Search from over 60,000 research works

Advanced Search

Deglacial changes of the southern margin of the southern westerly winds revealed by terrestrial records from SW Patagonia (52 degrees S)

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Moreno, P. I., Villa-Martínez, R., Cardenas, M. L. and Sagredo, E. A. (2012) Deglacial changes of the southern margin of the southern westerly winds revealed by terrestrial records from SW Patagonia (52 degrees S). Quaternary Science Reviews, 41. pp. 1-21. ISSN 0277-3791 doi: 10.1016/j.quascirev.2012.02.002

Abstract/Summary

Much of the ongoing discussion regarding synchrony or bipolar asynchrony of paleoclimate events has centered on the timing and structure of the last glacial termination in the southern mid- latitudes, in particular the southwestern Patagonian region (50�e55�S). Its location adjacent to the Drake Passage andnear the southern margin of the southern westerly winds (SWW) allows examining the postulated links between the Southern Oceane SWW coupled system and tmospheric CO2 variations through the last glacial termination. Results from two sites located in the Última Esperanza area (52�S) allow us to infer SWW-driven changes in hydrologic balance during this critical time interval. These findings indicate peatland development under temperate/wet conditions between 14,600 and 14,900 cal yr BP, followed by cooling and a lake transgressive phase that led to a shallow lake during the early part of the Antarctic Cold Reversal (ACR, 13,600-14,600 cal yr BP), followed in turn by a deeper lake and modest warming during Younger Dryas time (YD, 11,800-13,000 cal yr BP), superseded by terrestrialization and forest expansion at the beginning of the Holocene. We propose that the SWW (i) strengthened and shifted northward during ACR time causing a precipitation rise in northwestern and southwestern Patagonia coeval with mid- and high-latitude cooling and a halt in the deglacial atmospheric CO2 rise; (ii) shifted southward during YD time causing a precipitation decline/increase in NW/SW Patagonia, respectively, high-latitude warming, and invigorated CO2 release from the Southern Ocean; (iii) became weaker between 10,000 and 11,500 cal yr BP causing a precipitation decline throughout Patagonia, concurrent with peak mid- and high-latitude temperatures and atmospheric CO2 concentrations.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/36772
Item Type Article
Refereed Yes
Divisions Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Publisher Elsevier
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar