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Abstract Snow provides large seasonal storage of freshwater, and information about the distribution 6 

of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting 7 

climate change impacts. Large regional disagreements remain between estimates from reanalyses, 8 

remote sensing and modelling. Assimilating passive microwave information improves SWE estimates 9 

in many regions but the assimilation must account for how microwave scattering depends on snow 10 

stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the 11 

computational expense of model complexity versus acceptable errors. Using data from the National 12 

Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the 13 

Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is 14 

shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz 15 

vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth 16 

Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known 17 

stratigraphic information is used. Simulated brightness temperature differences for an individual snow 18 

profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm 19 

resolution of density and temperature measurements, the error introduced by simplification to a single 20 

layer of average properties increases approximately linearly with snow mass. If this brightness 21 

temperature error is converted into SWE using a traditional retrieval method then it is equivalent to 22 

±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of 23 

total) for a two-layer model.  24 
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1. Introduction 31 

Snow is extremely important hydrologically, with more than one-sixth of the global population 32 

situated in areas where snow precipitation is greater than half of annual runoff (Barnett et al., 2005). 33 

Snow affects both timing and quantity of runoff as well as the surface energy balance (Budyko, 1958) 34 

and atmospheric chemistry (Dominé & Shepson, 2002).  35 

Currently, remote sensing products exist for snow covered area (SCA), albedo, grain-size, surface 36 

contaminants, melt and Snow Water Equivalent (SWE). Measurements of snow surface properties 37 

such as SCA are regularly used (e.g. Brown & Mote, 2009; Dye, 2002; Frei et al., 2003) and generally 38 

have more well-characterised uncertainties (Hall & Riggs, 2007; Rittger et al., 2013) than estimates of 39 

bulk properties such as SWE. 40 

Measurement of surface properties has allowed the identification of snow-season duration (Dye, 41 

2002), surface melt (Koskinen et al., 1997) and a determination of snow’s contribution to radiative 42 

feedback in response to warming (Flanner et al., 2011). In terms of hydrological relevance, Painter et 43 

al., 2012 developed a Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm for 44 

determining radiative forcing from impurities in near-surface snow. When realistic values of these 45 

radiative forcings were included in analysis of snow in south-western Colorado, it was estimated that 46 

the impurities reduced snow cover duration by 21 to 51 days, increased peak outflow, changed the 47 

runoff profile and reduced total seasonal runoff (Skiles et al., 2012). 48 

Despite the successes of surface measurements there remain large uncertainties in global estimates of 49 

SWE, with regional disagreements between products derived from remote sensing, General 50 

Circulation Models (GCMs) and reanalyses (Clifford, 2010).  51 

This study reviews continental-scale SWE products and describes the key techniques and their relative 52 

strengths, including the assimilation of remotely sensed passive microwave (PM) observations. A 53 

recent product which assimilates PM, Globsnow (Takala et al., 2011), is described in detail as it has 54 

been suggested as a suitable product for validation of Land Surface Models (LSMs, (Hancock et al., 55 

2013)). 56 

The assimilation of PM observations requires an observation operator which converts the state vector 57 

of snow properties into a vector of observable microwave brightness temperatures. In the case of 58 

Globsnow, the snow is described by density, grain size and snow depth of a single layer. The 59 

observation operator is the Helsinki University of Technology (HUT) radiative transfer model 60 

(Pulliainen et al., 1999) which produces a brightness temperature difference between two PM 61 

channels,    , for comparison with satellite retrievals. 62 
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Although Globsnow assumes a single homogeneous layer, snowpacks typically consist of multiple 63 

layers that often feature complex stratigraphy which affects the radiative transfer. The current 64 

Globsnow approach neglects this in both the radiative transfer simulation and in calculating the 65 

weighting function that determines the size of the PM-driven update to the forecast. 66 

