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Effective LAI and CHP of a Single Tree From
Small-Footprint Full-Waveform LiDAR

Karolina D. Fieber, Ian J. Davenport, Mihai A. Tanase, James M. Ferryman,
Robert J. Gurney, Jeffrey P. Walker, and Jorg M. Hacker

Abstract—This letter has tested the canopy height profile (CHP)
methodology as a way of effective leaf area index (LAIe) and
vertical vegetation profile retrieval at a single-tree level. Waveform
and discrete airborne LiDAR data from six swaths, as well as from
the combined data of six swaths, were used to extract the LAIe of
a single live Callitris glaucophylla tree. LAIe was extracted from
raw waveform as an intermediate step in the CHP methodology,
with two different vegetation-ground reflectance ratios. Discrete
point LAIe estimates were derived from the gap probability using
the following: 1) single ground returns and 2) all ground returns.
LiDAR LAIe retrievals were subsequently compared to hemi-
spherical photography estimates, yielding mean values within
±7% of the latter, depending on the method used. The CHP of
a single dead Callitris glaucophylla tree, representing the distri-
bution of vegetation material, was verified with a field profile
manually reconstructed from convergent photographs taken with
a fixed-focal-length camera. A binwise comparison of the two
profiles showed very high correlation between the data reach-
ing R2 of 0.86 for the CHP from combined swaths. Using a
study-area-adjusted reflectance ratio improved the correlation
between the profiles, but only marginally in comparison to using
an arbitrary ratio of 0.5 for the laser wavelength of 1550 nm.

Index Terms—Canopy height profile (CHP), effective leaf
area index (LAIe), full-waveform airborne LiDAR, single tree,
Soil Moisture Active Passive Experiment (SMAPEx), vegetation
profile.

I. INTRODUCTION

KNOWLEDGE of canopy structure is important in the
understanding of forest ecosystems functioning [1]. How

the foliage is arranged in 3-D space determines the interaction

Manuscript received September 4, 2013; revised October 4, 2013 and
January 22, 2014; accepted January 24, 2014. This work was supported in
part by the Engineering and Physical Sciences Research Council under Grant
EP/P505682/1 and in part by the School of Mathematical and Physical Sciences
and School of Systems Engineering of the University of Reading, U.K. The
data used in the study were acquired as part of the Third Soil Moisture
Active Passive experiment (SMAPEx-3) and funded by Australian Research
Council Projects LE0560930, DP09845861, and FS100100040. The waveform
processing was funded by the National Centre for Earth Observation, U.K. The
2012 data set was funded by Airborne Research Australia.

K. D. Fieber and J. M. Ferryman are with the School of Systems
Engineering, University of Reading, Reading RG6 6AY, U.K. (e-mail:
k.fieber@pgr.reading.ac.uk).

I. J. Davenport and R. J. Gurney are with the School of Mathematical and
Physical Sciences, University of Reading, Reading RG6 6AL, U.K.

M. A. Tanase is with the University of Melbourne, Melbourne, Vic. 3010,
Australia.

J. P. Walker is with the Faculty of Engineering, Monash University,
Melbourne, Vic. 3800, Australia.

J. M. Hacker is with the Airborne Research Australia, School of Environ-
ment, Flinders University, Adelaide, S.A. 5001, Australia.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2014.2303500

between vegetation and atmosphere and drives the exchange of
energy between them [2], [3]. Canopy structure is often param-
eterized by vegetation indices such as the leaf area index (LAI).
LAI, defined as half the total leaf area per unit ground area
[4], changes with height within the canopy, and this variation is
often characterized as vertical foliage profiles [5], [6]. Due to its
3-D character, LiDAR data have been found particularly suited
for the description of vegetation architecture by many scientists
[7]–[9]. Data from a range of platforms have been tested for
LAI retrieval. Recently, some attention has been given to full-
waveform laser scanners, which, in contrast to discrete systems,
provide the entire recording of the reflected energy from the
targets in the laser path. They therefore facilitate the retrieval of
vertical vegetation distribution directly from the returned light
curve.

