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Abstract

The Ultra Weak Variational Formulation (UWVF) is a powerful numerical
method for the approximation of acoustic, elastic and electromagnetic waves in
the time-harmonic regime. The use of Trefftz-type basis functions incorporates
the known wave-like behaviour of the solution in the discrete space, allowing
large reductions in the required number of degrees of freedom for a given accu-
racy, when compared to standard finite element methods. However, the UWVF
is not well disposed to the accurate approximation of singular sources in the in-
terior of the computational domain. We propose an adjustment to the UWVF
for seismic imaging applications, which we call the Source Extraction UWVF.
Differing fields are solved for in subdomains around the source, and matched on
the inter-domain boundaries. Numerical results are presented for a domain of
constant wavenumber and for a domain of varying sound speed in a model used
for seismic imaging.

Keywords: Ultra Weak Variational Formulation, Trefftz method, Helmholtz
equation, time-harmonic acoustic waves, source extraction, interior point
source, Hankel basis, Marmousi model

1. Introduction

The Ultra Weak Variational Formulation (UWVF), originally proposed by
Cessenat and Després in [1, 2], is a new-generation finite element method for
the accurate simulation of time-harmonic acoustic, elastic, and electromagnetic
waves. The area of time-harmonic wave scattering is a subject of much research,
with applications in seismology, medical imaging, and radar imaging.

We consider acoustic wave propagation, modelled in two dimensions by the
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following Helmholtz boundary value problem (BVP):

∇ ·

(
1

ρ
∇u

)
+

κ2

ρ
u = f in Ω, (1a)

(
1

ρ

∂u

∂n
− iσu

)
= Q

(
−
1

ρ

∂u

∂n
− iσu

)
+ g on Γ. (1b)

Here Ω ⊂ R2 is a bounded domain with Lipschitz boundary Γ; the density
ρ(x) and the wavenumber κ(x) are real positive and may vary throughout the
domain. The coupling parameter σ is real and positive, and f and g are the
volume and boundary source terms respectively. The parameterQ ∈ C, |Q| ≤ 1,
allows different types of boundary conditions: Q = 1, −1 and 0 correspond to
Neumann, Dirichlet, and impedance boundary conditions, respectively.

The UWVF is a Trefftz-type method: the exact solution of a Helmholtz
boundary value problem is approximated by a linear combination of basis func-
tions that, inside each mesh element, are solutions of the homogeneous Helm-
holtz equation, i.e. equation (1a) with right-hand side f = 0. By incorporating
information on the oscillatory behaviour of Helmholtz solutions into the approx-
imation space, the UWVF can produce accurate results requiring significantly
fewer degrees of freedom than standard finite element methods, in some cases
for mesh sizes encompassing several wavelengths λ.

The solution of the Helmholtz equation is often approximated using a plane
wave basis [1, 2, 3, 4, 5, 6]; however, it is also possible to use other solutions of
the homogeneous Helmholtz equation, such as a Fourier–Bessel functions as in
[7].

As with standard finite element methods (FEM), the domain Ω is parti-
tioned into a polygonal mesh; however the solution variables are impedance
traces 1

ρ
∂u
∂n − iσu on the skeleton of the mesh. These traces are approximated

by the corresponding traces of a Trefftz trial space and the approximation is
automatically achieved also in the element interiors if the discretised BVP is
homogeneous (f = 0), see [4, Theorem 4.1], [8, Theorem 4.5]. In [4, 5, 6, 9]
the UWVF has been shown to be a discontinuous Galerkin (DG) method with
Trefftz basis functions, allowing a simpler and more general derivation of the
formulation (see e.g. [6, §3.2]) and a more straightforward error analysis.

In seismic imaging applications, point sources (monopoles or dipoles) are
used in the interior of the domain, for example to represent an explosive sound
source. Modelling this situation requires solving the inhomogeneous Helmholtz
equation for a non-zero and singular source term f , for example a Dirac delta
function. To date, the use of the UWVF to solve the inhomogeneous form of the
Helmholtz equation has not received a great deal of attention in the literature:
typically, sources in the exterior of the domain have been simulated by im-
posing non-zero boundary conditions in BVPs for the homogeneous Helmholtz
equation, in order to demonstrate superior approximation properties of Trefftz
methods.

