 0.08 0.00 0.00 1.00 0.28 173 0.00 0.00 0.00 0.00 0.00 

N-Tmax >20°C 167 11.49 10.00 5.00 29.00 5.24 173 12.98 11.00 5.00 42.00 5.30 

N-Tmax >23°C 167 9.41 8.00 4.00 22.00 3.97 173 11.29 10.00 4.00 38.00 5.16 

N-Tmax >26°C 167 7.32 7.00 3.00 13.00 2.97 173 7.55 7.00 1.00 26.00 3.88 

N-Tmax >29°C 167 3.96 5.00 0.00 10.00 3.08 173 3.76 4.00 0.00 12.00 2.98 

N-Tmax >32°C 167 1.19 1.00 0.00 4.00 1.43 173 1.04 0.00 0.00 6.00 1.48 

N-Tmax >35°C 167 0.06 0.00 0.00 1.00 0.24 173 0.00 0.00 0.00 0.00 0.00 

Drt 166 13 10.00 5.00 27.00 5.99 173 13 12.00 5.00 24.00 5.19 

Age 167 89 91 50 135 17 173 77 81 50 112 12 

Elev 167 531 500 391 845 105 173 341 320 166 661 134 

Abbreviations: GDD –growing degree days; Drt – length of drought period; Age – mean stand age; Elev – mean stand elevation; Tavg – mean air 698 

temperature during a drought period; Tmax – maximum air temperature during a drought period; Tmin – minimum air temperature during a drought 699 

period; N-Tavg >18°C (or >21°C, >24°C, >27°C) – number of days with mean air temperature above 18°C (or above 21°C, 24°C, 27°C), which 700 

occurred during a stress episode; N-Tmax >20°C (or >23°C, >26°C, >29°C, >32°C, >35°C) – number of days with maximum air temperature above 701 

20°C (or above 23°C, 26°C, 29°C, 32°C, 35°C), which occurred during a stress episode 702 

 703 

 704 

 705 

 706 

707 
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Table 5 Mean Pearson’s correlation coefficients between Neural Networks predicted and 708 

observed decline in NDVI value of beech and oak stands calculated for training, testing 709 

and validation sets. These coefficients are calculated from a set of the best performing 710 

Neural Networks. Correlation coefficients indicate the overall performance of neural 711 

network-based regression models 712 

  713 

  Training Testing Validation 

Beech 0.86 ± 6% 0.82 ± 8% 0.93 ± 0.6% 

Oak 0.88 ± 1.0% 0.81 ± 9% 0.96 ± 0.3% 

 714 
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Table 6 Mean sensitivity scores of explanatory variables produced by 15 best-performing Neural Networks. The scores indicate the predictive power of 715 

explanatory variables in explaining the observed declines in NDVI values induced by heat and drought stress. The higher the score, the closer the relationship 716 

between the explanatory and the dependent variables. 717 

 718 

BEECH EXPERIMENTAL PLOTS 

GDD N-Tmax 

>29°C 

N-Tmax 

>20°C 

Tmax N-Tavg 

>24°C 

N-Tavg 

>18°C 

Tmin N-Tmax 

>32°C 

N-Tavg 

>21°C 

N-Tavg 

>15°C 

Tavg Age N-Tmax 

>26°C 

N-Tmax 

>23°C 

Drt Elev Slope Aspect 

4.62 4.00 3.90 3.31 3.29 2.68 2.51 2.42 2.34 2.31 1.50 1.50 1.43 1.28 1.27 1.19 1.13 1.04 

OAK EXPERIMENTAL PLOTS 

N-Tavg 

>24°C 

N-Tmax 

>32°C 

N-Tmax 

>29°C 

N-Tavg 

>21°C 

GDD N-Tmax 

>20°C 

Tmax N-Tavg 

>15°C 

Tavg Age Tmin Drt Elev N-Tavg 

>18°C 

N-Tmax 

>26°C 

Aspect Slope N-Tmax 

>23°C 

5.60 3.18 2.51 1.63 1.61 1.54 1.54 1.53 1.48 1.42 1.38 1.32 1.29 1.28 1.24 1.23 1.18 1.17 