Indirect methods of LAI estimation, such as LiDAR or hemi-
spherical photography, rely on the gap fraction approach, which
assumes the random distribution of canopy elements. In reality,
this assumption is often violated, particularly for coniferous
trees for which clumping appears at several levels. Furthermore,
indirect methods do not differentiate between woody and foliar
elements of vegetation. To emphasize the difference between
true LAI value and indirect estimates, several terms have been
used in the literature. These include plant area index, vegetation
area index, and effective LAI (LAIe). The latter term, proposed
in [10] and following suggestions in [2], is the most suitable
for this particular study since the LAI techniques here have
not been corrected for clumping or contribution of woody
elements.

Most studies focus on plot- and site-level LAI and foliage
profile retrievals. With the availability of small-footprint full-
waveform laser data, it is now possible to retrieve them at a
much smaller scale, such as a single tree. In this letter, the
previously developed methodology of the Scanning Lidar Im-
ager of Canopies by Echo Recovery (SLICER) canopy height
profile (CHP) [7] adapted to small-footprint LiDAR data by
Fieber et al. [11] is tested for the extraction of LAIe and
CHP of two single trees. To compensate for the small num-
ber of trees tested (due to ground-truth data limitations), six
independent swaths of LiDAR data are used for the analysis.
The raw-waveform method based on CHP processing, as well
as two discrete point methods, is contrasted and compared to
hemispherical photography LAIe estimates of a live Callitris
glaucophylla tree. A CHP of a dead Callitris glaucophylla tree
is validated against a “field” tree profile, reconstructed based
on convergent photographs taken in the field with a fixed-focal-
length camera. This letter aims to assess the suitability of the
CHP approach for LAIe and vegetation profile retrieval from
small-footprint LiDAR data at a single-tree level.

1545-598X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Left: Terrestrial photography of the two Callitris glaucophylla
trees. Right: Reconstruction of the tree structure in PhotoModeler (orange =
dead tree, green = live tree structure, white = leaves).

II. STUDY AREA AND DATA

The study area is located in the Gillenbah forest, close to
the town of Narrandera, in New South Wales, Australia. It is
a relatively sparse white cypress pine (Callitris glaucophylla)
forest with a small proportion (less than 10%) of Grey Box
(Eucalyptus microcarpa). Two single Callitris glaucophylla
trees, one live and one dead, were chosen for this study (see
Fig. 1). The trees are growing next to each other and are located
at 55454654E, 6147221S, in the center of the forest. Field
measurements and five swaths of LiDAR data over the study
area were acquired during the Soil Moisture Active Passive
Experiment 3 (SMAPEx-3) in September 2011 [12]. The last
swath of LiDAR data, courtesy of Airborne Research Australia
(ARA), was acquired in December 2012.

A. Field Data

During the site visit on September 16, 2011, the height of
both trees was measured using a clinometer. Convergent pho-
tographs were taken around the trees with a fixed-focal-length
Nikon D40 camera to enable manual tree structure reconstruc-
tion by photogrammetric means. Additionally, hemispherical
upward-pointing photographs of the live Callitris glaucophylla
were taken in four cardinal directions in order to facilitate the
estimation of the LAIe.

B. LiDAR Data

All LiDAR data over the study area were acquired with
a RIEGL LMS-Q560 full-waveform scanner by ARA. Both
transmitted and received waveforms were recorded with a
frequency of 1 GHz (1-ns spacing). The area of the two trees
was covered by six LiDAR swaths, each with an average shot
density of 9 points/m2. Three of the swaths were acquired on
September 6, 2011, two on September 22, 2011, and the last
swath on December 19, 2012. In SMAPEx-3 acquisition, the
laser instrument was mounted on a light aircraft and flown
at 350 m above ground level (AGL), resulting in a 0.175-m
footprint diameter. The 2012 LiDAR was flown at 300 m AGL,

Fig. 2. Histograms of scan angle distributions for six swaths for (left) live and
(right) dead Callitris glaucophylla.

providing a 0.15-m footprint. The waveforms incident on the
live and the dead tree were carefully selected and extracted from
each swath to enable the precise LAIe estimation of the live tree
and CHP generation of the dead tree.