Globsnow's performance might be improved by the relaxation of the 1-layer assumption, and here the 67 

effect of this relaxation on simulated    s is assessed based on realistic snow profiles obtained from 68 

the snowpits of the National Aeronautics and Space Administration Cold Land Processes Experiment 69 

(NASA CLPX).  70 

Section 2 reviews the historical methods of snow mass estimation, including separate estimates from 71 

snow models, ground stations and PM. Section 3 introduces the principles behind assimilation of 72 

passive microwaves and details Globsnow, identifying its simplified snow stratigraphy as a possible 73 

source of error and suggesting that layering might be included in a future scheme.  74 

Section 4 describes the experiments which attempt to assess the effect of realistic snow layering on 75 

radiative transfer. Coincident satellite PM measurements are compared with HUT simulations at 76 

CLPX, confirming that HUT simulations are close to observed values. The effect of including or 77 

neglecting detailed snow layering is assessed by comparing     simulations when snowpits are 78 

resampled to different layering profiles. Profiles include between 1- and 5 layers, along with an N-79 

layer case where layers are prescribed based on the snowpit measurement resolution. The N-layer case 80 

is taken as truth, and the difference in simulated    s for fewer-layer models relative to this truth 81 

allows statistical estimation of the bias and variance introduced through simplification of stratigraphy 82 

to fewer layers, which are reported as a function of snow depth and number of layers. 83 

The results are related in Section 5 and discussed in Section 6 where it is indicated that neglect of 84 

statigraphy may mean that Globsnow has unaccounted variance in its assimilation step. The results 85 

have relevance to a user who may use these to calculate variance introduced due to simplified 86 

stratigraphy, or alternatively may choose an optimal layering structure based on criteria of 87 

computational expense and acceptable levels of variance. However, it is cautioned that these results 88 

are only derived for snow typical of that present during CLPX. 89 

2. Current Snow Mass Estimation 90 

2.1 General Circulation Models and Reanalyses 91 

Without the global coverage of space-based remote sensing, alternative methods of snow mass 92 

estimation have relied on a combination of models and observations. Coupled GCMs are a modelling 93 

approach and have been used to estimate SWE climatologies for current conditions, and the spatial 94 
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and temporal components of these climatologies have been explored by Clifford (2010) and Roesch 95 

(2006) among others. 96 

However, due to the chaotic nature of the system, fully coupled models are only capable of estimating 97 

climatology and in order to produce a time series corresponding to the real world realisation of 98 

weather, regular assimilation of observational data is required. 99 

As such a number of reanalysis products have been produced, coupling LSMs which simulate the 100 

snow cover with an atmospheric model. These reanalyses regularly assimilate observations of both the 101 

atmosphere and the land surface, although no fully-coupled land-atmosphere reanalysis yet 102 

assimilates microwave radiances for the purpose of snow mass estimation. Instead, in-situ synoptic 103 

station measurements of snow depth and estimates of SCA based on satellite data are used. 104 

The full details of these reanalyses and their assimilation schemes is beyond the scope of this paper, 105 

the reader is directed to the references in Table 1 which details selected reanalyses and other gridded 106 

products which offer snow mass or snow depth. 107 

A number of assessments of reanalysis performance in terms of snow variables have been undertaken. 108 

Khan & Holko (2009) noted that reanalyses performed well in much of the Aral Sea Basin, although 109 

there were underestimates of snow depth and SWE in mountainous areas. Betts et al. (2009) 110 

determined that both the European Centre for Medium Range Weather Forecasts (ECMWF) 40 year 111 

and Interim Reanalyses (ERA-40, ERA-Interim) suffer from early snow melt out.  Meanwhile, 112 