In [1, 2, 5, 9] the UWVF with non-zero source term f has been investigated,
and both a priori analysis and numerical experiments have been presented.
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Loeser andWitzigman [10] use UWVF to solve the Helmholtz equation (1a) with
a source term f = 1 in ΩS and f = 0 elsewhere, for an active region ΩS ⊂ Ω.
The UWVF solution is found in the source-free region Ω \ΩS only, after which,
in an additional post-processing step, a standard finite element method (FEM)
is used in the active region where f is non-zero. In practice, [10] suggests that
the FEM mesh size in the active region should be no larger than λ/30, where λ
is the problem wavelength, leading to a potentially computationally expensive
scheme.

Here, we investigate the applicability of the UWVF to seismic imaging by
considering the typical situation of an interior point source. We first consider
a domain of constant wave speed, and then extend our investigations to the
simulation of wave propagation through a layered velocity profile. We present
a simple yet accurate method to augment the UWVF in the case of a localised
non-zero source term f , which we call the Source Extraction UWVF. In this ap-
proach, the domain Ω is split into two regions: an inner source region containing
the source, and an outer region comprising the remainder of the domain. In the
inner region, a particular radiating solution of the inhomogeneous Helmholtz
equation with source f is subtracted from the field, so that the remainder of the
wavefield is amenable to a Trefftz approximation in the interior (this remainder
is the wavefield which is back-scattered from the outer region into the inner
region). In the outer region we solve for the total field. The solutions in the
two regions are matched by prescribing the jumps of the impedance and the
conjugate-impedance traces across element boundaries. If we consider a point
source (a Dirac delta), then we subtract the fundamental solution in the source
region. However the method can be easily generalised to other forms of sources,
such as for a dipole source. A related approach based on splitting of outgoing
and back-scattered fields is used in [11, 12] for finite difference methods in time
domain. A similar approach for the UWVF has been derived separately by
Gabard in [9, Section 5.1] for a system of linear hyperbolic equations, applied
with accurate results to the linearised Euler equations.

Details of the UWVF are given in Section 2, with explanation given as to
why solving the inhomogeneous form of the Helmholtz equation poses challenges
for the numerical method. In Section 3 we present the new adjustment of the
UWVF for the representation of an interior point source. Accurate results for a
domain with constant wavenumber are presented in Section 4, followed by results
for a domain with a varying sound speed profile. The sound speed profile for
the latter case is taken from a synthetic 2D acoustic model often used as a test
case in seismic inversion, the Marmousi model (see [13, 14] for example).

2. The ultra weak variational formulation of the inhomogeneous Helm-

holtz problem

We introduce in this section the classic UWVF for the inhomogeneous Helm-
holtz BVP (1), which is slightly more general than that considered in [1] in the
fact that varying coefficients are allowed (compare also with [3]). We mainly
follow the notation of [3].
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We partition Ω into a mesh T = {Ωk}
K
k=1

composed of triangular elements
Ωk. We denote the boundary of an element by ∂Ωk, the inter-element boundaries
by Σk,j := ∂Ωk ∩ ∂Ωj , and the edges on the outer boundary by Γk := ∂Ωk ∩ Γ,
where Γ := ∂Ω. The outward pointing unit normal vector on ∂Ωk is denoted nk.
The wavenumber and density are assumed to be constant on each element, so
piecewise constant in Ω, with κk := κ|Ωk

and ρk := ρ|Ωk
. As in [3], on the

inter-element boundaries, the parameter σ is defined as

σ :=
1

2

(
κk

ρk
+

κj

ρj

)
on Σk,j ;

on exterior edges we assume

σ :=
κk

ρk
on Γk.

We introduce the Trefftz space H :=
∏K

k=1
Hk, with

Hk :=

{
vk ∈ H1(Ωk), −∇ ·

(
1

ρk
∇vk

)
−

κ2

ρ k

vk = 0 in Ωk,
∂vk
∂nk

∈ L2(∂Ωk)

}
,

and we represent any v ∈ H as a vector {vk}Kk=1
with vk := v|Ωk

. To avoid
technical difficulties with the regularity of f and the solution u of the BVP (1),
as in [2, Section I.5.1], we start by assuming that u belongs to

H̃ :=

K∏

k=1

H̃k with H̃k :=

{
vk ∈ H1(Ωk),

∂vk
∂nk

∈ L2(∂Ωk)

}
.

If ρ is constant and f ∈ L2(Ω), this is always guaranteed, otherwise f |Ωk
/∈

H−1(Ω) implies uk /∈ H1(Ωk) (for example, if f is a Dirac delta), and a discon-
tinuous ρ may prevent uk from belonging to H3/2+ǫ(Ωk) for any ǫ > 0 and its
impedance trace from belonging to L2(∂Ωk).