Abbreviations: GDD – growing degree days; Drt – length of drought period; Age – mean stand age; Elev – mean stand elevation; Tavg – mean air temperature during a drought period; Tmax – maximum air temperature during a drought period; Tmin – minimum air 719 

temperature during a drought period; N-Tavg >18°C (or >21°C, >24°C, >27°C) – number of days with mean air temperature above 18°C (or above 21°C, 24°C, 27°C), which occurred during a stress episode; N-Tmax >20°C (or >23°C, >26°C, >29°C, >32°C, >35°C) 720 

– number of days with maximum air temperature above 20°C (or above 23°C, 26°C, 29°C, 32°C, 35°C), which occurred during a stress episode 721 

 722 

 723 
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Figure captions 724 

Fig. 1 Position of the clusters of MODIS pixels covering homogenous mature beech and oak stands 725 

used for the investigations of MODIS-NDVI response to drought and heat stress. Meteorological 726 

stations used for the interpolation of climate data to the position of analysed groups of pixels are also 727 

shown.  728 

 729 

Fig. 2 Seasonal course of MODIS-NDVI observations from a single stand in one year (dots). Arrow 730 

identifies a typical episode of NDVI decline symptomatic of climatic stress. NDVImax represents the 731 

mean of 2-4 NDVI observation immediately preceding a stress episode (local maximum), NDVIstress is 732 

the value at the end of a stress episode, and NDVImin is the lowest NDVI value observed in local 733 

conditions. 734 

 735 

Fig. 3 Univariate relationships between maximum NDVI declines and predictor variables which were 736 

identified as the most influential by neural networks-based regression modelling in oak stands. 737 

 738 

Fig. 4 Univariate relationships between maximum NDVI declines and predictor variables which were 739 

identified as the most influential by neural networks-based regression modelling in beech stands.  740 

 741 

Fig. 5 Frequency of rainless periods longer than 3 days which did (dark columns) and did not (hashed 742 

columns) induce an observable decline in NDVI 743 

744 
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Appendix captions 745 

Appendix A 746 

Example of experimental plots used for the investigation of MODIS-NDVI responses to climatic 747 

stress. Each experimental plot in our experimental design consists of 4-13 MODIS pixels (250×250m) 748 

 749 

Appendix B 750 

An example of declining sequences of MODIS-NDVI identified in NDVI time series for selected 751 

beech and oak dominated MODIS pixels for the period 2000-2010. Such sequences are indicative of 752 

environmental stress affecting the physiological performance and spectral reflectance of vegetation. 753 

  754 
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Appendix C 755 

Reflectance of mature homogenous stands within two MODIS pixels with spatial resolution 250×250 756 

meters in red and near infrared (VNIR) spectral bands is shown in panes A) and B). Pane A) 757 

represents an 80 year old pure oak stand undergoing a rainless period lasting 18 days, while pane B) 758 

shows values from a pixel covering an 80 year old pure beech stand affected by a 12 day rainless 759 

period. Panes A1) and B1) show raw reflectance values, while A2) and B2) show percentage change 760 

relative to the reflectance  measured on the day of the last rain event.   761 

Spectral reflectance values in panes C) were measured by the LI-1800 Portable 762 

Spectroradiometer using 1800-12 Integration Sphere (Licor Inc.) collecting radiation reflected from 763 

the sampled material illuminated by a glass-halogen lamp. Three fresh overlapping leaves of Quercus 764 

robur were positioned in the sphere chamber without water and continuous reflectance readings were 765 

recorded for 54 hours with unequal time step in the range 400–1100 nm. At the end of the 766 

observation, the leaves were dry beyond natural range found in the field conditions in Central Europe. 767 

This supplementary analysis shows that spectral change in leaves with limited water availability 768 

observed by the MODIS sensor at stand scale is very consistent with changes observed in laboratory 769 

conditions at the leaf scale. The latter is free of any atmospheric or weather related  interferences. This 770 

indicates that, despite the limited comparability of the two sets of spectral responses, daily MODIS 771 

data can provide realistic information on vegetation stress dynamics which can be readily 772 

distinguished from intra-seasonal vegetation dynamics. 773 
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Figures 780 

 781 

Fig. 1  782 
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Fig. 2  784 
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Fig. 3787 
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Fig. 4789 
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Fig. 5 791 
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