Clifford (2010) reported the spatial and temporal characteristics of different approaches to snow mass 113 

estimation in more detail, and that the potential for future improvements remains clear. Improved 114 

modelling is one opportunity, with Salzmann & Mearns (2012) comparing SWE modelled by a 115 

number of higher resolution Regional Climate Models (RCMs) with snow telemetry observations in 116 

the Upper Colorado River Basin. Though the RCMs remained too warm and dry with too little SWE, 117 

their simulations better matched observations than the original reanalysis. However, biases remained 118 

even with these more computationally expensive models. 119 

2.2 Products which prioritise snow 120 

2.2.1 Surface observations only 121 

Outside of reanalyses which attempt to produce complete time series of land and atmosphere 122 

properties, a number of snow specific products have been developed. The simplest approach is to grid 123 

weather station snow depth records as performed by Dyer and Mote (2006) in North America and 124 

Kitaev et al. (2002) in the Former Soviet Union (FSU). In Kitaev et al.'s work, station number varied 125 

from 2 to 25 per 3°×5° grid square and snow's spatial variability within such areas means that large 126 

uncertainties are associated with such sparse measurements. Chang et al. (2005) estimated that across 127 
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the Northern Great Plains, 10 measurements were required per 1° cell to reduce sampling error of 128 

snow depth to ±5 cm, equivalent to a station density between 6 and 75 times higher than available to 129 

Kitaev et al. Furthermore, the sampling distribution of snow stations was found by Brasnett (1999) to 130 

be biased to low elevations. 131 

Post-hoc assessment of snow mass is possible using river discharge data, although this approach 132 

suffers from large uncertainties due to unknowns related to inter-annual terrestrial water storage, 133 

periods of river-ice and non-snow contributions. This approach has allowed attempts to test seasonal 134 

estimates of snow mass in some basins (e.g. Grippa et al., 2005; Rawlins et al., 2007; Yang et al., 135 

2007) and to provide evidence in conjunction with other snow products for intensification of the 136 

Arctic hydrological cycle in response to global warming since 1950 (Rawlins, et al., 2010). 137 

2.2.2 Land Surface Models assimilating in-situ observations 138 

Simple areal averaging of snow depth observations cannot account for variation in areas between 139 

point measurements, which can be driven by different elevation, meteorological regime or land 140 

surface category. LSMs featuring a snow component are in principle able to account for these effects 141 

and furthermore these models may assimilate measured snow depths when available to improve the 142 

analysis. 143 

Brown et al. (2003) used the Canadian Meteorological Centre’s analysis scheme developed by 144 

Brasnett (1999) to generate a gridded time series of North American snow depth and SWE. A simple 145 

snow model was driven by meteorological data from the ECMWF 15-year Reanalysis (ERA-15), with 146 

assimilation of 8,000 snow measurements per day from the U.S. and Canada. This method relies on 147 

relatively intensive daily measurements, for which the authors noted that availability drops off rapidly 148 

poleward of 55° N. 149 

A global estimate is published by the ECMWF using a similar approach and a summary and 150 

assessment is provided by Drusch et al. (2004). They note that the observational stations are biased 151 

towards lower latitudes and lower elevations, and that without assimilating remotely sensed 152 

information on Snow Covered Area there are disagreements between the estimated snow covered 153 

areas, and from the Interactive Multisensor Snow and Ice Mapping System (IMS) described in 154 

Ramsay (1998).  155 

 2.3 Remote sensing of snow mass 156 

 157 

The approaches discussed in Sections 2.1 and 2.2 have been used to estimate snow climatologies and 158 

detect climatic changes, but their continued reliance on intensive in-situ measurements leaves large 159 
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uncertainties in some regions. This justifies continued development of remote sensing products which 160 

can provide global coverage for improved estimates of snow mass where station density is 161 

insufficient. 162 

Beginning with the work of Frappart et al. (2006) and continuing with Niu et al. (2007) and others, the 163 