We define the sesquilinear forms d, c : H̃ × H̃ → C as

d(v, w) :=

K∑

k=1

∫

∂Ωk

1

σ

(
−

1

ρk

∂

∂nk
− iσ

)
vk

(
−

1

ρk

∂

∂nk
− iσ

)
wk dS,

c(v, w) :=

K∑

k,j=1

k 6=j

∫

Σk,j

1

σ

(
−

1

ρj

∂

∂nj
− iσ

)
vj

(
1

ρk

∂

∂nk
− iσ

)
wk dS (2)

+
K∑

k=1

∫

Γk

Q

σ

(
−

1

ρk

∂

∂nk
− iσ

)
vk

(
1

ρk

∂

∂nk
− iσ

)
wk dS.

In [1, Theorem 1.3] it is proved that, if |Q| < 1 (to ensure well-posedness), ρ
and κ are constant, f ∈ L2(Ω) and g ∈ L2(Γ), then the solution u of the BVP
(1) satisfies the variational problem

d(u, v)− c(u, v) = −2i

K∑

k=1

∫

Ωk

fvk dV +

K∑

k=1

∫

Γk

g

σ

(
1

ρk

∂vk
∂nk

− iσvk

)
dS (3)
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for all v ∈ H . The same proof (see also [3, Equation (10)]) holds true also for

discontinuous coefficients (recall that we assumed u ∈ H̃).
We recall that the formulation (3) and the sesquilinear forms (2) were derived

in [1, Theorem 1.3] for the case of constant coefficients by summing over Ωk ∈ T
the identity

∫

∂Ωk

1

σ

(
−

1

ρk

∂

∂nk
− iσ

)
uk

(
−

1

ρk

∂

∂nk
− iσ

)
vk dS

−

∫

∂Ωk

1

σ

(
1

ρk

∂

∂nk
− iσ

)
uk

︸ ︷︷ ︸
=:Ak

(
1

ρk

∂

∂nk
− iσ

)
vk dS

= 2i

∫

∂Ωk

1

ρk

(
uk

∂vk
∂nk

−
∂uk

∂nk
vk

)
dS = −2i

∫

Ωk

fvk dV, (4)

which holds for all v ∈ H and for u ∈ H̃ solution of (1a), and substituting
the term denoted by Ak with the corresponding trace from the neighbouring
element or from the boundary condition. Note that complex wavenumbers κ
(i.e. absorbing media) can be considered as in [4, Section 5].

The usual UWVF discretisation consists in restricting the variational prob-
lem (3) to the discrete space Hh =

∏K
k=1

span{φk,l}
pk

l=1
⊂ H defined by the

basis functions φk,l ∈ Hk, 1 ≤ k ≤ K, 1 ≤ l ≤ pk, where pk is the number of
degrees of freedom located in Ωk and may vary in different elements.

When solving the homogeneous Helmholtz equation, all of the integrals in
(3) are defined on the element boundaries (as f ≡ 0 the only volume integral in
(3) vanishes). On the other hand, in the general case the right-hand side of (3)
includes an integral over all the elements where the source term f is non zero
(or point evaluations if f is a linear combination of point sources).

A standard choice of the Trefftz basis functions φk,l, i.e. equispaced plane
waves or circular waves (Fourier–Bessel functions), allows high orders of approx-
imation in the elements where f = 0; see [15]. On the contrary, when f 6= 0
inside Ωk, Trefftz functions lose their approximation properties. The use of
plane waves in the inhomogeneous case can provide the same approximation of
u as piecewise-linear polynomials only; this is supported by numerical experi-
ments that found moderately high orders of convergence for the approximation
of u on the skeleton of the mesh but only linear order in the meshsize h for the
volume error measured in the L2(Ω)-norm, see [1, Tables 3.3 and 3.4] and [5,
Section 5].

These two reasons, the integration on the mesh skeleton only and the higher
orders of approximation, motivated the investigation of the UWVF in the ho-
mogeneous case, and not much effort has been devoted to the source case. If
the UWVF is to be used in more general problems that may practically arise
in seismic imaging, this situation needs to be tackled. In the next section we
propose a modified formulation to extend the advantages of the UWVF to the
special case of point sources.
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3. The Source Extraction UWVF

We wish to solve the inhomogeneous Helmholtz BVP (1) in the domain Ω,
when the source term f is a point source:

f(x) = −δ(x− x0), x ∈ Ω, (5)

where δ is the Dirac delta function and x0 ∈ Ω. In this case, the right-hand
side of the UWVF formulation (3) becomes

∫
Ωk

fvk dV = −vk(x0); f /∈ L2(Ω)

and u /∈ H1(Ω). As it might be expected, numerical tests using the formulation
(3) proved extremely inaccurate at representing the source, with high errors in
the element containing x0; numerical experiments for this case are provided in
Section 4.1.