For four of the swaths (24, 76, 82, and 86), the trees were
located at the swath’s edge, at large incidence angles (18◦–24◦)
(see Fig. 2). For the remaining two swaths (29 and 41), the trees
were situated at the center and therefore sampled nearly at nadir.
Swaths 24, 29, 82, and 86 were flown due northwest. The trees
in swaths 24 and 86 were situated on the SW edge of that swath,
causing the south of the trees to be obscured and not sampled
well. In swath 29, the trees were in the center of the swath,
whereas in swath 82, the trees were on the NE edge of the
swath, causing the north side of the tree to be obscured. Swath
41 was flown from south to north with the trees at the center
of the swath. The flight line of swath 76 was from northwest to
southeast with the trees on the southern edge of the swath, again
causing the south of the trees to be undersampled. Therefore,
what the LiDAR captured in swaths 24, 76, and 86 was quite
different to the capture of swath 82. The remaining two swaths,
acquired at nearly nadir, provided the most even description of
tree structure.

III. METHODS

A. Convergent Photographs

The preprocessing of convergent photographs was under-
taken using the commercial software PhotoModeler (Eos Sys-
tems Inc.). Calibration of the camera was performed using
12 photographs of the calibration grid taken prior to fieldwork
and processed according to the PhotoModeler instructions [13].
The overall root mean square error (RMSE) of the camera
calibration was 0.33 pixels, and the camera focal length of
35.29 mm was obtained.

With the calibration parameters known, homologous points
were referenced in convergent photographs, allowing the po-
sition and orientation of each photograph to be determined
(calculation of the camera position by resection). The scale and
orientation of the model was set using the GPS measurement
of four fence posts located nearby and visible in the images.
This was then verified by checking the length of a 1-m ruler
placed on site during the field visit. The length of the ruler was
found to be accurate to within 1 cm. The final PhotoModeler
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photo-orientation project of the forest scene was solving well
with the overall RMSE of 0.40 pixels (i.e., for photographs
taken 18 m away from the target, this equates to approximately
2 mm).

Using the orientated photographs, the structure of both trees
was reconstructed by measuring corresponding tree points.
Reconstruction was relatively easy in the case of the dead tree.
However, due to obstruction by the foliage, the reconstruction
of the structure of the live Callitris glaucophylla tree was much
more difficult. Fig. 1 shows the result of this reconstruction.
Since the dead tree had its structure represented better than the
live tree, the histogram of its points was used for the validation
of LiDAR CHP.

It needs to be mentioned that the presented method of tree
structure reconstruction has its drawbacks. The main problem
was the wind causing the trees to move and therefore shifting
them between photographs. A way to solve this problem would
be to use synchronized cameras and, possibly, to capture the
photographs as stereo pairs. Furthermore, the measurement of
homologous points was limited due to difficulty in identifying
the same parts of the tree from different angles of convergent
photographs. The point distribution was also dependent on the
degree of occlusions and was subject to the operator’s choice of
homologous points (random, rather than in an irregular grid as
in the case of LiDAR).

B. Hemispherical Photography

Hemispherical photographs (also called fish-eye pho-
tographs) were processed to obtain an estimate of LAIe of the
live tree using HemiView software with the “single tree” option.
Field-measured tree height and crown radius estimated based
on the PhotoModeler model were used as input values. A half
ellipse was chosen as the best tree shape approximation. Due to
some obstructions present in the photographs, the original im-
ages were masked out to hide everything that did not represent
the crown of the tree and to match the selected LiDAR data as
closely as possible. Only the part of the photograph tangent to
the crown was taken into account. The LAIe estimates for each
of the four photographs were averaged to produce the final fish-
eye lens LAIe value of the live tree.

C. LiDAR Data

All LiDAR swaths were processed to detect peaks in wave-
forms and optimized with a trust-region-reflective algorithm
using the custom decomposition procedure described in [14].
For each data set, a digital terrain model (DTM) was produced
from single returns classified as ground and was used together
with the original waveform amplitude train, and it optimized
parameters of peaks in the CHP methodology [7], [11]. The
LiDAR LAIe of the live tree was derived from raw waveform
(as a step in CHP) and from discrete points extracted from
the waveform. All LAIe retrievals were then compared to the
estimates from the fish-eye photography. The calculations of
LAIe and CHP were performed separately for each of the
six swaths as well as for the combined data set of the six
swaths. The CHP of the dead tree was validated against the

PhotoModeler tree profile using binwise ordinary least square
regression (15-cm height bins). Since the profiles represent the
relative distribution of vegetation, the RMSE was normalized
by the maximum bin value in the PhotoModeler profile to
provide normalized RMSEnorm.