Gravity Recovery and Climate Experiment (GRACE) gravimetry mission has been used to estimate 164 

snow mass based on observing changes in Earth’s gravitational field. GRACE responds directly to 165 

gravitational changes, suggesting that it should be well suited to retrievals of deep snow or snow in 166 

forested areas where traditional remote sensing has to see ‘through’ the trees. However, further 167 

modelling is required to control for other changes in mass of the land surface associated with, for 168 

example, other forms of terrestrial water storage. Additionally, GRACE is not suitable for high 169 

resolution measurement with Frappart et al. (2006)’s reported resolution being 660 km. Finally, it is 170 

not yet appropriate for assessing long term changes as the GRACE satellites were only launched in 171 

2002. 172 

As such, efforts for the remote sensing of snow mass have typically focussed on the passive 173 

microwave regime, using frequencies near 19 GHz and 37 GHz, for which there has been continuous 174 

near-global coverage since the launch of the Scanning Multichannel Microwave Radiometer (SMMR) 175 

on Nimbus-7 in late 1978. Many snow products typically utilise the Special Sensor Microwave 176 

Imagers (SSM/I) (e.g. Tedesco et al. 2004a) and/or the Advanced Microwave Scanning Radiometer-177 

Earth Observing System (AMSR-E) (Tedesco et al., 2004b). 178 

When observing a typical snowpack, the majority of radiation measured at these wavelengths will 179 

have originated from the ground surface, with scattering within the snow the dominant loss 180 

mechanism. This scattering is frequency dependent and increases with the quantity of snow, allowing 181 

a determination of SWE from the difference between the brightness temperatures in these two 182 

channels. 183 

Figure 1 shows simulations of the brightness temperatures over a snowpack at 18.7 GHz and 36.5 184 

GHz horizontal polarisations viewed at 53°. Snow is assumed to be a homogeneous single layer with 185 

properties based on those typical of Colorado snowpacks of under 120 cm depth discussed in 186 

Davenport et al. (2012). As the amount of snow increases up to 500 mm SWE, the brightness 187 

temperature at both frequencies falls, but it falls more quickly at the higher frequency. 188 

By considering the difference in brightness temperatures between the two frequencies, the effect of 189 

absolute temperature change is reduced and this led to the simplest approach to SWE retrieval, often 190 

called the Chang Algorithm, which was originally developed for SMMR (Chang et al. 1987), a 191 

general variant of which is: 192 
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     (             )   (       )       (1) 193 

Where   and   are constants depending on the exact frequency of the channel and snow properties 194 

(Armstrong & Brodzik, 2000),       and       are the recorded brightness temperatures at the 195 

available channels nearest 19 GHz and 37 GHz horizontal polarisation. Figure 1 shows this equation 196 

fit to the first 100 mm SWE, and for this snow the values are A = 2.54 mmSWE K
-1

 and B = 3 K. 197 

Passive microwave measurements offer the advantage of being largely independent of illumination 198 

conditions, precipitation or cloud cover, allowing night time measurements when temperatures are 199 

likely to be lower and moisture within the snow is more likely to have refrozen. However, the range 200 

of values which can be reliably sensed is limited at the lower end by sensor precision, and at higher 201 

values of SWE the signal saturates (displayed in Figure 1 as a flattening of the solid line). The 202 

limiting value of this saturation depends on snow properties, and was reported by Foster et al., 2005 to 203 

be 0.8 m depth.  204 

In reality the saturation level depends on the snow properties and on the definition of saturation. For 205 

the snow properties shown in Figure 1, saturation could be determined as the point at which the SWE 206 

inverted from the brightness temperature difference using a linear fit diverges by more than 10% away 207 

from the true value. In this case, this occurs at a SWE of 143 mm, equivalent to a depth of 79.4 cm 208 

which matches well with the value provided by Foster et al. (2005). 209 

An alternative definition of saturation accepts that a more complicated function may be used to map 210 

observed brightness temperature difference to SWE. Under this definition saturation is the point at 211 

which the signal is no longer sufficiently sensitive to SWE. This can be determined as the point at 212 

which error in inverted SWE,      exceeds some acceptable value      . The sensitivity of 213 

brightness temperature difference                 to SWE is 
    

    
 where the partial 214 

derivatives indicate that     is not only a function of SWE. If the brightness temperature difference 215 

observation has a precision  (       ) then the SWE at which saturation occurs is defined from: 216 