In order to introduce a modified formulation, we now fix some notation. We
split the domain in two open regions ΩS and ΩE , Ω = ΩS ∪ ΩE ∪ ΓS where
ΓS = ∂ΩS (as illustrated in Figure 1) such that the two regions correspond to
a partition of the mesh: T = T S ∪T E with Ωk ∈ T S if Ωk ⊂ ΩS and Ωk′ ∈ T E

if Ωk′ ⊂ ΩE . On ΓS , we denote by nS the unit normal vector outward pointing
from ΩS , and set nE = −nS . Moreover, we require: x0 ∈ Ωk for some Ωk ∈ T S

(thus the source is located in ΩS and it does not lie on the mesh skeleton);
the physical parameters are assumed to be constant in ΩS , i.e. ρk(x) = ρS and

κ(x) = κS for all x ∈ ΩS ; and ΩS to lie in the interior of Ω, i.e. ΓS ∩ Γ = ∅.

Γ
Ω

S

Γ
S

Ω
E

Figure 1: Subdivision of the domain and the mesh. ΓS is in red.

In ΩS , we write the field u as the sum of the known field uI generated by
the point source in free space (i.e. with constant parameters ρS and κS in the
whole plane and without any boundary conditions) and the unknown remainder
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uS, i.e.

u = uI + uS in ΩS , where uI(x) := ρS
i

4
H1

0 (κ
S |x− x0|),

where H1
0 is the Hankel function of the first kind and order zero. Then uI is

the fundamental solution of the Helmholtz equation (with constant parameter).
By separating out the total field u into the sum of the unknown field and the
known local particular solution of the inhomogeneous Helmholtz equation, we
can remove the known part, and so are left with the homogeneous form of the
equation. We can then use the UWVF to approximate uS ∈ H1(ΩS) alone, and
add in the known uI in a post-processing step. In the remainder of the domain
ΩE we approximate the total field u, which we now denote uE ∈ H1(ΩE) for
clarity.

Since uI is solution of

∇ ·

(
1

ρ
∇uI

)
+

κ2

ρ
uI = f in ΩS ,

and the traces of (uS + uI) and uE should agree on ΓS , we are left with two
homogeneous Helmholtz equations for uS and uE , posed in ΩS and ΩE respec-
tively, coupled via the impedance traces of uI :

∇ ·

(
1

ρ
∇uS

)
+

κ2

ρ
uS = 0 in ΩS ,

∇ ·

(
1

ρ
∇uE

)
+

κ2

ρ
uE = 0 in ΩE ,

(1 +Q)
1

ρ

∂u

∂n
− (1−Q)iσu = g on Γ,

(
1

ρS
∂

∂nS
− iσ

)
uS =

(
−

1

ρE
∂

∂nE
− iσ

)
uE −

(
1

ρS
∂

∂nS
− iσ

)
uI on ΓS ,

(
1

ρE
∂

∂nE
− iσ

)
uE=

(
−

1

ρS
∂

∂nS
− iσ

)
uS +

(
−

1

ρS
∂

∂nS
− iσ

)
uI on ΓS .

(6)

Here, ρE is the trace of ρ on ΓS taken from ΩE , which does not need to be
constant along ΓS , unlike ρS . Recall that on ΓS we defined nE = −nS, thus the
last two conditions in (6) correspond to the continuity of u and ρ−1∇u across
ΓS .

The benefit of using the UWVF to approximate uS ∈ H1(ΩS) alone is
threefold: (i) the fields to be approximated are much smoother than the solution
of the original problem; (ii) they are solution of the homogeneous Helmholtz
equation, thus the approximation by Trefftz functions can deliver great accuracy;
and (iii) all the terms that will appear at the right-hand side of the UWVF are
integrals on some part of the mesh skeleton (see equation (8) below).

In the case of a domain of constant wavenumber it would be possible to
approximate uS only on the whole domain (i.e., to choose ΩS = Ω, ΩE = ∅,
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and solve a BVP whose trace source g is modified by subtracting a trace of
uI). However, if the wavenumber is varying in the domain, it is unlikely that a
special solution uI would be known in the whole of Ω.