1) Raw-Waveform LAI and CHP: The purpose of the CHP
methodology was to represent the distribution of foliage more
accurately than raw waveform, by scaling up return energy
with increasing range to account for the fact that less energy is
incident for the later returns. The CHP procedure is performed
in five stages: waveform alignment, returned energy profile,
canopy closure profile, cumulative leaf (plant) area index pro-
file, and CHP. The details of this methodology adapted to the
small-footprint airborne scanner can be found in [11].

The CHP procedure was applied twice with different re-
flectance ratio values producing two estimates of LAIe from
raw waveform and two CHPs. Since the ground is approxi-
mately twice as reflective as vegetation at the laser wavelength
(1550 nm), an arbitrary ratio of 0.5 was used initially (WF1).
The soil in the study area is a mixture of sand, silt, and clay.
Taking a mean reflectance of those three soils (according to
Bowker et al. [15]) at a LiDAR wavelength of 1550 nm and es-
timating the typical reflectance of vegetation, the ratio between
vegetation and the ground is around 0.4. The computation of
the Gillenbah forest study-area-adjusted reflectance ratio was
performed based on the procedure proposed in [16] and proved
consistent with what could be predicted for the soil in the study
area. The ratio of 0.42 was therefore used in the second method
(WF2).

2) Discrete Point LAIe: The point clouds resulting from the
custom decomposition, after DTM subtraction, were used to
provide a discrete point LAIe derived from the gap probability.
Two gap probability (P ) ratios were tested: 1) single ground
returns (< 0.5 m) over total number of waveforms incident on
the tree (PT1) and 2) all ground returns (< 0.5 m) over total
number of points extracted from waveforms (PT2). The LAIe
was then calculated as the negative natural logarithm of this
probability according to [5]

LAIe = −ln(P ). (1)

IV. RESULTS AND DISCUSSION

A. LAIe

The fish-eye LAIe of the live Callitris glaucophylla tree
obtained as a mean value of four photographs yielded 1.87
with a standard deviation of 0.18 and a standard error of the
mean of 0.09 (see Table I). This LAIe estimate was compared
to the LiDAR-derived estimates using raw waveform (WF)
and discrete point (PT) methods (see Table I). The LiDAR
estimates were obtained in two ways: 1) as a mean value
of six swaths processed separately to obtain LAIe and 2) by
combining the swaths prior to the computation of LAIe. When
the LAIe was computed as the mean of six swaths, PT1 and
WF1 performed best, providing estimates very close to that of
the fish-eye photograph (within −1.8%). For combined swaths,
the best results were obtained by point method PT1 (−1.3%)
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TABLE I
COMPARISON OF LiDAR AND FISH-EYE LAIe

Fig. 3. CHP of the live Callitris glaucophylla for six swaths.

followed by waveform method WF2 with a 0.42 reflectance
ratio (+2.9%). Despite having results that matched the closest
those of the fish-eye photograph, PT1 had the highest standard
deviation of all methods. WF1 and PT1 underestimated whereas
WF2 and PT2 overestimated the fish-eye LAIe. However, the
magnitude of over- and underestimation in this study is very low
(±7%) and within the standard deviations calculated from six
swaths. Nevertheless, in general, all methods performed very
well, providing mean LAIe values within ±7% of the fish-eye
estimate.

In the case of such small data sets, the precise estimation
of LAIe is strongly dependent on the selection of the wave-
forms/points incident on the tree, limiting the area of interest to
crown extents. Due to the logarithmic transformation applied to
compensate for the effect of occlusion, the LAIe does not scale
linearly. Thus, selecting the area larger than the tree crown will
lead to the underestimation of the tree LAIe.

B. CHP

The CHP from the live tree for each swath is presented in
Fig. 3. The plots from swaths 29 and 41 are the most similar
to each other as they were both captured almost at nadir angle.
Swaths 24, 76, and 86, since they were scanned from a similar

Fig. 4. Normalized CHP of the dead Callitris glaucophylla tree for six swaths
with PhotoModeler profile overlaid.