(
    

    
|
   

)
  
 (       )              (2) 217 

Therefore the saturation value depends on the acceptable uncertainty in SWE, the precision of the 218 

observing system and the properties and uncertainties associated with the sensitivity of     to 219 

changes in SWE. This result holds for ideal snow, and demonstrates the possibility that the saturation 220 

value is not globally fixed. For example, with an uncertainty of 2 K in observed brightness 221 

temperature difference and a SWE error threshold of 10 mm for the uniform snowpack in Figure 1, 222 

the saturation SWE rises to 195 mm, equivalent to 108 cm depth. 223 
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However, in real situations this is nontrivial to determine, as simulating the radiative transfer of actual 224 

snow profiles leads to additional uncertainty in    (   ) which must also be considered. Given an 225 

optimistic assessment of our ability to simulate radiative transfer in snow and observational 226 

uncertainties, this saturation threshold will be assumed to limit the utility of passive microwave 227 

measurements to snowpacks of < 180 mm SWE or under 1 metre in depth.  228 

Davenport et al. (2012) showed clearly that the functional form of    (   ) depends on the 229 

microstructural properties of the snow. The physical basis of    's sensitivity to microstructural 230 

properties can be explored by assuming that the snow is a collection of spheres in each other's far 231 

fields, for which the single scattering properties can be calculated from Mie theory (Mie, 1908). In 232 

particular, the single scattering albedo is actually a function of the size parameter   
   

 
 where r is 233 

the radius of the scatterer and   the wavelength. Single scattering properties for non-spherical grains 234 

have also been determined (Teschl et al. 2010), although radiative transfer models (RTMs) generally 235 

assume sphericity. 236 

Critically, it is the ratio of scatterer size to wavelength which determines the single scattering 237 

parameters and so the retrieved signal is strongly affected by the size of the scatterer as well as the 238 

wavelength of the light. Figure 2 shows the brightness temperature differences assessed for snow with 239 

scatterer diameters ranging from 0.2 mm to 1.0 mm in 0.2 mm increments and Table 2 shows how the 240 

Chang sensitivity depends strongly on this value. Grains of 0.2 mm diameter are typical of fresh 241 

snowfall, and 1.0 mm of moderate sized depth hoar at the bottom of snow layers, although larger and 242 

smaller sizes do occur. From Figure 2 and Table 2 it can be seen that the saturation value of the signal 243 

will also depend on the properties of the snow. 244 

The Mie approach provides useful physical insight about scattering of radiation in snow but any 245 

observations of the structure of real snowpacks show that snow is a complex, porous medium and as 246 

such these microstructural parameters are accounted for in a number of ways, such as specific surface 247 

area (SSA), optical grain size and correlation length. The optical grain size approximation comes from 248 

modelling the snow as a collection of spheres in each other’s far fields, with the optical grain size 249 

defined as the spherical grain size required to reproduce the optical properties of the real snow. This 250 

size can vary with wavelength (Liu, 2004) and with grain shape (Macke et al. 1996).  251 

Grenfell & Warren (1999) found that if the optical properties of nonspherical snow were modelled 252 

using spheres, then spheres with the same SSA best matched the optical properties of the snow, for 253 

which the diameter can be determined from other properties using; 254 

   
  

  
          (3) 255 
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Where M is the total snow mass in a selected volume,   the snow density and S the total ice-air 256 

interface area.  257 

Correlation length is defined as the gradient of the spatial autocorrelation at a displacement of zero, 258 

and like specific surface area is defined independently of grain shape. It can be calculated from mean 259 

intercept lengths (Smith & Guttman, 1953), by numerical analysis of the autocorrelation gradient, or 260 

by fitting to an assumed exponential autocorrelation function. There are also functions for converting 261 

from correlation length to optical grain size (e.g. Mätzler 2000; Wiesmann et al 2000; Mätzler 2002). 262 