As in Section 2, if we follow the proof of [1, Theorem 1.3] and insert the last
two conditions of (6) in (4), we obtain the ultra weak variational formulation
of the BVP (6) as

seek u∗ ∈ H s.t. d(u∗, w)− c(u∗, w) = β(w) ∀w ∈ H, (7)

where u∗ stands for uS and uE in ΩS and ΩE respectively. The sesquilinear
forms d(·, ·) and c(·, ·) were defined in (2) and the antilinear functional β : H →
C is defined as

β(w) :=

K∑

k=1

∫

Γk

g

σ

(
1

ρk

∂

∂nk
− iσ

)
wk dS (8)

−
∑

Ωk∈T S

∫

∂Ωk∩ΓS

1

σ

(
1

ρS
∂

∂nS
− iσ

)
uI

(
1

ρS
∂

∂nS
− iσ

)
wk dS

+
∑

Ωk∈T E

∫

∂Ωk∩ΓS

1

σ

(
−

1

ρS
∂

∂nS
− iσ

)
uI

(
1

ρE
∂

∂nE
− iσ

)
wk dS ∀w ∈ H.

The discrete version of the UWVF read as follows: given a finite dimensional
subspace Hh ⊂ H ,

seek u∗
h ∈ Hh s.t. d(u∗

h, wh)− c(u∗
h, wh) = β(wh) ∀wh ∈ Hh. (9)

The corresponding linear system of equations has the same matrix as the
system obtained from the standard UWVF (3), while the right-hand side vector
is different. The system reads (D−C)X = b, where X is the coefficient vector of
u∗
h in a given basis of Hh. The matrix D is Hermitian and block diagonal (with

blocks Dk of size pk, for k = 1, . . . ,K), with each entry given by an integral
over the boundary of an element; each entry of the sparse matrix C contains
two integrals over edges; see [3, Section 3] for more details.

The implementation of the Source Extraction UWVF depends on the choice
of the source region ΩS . Its maximal size is dictated by the parameters κ and ρ,
since these must be constant in ΩS . Once ΩS has been fixed, mesh refinement
can be performed independently in ΩS and ΩE , thus making this choice mesh-
independent. Numerical experiments show that reducing the size of ΩS when
the mesh is refined may reduce the accuracy of the numerical solution.

3.1. Well-posedness of the Source Extraction UWVF

We define the trace space X :=
∏

k∈K L2(∂Ωk), equipped with the norm

‖X‖2X :=

K∑

k=1

∫

∂Ωk

1

σ
|Xk|

2 dS ∀X = (X1, . . .XK) ∈ X.
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In the space X we define the impedance and the “adjoint impedance” trace
operators

I : H → X, F : I(H) → X

as

I(v) :=
(
I1(v), . . . , IK(v)

)
, Ik(v) := −

1

ρk

∂vk
∂n

− iσvk and

F
(
I(v)

)
:=
(
F1

(
I1(v)

)
, . . . , FK

(
IK(v)

))
, Fk

(
Ik(v)

)
:=

1

ρk

∂vk
∂n

− iσvk.

Then the UWVF sesquilinear form (3) may immediately be rewritten as

d(u, v)− c(u, v) =

K∑

k=1

[∫

∂Ωk

1

σ
Ik(u)Ik(v) dS

−
K∑

j=1

j 6=k

∫

Σj,k

1

σ
Ij(u)Fk

(
Ik(v)

)
dS −

∫

Γk

Q

σ
Ik(u)Fk

(
Ik(v)

)
dS

]
.

Buffa and Monk defined in [4, (2.16)] the sesquilinear form a : X ×X → C

a(X ,Y) :=
1

2

(
d(u, v)− c(u, v)

)
for u, v ∈ H s.t. I(u) = X , I(v) = Y

in the case Q = 0. The form a(·, ·) is well-defined, as there exists a unique u ∈ H
satisfying I(u) = X ∈ X by the well-posedness of the corresponding Helmholtz
impedance BVPs posed in the mesh elements. In other words I : H → X is
invertible. Note that in [4] κ is taken constant, ρ = 1, η is used in place of σ
and the relationship between X and u (and similarly between Y and v) follows
a different sign convention.