Fig. 5. Dead tree binwise CHP regression against PhotoModeler profile for
six swaths.

direction, seemed to have picked up a feature (branch) on the
north side of the tree between 6 and 8 m AGL. This branch was
completely missed by swaths 29, 41, and 82. Conversely, swath
82 recorded vegetation between 2 and 6 m above the ground,
on the south side of the tree, which was completely missed by
swath 24 and only partially captured in swaths 29, 41, 76, and
86. All these differences prove that the angle of incidence has an
important influence on what LiDAR “can see,” when analyzing
very small data sets or discontinuous canopies.

Since the validation of the tree structure of the live tree was
not possible due to limitations of the photoreconstruction, the
CHP is validated against the dead tree PhotoModeler profile.
The comparison was performed for each swath (see Fig. 4) and
for the combined profile [Fig. 6 (left)]. Since two reflectance
ratios showed very similar results with marginal improvement
for the ratio of 0.42, only results of this method are provided. To
compare the CHP and PhotoModeler profiles, binwise ordinary
least square regression was carried out (Fig. 5).

The LiDAR CHP closely follows the profile of PhotoMod-
eler, particularly in the case of swath 24, for which the correla-
tion reaches an excellent maximum R2 of 0.93 and the lowest
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Fig. 6. (Left) Dead tree combined-swath CHP and (right) its binwise regres-
sion against the PhotoModeler.

normalized RMSEnorm of 8%. Swath 86 provided the second
best result with a R2 of 0.82 and a RMSEnorm of 12%. In the
case of swath 76, the shape of the profile is also preserved, but
with some bias causing the R2 to drop to 0.77 and a higher
RMSEnorm of 14%. Nevertheless, the two swaths that captured
the north of the tree provided the highest correlation with the
PhotoModeler profile. For the remaining swaths, LiDAR seems
to have picked up more returns around 5 m AGL, causing
the overestimation of the PhotoModeler profile. For the swaths
acquired nearly at nadir (29 and 41), the correlation was the
same, yielding a R2 of 0.73. Swath 82, the only one which had
the north of the tree obscured, provided the lowest (R2 of 0.63)
but still significant correlation with the PhotoModeler profile.
Finally, for the six combined swaths, the correlation yielded an
excellent R2 of 0.86 with a RMSEnorm of 11% (see Fig. 6). Ad-
ditionally, all regression lines were very close to the 1 : 1 line.

The dead tree is not symmetrical, and most of its branches
are on its north side, whereas the southeast side of the tree
is branchless. This explains why the correlation of swaths
depicting the north side of the tree in detail gave the highest
correlation and why swath 82 yielded the lowest correlation.
The two swaths acquired at nadir should provide the most
objective profile of the tree and, theoretically, better correlation
than the swaths 24 and 76. This is where the accuracy of the
PhotoModeler profile comes into the picture. The lower parts
of the tree, where a lot of twigs were present, were difficult
to identify in Photomodeler. Therefore, some might have been
missed, causing underestimation of the ground-truth profile
around 5 m AGL.

V. CONCLUSION

This letter has presented a study of the CHP methodology
applied at a single-tree level to derive LAIe and the vertical
tree profile. The methodology proved successful in deriving
the LAIe of a single Callitris glaucophylla tree, providing very
close results to those of hemispherical photography (±7%)
as well as to discrete point methods of estimation of this
parameter. The comparison of the LiDAR vertical tree pro-
file (CHP) to the PhotoModeler-generated “field” profile also
showed very high correlation between the data (R2 of 0.86 for
combined swaths), giving some confidence in the suitability

of the approach. Using a site-specific vegetation-ground re-
flectance ratio as opposed to 0.5 for the laser wavelength of
1550 nm in CHP generation provided marginal improvement in
the correlation between the profiles.

The methodology was applied to six different swaths of data,
acquired at different angles, and to the combined data of all
six swaths. This showed some differences in the estimation
of the vegetation profile depending on the scanning angle and
reiterated its importance. Further work should therefore focus
on investigation of the influence of the scanning angle on larger
scale retrievals. The validation of the CHP methodology for
LAIe and vegetation profile estimation of other tree species
should also be considered.
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