 3. Assimilation of passive microwaves to improve snow mass 263 

 estimation 264 

3.1 Assimilation of passive microwave brightness temperatures 265 

Microwave-only algorithms retain large uncertainties due to issues with forest coverage and changes 266 

in the scattering properties of snow, driven primarily by the snow's microstructure. However, if these 267 

effects could be quantified then an assimilation scheme would be able to extract information from the 268 

retrieved brightness temperatures to improve a snow analysis. 269 

Sun et al. (2004) suggested a scheme which forecasts the snow cover using a LSM before assimilating 270 

SWE estimated from PM. They performed an experiment using a synthetic truth generated by the 271 

LSM versus two alternative model runs with strongly perturbed initial conditions, one of which 272 

assimilated observations from the truth using a Kalman Filter, and one which was left to run as an 273 

open loop. They demonstrated that the assimilation scheme returned the analysis state close to the 274 

truth within 1 week, and then a later study by Dong et al. (2007) simulated SWE in North America 275 

with and without the assimilation of the SMMR SWE product. Assimilation of the SMMR product 276 

improved the analysis where SWE <100 mm, provided the SMMR product was quality controlled. 277 

However, this approach did not account for the changes in snow microstructure which affect the 278 

scattering, as the SMMR-based SWE product is based on a variant of the Chang Algorithm. A more 279 

comprehensive approach is detailed in Durand and Margulis (2006), who describe an Ensemble 280 

Kalman Filter (EnKF) approach to assimilating microwave brightness temperatures. 281 

The Kalman Filter approach consists of two steps to produce an analysis of the variables of interest, 282 

which will be some vector    whose components represent snow properties such as the density and 283 

grain size of each snow layer. In the first step, the analysis     
  from the previous timestep       284 

is propagated using a model   to produce a forecast    
 : 285 

  (  )      [ 
 (    )]    (4) 286 



10 
 

This forecast is then updated with reference to observations: 287 

  (  )   
 (  )    (     [ 

 (  )])   (5) 288 

Where    is the observation vector and    is an operator which converts the state vector into an 289 

equivalent observation. In the case of snow remote sensing, it is some model of snow's radiative 290 

transfer that converts the known snow properties from the state vector into a vector of observable 291 

brightness temperatures or some combination thereof.    is the Kalman Gain, which acts as the 292 

weighting function and depends on the error covariances of the forecast    and the observations   : 293 

    
 (  )  

 [   
 (  )  

    ]
  

   (6) 294 

Here    is the linearised approximation of the observation function   . It can be seen that as 295 

observational error decreases, the Kalman gain increases and greater weight is placed on the 296 

observations. The forecast error covariance   (  ) consists of the model error covariance      and 297 

the error covariance introduced due to errors in the previous step's analysis,   (    ): 298 

  (  )       
 (    )    

         (7) 299 

where      is the linearised approximation of the forecast operator  . Estimating this component of 300 

the error covariance can be enormously computationally expensive, leading to the attraction of the 301 

EnKF where a model ensemble allows the generation of statistics to approximate      
 (    )    

  302 

and therefore allow the calculation of the Kalman Gain. 303 

The Kalman Gain is also required to calculate the new analysis' error covariance   (  ), which is 304 

reduced by the assimilation of observations relative to the forecast: 305 

  (  )(      ) 
 (  )   (8) 306 

Durand and Margulis (2006) tested this approach with a synthetic experiment of snowpack 307 

progression in the US. The system truth was taken to be a single model run with forcing perturbed by 308 

doubling the precipitation and adding autocorrelated noise to mimic known issues of gauge 309 

undercatch. Synthetic passive microwave observations at SSM/I or AMSR-E frequencies were 310 

simulated by the Microwave Emission Model of Layered Snowpacks (MEMLs, Wiesmann and 311 