Lemma 3.4 of [4] provides the coercivity of a(·, ·) when Q = 0. The appli-
cability of this result to the present setting can be verified by defining v :=
(−iρ)−1∇u, Xk := (−iσuk+ivk ·nk) ∈ L2(∂Ωk) and repeating exactly the same
proofs of [4] with a different sign convention; the discontinuous coefficients do
not affect this result. From this, both the continuous and the discrete prob-
lems (7) and (9) are well-posed. We have the following error bound for the
discretisation of the UWVF which was proved in [4, Theorem 3.5]:

K∑

j,k=1

∫

Σj,k

(
σ

2

∣∣Ju∗ − u∗
hK
∣∣2 + 1

2σ

∣∣∣∣
r1

ρ
∇u∗ −∇u∗

h

z
· n

∣∣∣∣
2
)

dS

+
∑

k

∫

Γk

1

2σ

(∣∣∣Fk

(
Ik(u

∗)
)
− Fk

(
Ik(u

∗
h)
)∣∣∣

2

+
∣∣∣Ik(u∗)− Ik(u

∗
h)
∣∣∣
2)

dS

≤4 inf
vh∈Hh

‖I(u∗)− I(vh)‖
2

X , (10)

where J·K denotes the jumps across the mesh faces Σjk.
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This bound allows us to control the traces of the error on the mesh skeleton
only. Theorem 4.1 of [4] then gives an error estimate in the L2(Ω)-norm, but
holds for BVPs withH2(Ω)-regularity only: since here we consider discontinuous
coefficients, it is not directly applicable in the present case. In order to obtain
estimates in L2(Ω), a new duality result similar to Lemma 4.4 of [8] (which
improves on [4, Theorem 4.1] in requiring weaker regularity than H2(Ω)) is
required.

Given a particular discrete Trefftz space, in order to obtain orders of conver-
gence from the quasi-optimality bound (10), only best-approximation estimates
are needed. In the case of plane wave or Fourier–Bessel (i.e. circular waves)
basis, these approximation bounds are proved and discussed in [15].

4. Numerical examples

We present two numerical examples of the Source Extraction UWVF de-
scribed in Section 3 for solving the inhomogeneous Helmholtz equation (1a). In
the first we consider the approximation of the wave generated by a point source
in a domain of constant wave speed, and compare the accuracy with that of the
original formulation. In the second example we consider the suitability of the
Source Extraction UWVF for seismic imaging applications, testing on a wave
speed profile given by a synthetic seismic model.

We solve the inhomogeneous Helmholtz problem (1) with a point source as
in (5). In both examples we use a constant density ρ = 1 over the domain, while
we take the wavenumber κ to be constant in the first example and discontinuous
in the second one. We fix Q = 0 in the impedance boundary condition (1b). The
source region ΩS is defined to comprise four triangular elements: that containing
the point source and its three neighbours (see Figure 1).

The Trefftz basis functions φk,l ∈ Hk used are Hankel functions, defined as

φk,l(x) =

{
H1

0 (κk|x− yk,l|) in Ωk,
0 elsewhere,

(11)

for l = 1, ..., pk, k = 1, ...,K. Their centres yk,l are equispaced and located
externally to the respective elements:

yk,l =

(
xC
k +R cos

(
2πl

pk

)
, yCk +R sin

(
2πl

pk

))
, l = 1, ..., pk.

Here R > dmax > 0 is a positive constant greater than the maximum distance
dmax = maxs(|xC

k − xV
k,s|) between the centroid of the element xC

k = (xC
k , y

C
k )

and each vertex xV
k,s of Ωk, s = 1, 2, 3. The Hankel basis permits flexibility in

the choice of the propagation direction and the curvature of wavefronts. These
basis functions approximate the conventional plane waves if the points yk,l lie
in the far field (i.e. for large values of R), whereas by taking yk,l closer to Ωk the
wavefront curvature is increased. The UWVF integrals in (2) and (8) cannot be
evaluated in closed form, so a numerical integration method is required. We use
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a Gauss–Legendre quadrature rule, with forty points per wavelength for high
accuracy, allowing us to focus on the effects of the Source Extraction UWVF.

In each simulation, an initial maximum number p of basis functions per
element is set, then pk is reduced if the condition number of the submatrix Dk

is above a set tolerance level of 1010: this scheme was first introduced in [3].
More details about the effect of the number of basis functions and the element
size on the conditioning of Dk can be found in [3, 1, 16].

4.1. Interior point source in a domain with constant parameters

For the first example we consider a square domain Ω = (0, 3)×(0, 3) in which
the wavenumber is constant throughout. In order to focus just on the accuracy
of the Source Extraction UWVF, the boundary condition (1b) (with Q = 0)
was set to impose as exact solution of the BVP the fundamental solution of the
Helmholtz equation,

u(x) =
i

4
H1

0 (κ|x− x0|), (12)

with x0 = (1.40, 1.60) ∈ Ω. We approximate this solution using both the
classical UWVF (3) and the Source Extraction UWVF described in Section 3.
An example solution of the Source Extraction UWVF is shown in Figure 2
for κ = 10, along with the computational mesh of K = 116 elements; this
approximation was achieved using p = 15 basis functions on each element. Table

Figure 2: The real part of the the inhomogeneous Helmholtz problem with constant coefficients
for κ = 10, approximated using the Source Extraction UWVF on K = 116 elements by p = 15
basis functions per element. The computational mesh is superimposed.

1 shows the relative error, measured in the L2(Ω)-norm, for the two methods,
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together with the average number Nλ of degrees of freedom per wavelength in
each direction, computed as

Nλ = λ

√∑K
k=1

pk
|Ω|

,

where |Ω| is the area of the domain. The Source Extraction UWVF provides a
much higher accuracy than the classical formulation for the same approximation
parameters K and p: in the example in Table 1, the relative L2(Ω)-error of
the classical UWVF stagnates at about 46%, while the error of the Source
Extraction UWVF seems to decrease exponentially, and at p = 16 is four orders
of magnitude smaller than the original version. In all cases it was not necessary
to reduce pk to maintain the condition number bound, so pk = p for k = 1, ...,K.

p L2(Ω) relative error, L2(Ω) relative error, Nλ

classical UWVF Source Extraction UWVF
9 4.6148× 10−1 9.8941× 10−3 6.7672
10 4.6138× 10−1 5.2901× 10−3 7.1332
11 4.6087× 10−1 1.5578× 10−3 7.4814
12 4.6159× 10−1 8.2696× 10−4 7.8140
13 4.6154× 10−1 3.3895× 10−4 8.1331
14 4.6151× 10−1 2.2961× 10−4 8.4401
15 4.6145× 10−1 8.5399× 10−5 8.7364
16 4.6145× 10−1 6.5757× 10−5 9.0229

Table 1: Errors of the classical and the Source Extraction UWVF measured in L2(Ω)-norm for
a point source in the interior of a homogeneous domain. Approximation by p equally spaced
point sources per element, K = 116, κ = 10, Ω = (0, 3)× (0, 3).

The accuracy obtained by the Source Extraction UWVF for this BVP is
comparable to that achieved by the classical formulation of the UWVF when
solving the homogeneous Helmholtz equation (f = 0) for a BVP whose exact
solution is a fundamental solution centred outside the domain Ω (i.e. u as in
(12) with x0 /∈ Ω); see Table 2 for the UWVF error in this setting.

The plot in Figure 3 shows that accurate results can be achieved for various
wavenumbers using the Source Extraction UWVF for approximating an interior
point source problem. As expected, computations with the fundamental solution
centred at x0 used as one of the basis functions gave results accurate to machine
precision, even when using elements several wavelengths in width.

4.2. Interior point source in a section of a smoothed Marmousi model

We now progress to testing the method on a domain more relevant to seismic
imaging, where the sound speed is non-constant. The synthetic Marmousi model
is a 2D representation of typical geophysical structures in the subsurface of the
Earth, widely used as a test problem in seismic imaging [14]. The domain
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p L2(Ω) relative error, Nλ

classical UWVF
10 5.6961× 10−3 7.1332
11 1.1964× 10−3 7.4814
12 8.6834× 10−4 7.8140
13 1.7065× 10−4 8.1331
14 9.6792× 10−5 8.4401
15 1.8955× 10−5 8.7364

Table 2: Errors of the classical formulation measured in L2(Ω)-norm for the homogeneous
Helmholtz equation: the exact solution is a fundamental solution centred at (−0.5, 1.5) in
the exterior of the domain. Approximation by p equally spaced point sources per element,
K = 116, κ = 10, Ω = (0, 3)× (0, 3).
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Figure 3: Relative L2(Ω) errors against total number of degrees of freedom for the inhomoge-
neous Helmholtz problem with constant coefficients, approximated using the Source Extrac-
tion UWVF on K = 116 elements in Ω = (0, 3) × (0, 3). For κ = 5 we consider p = 9, . . . , 13,
for κ = 10 p = 10, . . . , 15, and for κ = 20 p = 13, . . . , 19.

Ω is taken as a section of a smoothed Marmousi sound speed profile, that of
x ∈ (3.5131, 7.0022) km, z ∈ (0, 2.0565) km, as shown in the upper plot of
Figure 4. As we use a constant density ρ = 1 throughout, the only discontinuous
parameter in the discretisation of the domain is the wavenumber κ.