Mätzler (1999)) corrupted with 2 K white noise, and synthetic albedo observations were taken from 312 

the truth run with 5% white noise applied. 313 

Forecasts were generated by an ensemble of 100 LSM replicates with perturbations applied to forcing 314 

and model parameters which allowed the mean forecast state and the forecast error covariance to be 315 
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determined from the ensemble statistics. Synthetic albedo observations were assimilated daily at 1 pm 316 

and passive microwave observations at 1 am to mimic MODIS and AMSR-E overpass times.  317 

The regular assimilation of SSM/I frequencies alone significantly reduced both bias and root mean 318 

square error (RMSE) of SWE by approximately 85% relative to the open-loop simulation. The EnKF 319 

approach also allowed an assessment of the contribution of each channel, which indicated that the 320 

majority of the SWE improvement occurred due to the assimilation of the 37 GHz channel at both 321 

polarisations. The 89 GHz channel appeared to marginally worsen the SWE analysis by nudging it 322 

away from truth, however it significantly improved the grain size analysis which was vital for the 323 

brightness temperature simulations. 324 

Having demonstrated the assimilation approach using a synthetic experiment, the later work of 325 

Durand et al. (2008) used data from the University of Tokyo's Ground Based Microwave Radiometer 326 

(GMBR-7) and snowpits at NASA's Cold Land Processes Experiment (CLPX) to test the performance 327 

of the MEMLS radiative transfer model. Furthermore, they were able to identify accuracy criteria for 328 

the snow state variables. They determined that simulated optical grain size should be accurate within 329 

±0.045 mm and the density of melt-refreeze layers within ±40 kg m
-3

 in order for predicted brightness 330 

temperature errors to be small enough that the assimilation procedure improves the analysis. 331 

Further work has considered the effect of spatial scaling on the analysis, with different spatial 332 

resolutions in LSMs and microwaves explored in De Lannoy et al. (2010) while Andreadis et al. 333 

(2008) discusses how to account for snow's spatial variability in an assimilation scheme. 334 

3.2 GlobSnow 335 

3.2.1 Methodology 336 

The European Space Agency (ESA) GlobSnow project’s aim is ‘production of global long term 337 

records of snow parameters intended for climate research purposes on hemispherical scale.' (Finnish 338 

Meteorological Institute, 2012). The Globsnow SWE product is a system where the prior state is 339 

estimated from field observations of snow depth, with updates related to the satellite observed 340 

brightness temperature difference (     ) at vertical polarisation between channels near 19 GHz 341 

(T19V) and 37 GHz (T37V).  342 

The use of a brightness temperature difference reduces the sensitivity of the satellite observations to 343 

absolute temperatures; if non-snow surfaces are in the field of view and they have the same emissivity 344 

at both 19 GHz and 37 GHz, then their effect on the measured brightness temperature difference is 345 

dependent only on the area they cover and is independent of their temperature. 346 

Globsnow produces maps of SWE across the Northern Hemisphere on a 25 km Equal Area Scalable 347 

Earth (EASE) grid, with areas defined as too watery (>50% open water) or too mountainous (standard 348 
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deviation of elevation >200 m) masked out. Largely based on the approach of Pulliainen (2006), its 349 

methodology is explained in detail in Takala et al. (2011) and proceeds as follows:  350 

1) The forecast snow depth map is generated by ordinary kriging between in-situ snow depth 351 

observations provided by the ECMWF and SCCONE (Snow Cover Changes Over Northern Eurasia, 352 

Kitaev et al. 2002), and the in-situ measurements are given an assumed variance of 150 mm
2
 based on 353 

comparison with coincident snow surveys. This forecast map at time   contains the a priori snow 354 

depth   ̂      and its variance         
 . 355 

2) At each grid point where a snow depth observation exists, the Helsinki University of Technology 356 

radiative transfer model is used to simulate the brightness temperature difference    =T19V-T37V. 357 