For the Source Extraction UWVF approximation, two levels of mesh refine-
ments are used, resulting in K = 485 and K = 771 triangular elements. The
point source is located in x0 = (6.018, 0.5768) and lies in the interior of an
element, thus we avoid the case of the solution singularity coinciding with el-
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Figure 4: Upper plot: wave speed (km/s) in a section of the smoothed Marmousi model.
Centre and lower plots: wavenumber κk in each element of the discretisation of the above
velocity profile for the frequency 5 Hz, using K = 485 elements (centre plot) and K = 771
elements (lower plot). (Recall that κ = 2π·frequency/wave speed.) The point source location
is marked by a red dot.
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ement edges or vertices. In order to explore just the accuracy associated with
source extraction, a simple homogeneous impedance condition is imposed on
the boundary (1b with Q = 0 and g = 0).

To obtain a piecewise-constant wavenumber, for each Ωk ∈ T E , κ|Ωk
= κk

is taken to be the average of the wavenumber of the smoothed Marmousi model
at the three vertices of the element. In ΩS the wavenumber is constant, taken
as the average of values interpolated at the centre of each Ωk ∈ ΩS . The centre
and lower plots of Figure 4 show the two meshes used, the discretised (piecewise
constant) wavenumber for a frequency of 5 Hz and the position of the point
source. The same discretisations are used for the frequency 10 Hz, resulting in
the wavenumber in each element being doubled.

The angularly equispaced basis (11) is used, with R = 100 to replicate the
conventional plane wave basis. An initial maximum number p = 15 of basis
functions per element is set, and then pk reduced if the condition number of the
submatrix Dk is above the tolerance level of 1010. The range of values taken by
pk across the mesh and the total number of degrees of freedom obtained for the
frequencies 5 and 10 Hz and for the two meshes is summarised in Table 3.

Frequency K Range of pK Total number of degrees of freedom
5 Hz 485 [8,. . . ,15] 5,162
5 Hz 771 [8,. . . ,13] 6,636
10 Hz 485 [11,. . . ,15] 7,417
10 Hz 771 [10,. . . ,15] 9,749

Table 3: The range of the values taken by the local number of degrees of freedom pk and the
total number of degrees of freedom

∑
K

k=1
pk obtained with the adaptive procedure for the

frequencies 5 and 10 Hz and for the two meshes with 485 and 771 triangles shown in Figure 4.

The upper and centre plots of Figure 5 show the real part of the Source
Extraction UWVF solution for the frequency 5 Hz and for the discretisations
with K = 485 and K = 771 elements, respectively. The lower plot shows the
real part of a reference solution computed with a finite difference scheme for
comparison. (This was obtained on a regular structured grid with 180 points
per wavelength and using the method described in [17].) Figure 6 shows results
in the same setup for the frequency 10 Hz. In both cases, the general pattern
and areas of heightened or dampened amplitudes do coincide.

5. Conclusions

We have considered the use of the UWVF for solving the inhomogeneous
Helmholtz equation in the special case of a point source. The UWVF typi-
cally has problems when the Trefftz basis functions do not well represent the
inhomogeneity of the equation. To avoid the use of alternative numerical meth-
ods in the region of inhomogeneity, we propose an augmentation of the UWVF
equations called the Source Extraction UWVF. This technique requires only a

15



Figure 5: Real part of the total field approximation in the smoothed Marmousi section with
frequency 5 Hz: UWVF solution with K = 485 and maxk pk = 15 (upper plot), UWVF
solution with K = 771 and maxk pk = 13 (centre plot), finite difference solution (lower plot).
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Figure 6: Real part of the total field approximation in the smoothed Marmousi section with
frequency 10 Hz: UWVF solution with K = 485 and maxk pk = 15 (upper plot), UWVF
solution with K = 771 and maxk pk = 15 (centre plot), finite difference solution (lower plot).
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homogeneous equation to be solved, with inhomogeneity introduced in a post-
processing step, thus it better exploits the Trefftz property of the discrete space.
For a point source, we approximate the unknown back-scattered field in a re-
gion surrounding the source, and match this to the total field approximated
in the remainder of the domain. In the considered examples we use a Dirac
delta point source; however, the augmentation of the method can be easily
generalised to other forms of source function, such as dipoles and multipoles.
Following on from work in [4], we show that the Source Extraction UWVF is
well-posed and satisfies the error bound (10) on the mesh skeleton in the case
of impedance boundary conditions and sufficiently smooth solution. Numerical
simulation has shown that the relative error of the Source Extraction UWVF
can be several orders of magnitude smaller than that of the classical UWVF for
the approximation of interior point sources. The method is also used to provide
simulation of wave scattering in a sound speed profile typical of seismic imaging
applications. Results presented concur with those of a finite difference method.
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