The effect of vegetation is included in the radiative transfer, dependent on forest cover fraction in 358 

Eurasia, or at 80 kg m
-3

 ha
-1

 stem volume in North America. A single snow layer of 0.24 g cm
-3

 359 

density is assumed and snow depth is taken from the in-situ observation. Grain size is varied at each 360 

location   with the result obtained according to the cost function: 361 

       {[(       (           )         (           ))  (               )]
 
}  (9) 362 

where      is the grain size at the     location, which is allowed to vary and Dref,i is the locally 363 

measured snow depth. The final grain size (d0) and its error variance (     
 ) at each measurement 364 

location come from the ensemble of the nearest stations (N=6). 365 

3) A full grain size map with variances is generated by kriging between the point grain size estimates 366 

from step 2). 367 

4) At each grid cell, the grain size value and an assumed constant density of 0.24 g cm
-3

 is used as 368 

input to the HUT radiative transfer model by varying the snow depth    to obtain: 369 

     {(
(       (  )        (  )) (               )

  
)
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    ̂     

        
)
 

}   (10) 370 

where the variance at time  ,   
  is obtained from a Taylor expansion of   (       ) with respect to 371 

grain size, which leads to: 372 

  
  (

   (       )

   
)
 

     
     (11) 373 

This variance provides the weighting of the microwave contribution, allowing a large correction to the 374 

forecast when the SWE sensitivity is high but introducing a large cost to microwave based 375 

adjustments when the signal is saturated with respect to SWE but         grows. This effect is seen 376 

in Figure 2 as the increasing spread in simulated     for different grain sizes. 377 
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3.2.2 Limitations of GlobSnow 378 

Globsnow was validated with independent in-situ snow depth measurements from campaigns in the 379 

Former Soviet Union, Finland and Canada. RMSE values of <40 mm were found where SWE was 380 

below 150 mm, although errors increase for thicker snow. Assimilating the passive microwave data 381 

was found to improve on the forecast, thus demonstrating the utility of microwave retrievals. 382 

Hancock et al. 2013 considered Globsnow and the Chang-based AMSR-E and SSM/I-only SWE 383 

products for the purpose of assessing LSMs. The Chang-based products were found to spike towards 384 

the end of the season, which was attributed to melt-refreeze cycles forming ice lenses which increase 385 

the effective grain size and cannot be accounted for in the Chang-based approach which assumes a 386 

static snow microstructure. 387 

However, a number of questionable assumptions remain in the Globsnow approach. The assumption 388 

of constant density is not necessarily valid, as snow settles and increases in density during the season 389 

due to metamorphism and overburden (Anderson 1976), and variations in density or in the effect of 390 

vegetation are included through varying the grain size parameter which is an unphysical approach. 391 

Furthermore, the snow depth forecast is produced purely from interpolated observations, which as 392 

previously noted are biased towards low latitudes, low altitudes and clearings in forests. These biases 393 

could be accounted for by a LSM, which in addition to producing a snow depth forecast could also 394 

produce a forecast of the density and grain size. 395 

Durand et al. (2009) showed that even a relatively simple land surface model coupled to a microwave 396 

emission model improved snow depth estimates once microwave brightness temperatures were 397 

assimilated. The later work of Brucker et al. (2011) and Toure et al. (2011) coupled the snow model 398 

Crocus (Brun et al., 1992) to the MEMLS radiative transfer model and found that point observations 399 

of microwave brightness temperatures at both H-pol and V-pol were generally well simulated. 400 

Brucker et al. (2011) noted that late season grain growth was not well modelled in Crocus, and Toure 401 

et al. (2011) indicated that ice lenses must be accounted for. On a larger geographical scale, Dechant 402 

& Moradkhani (2011) reported that assimilating brightness temperatures with the SNOW-17 snow 403 

model and a soil moisture model showed potential benefit for operational stream flow forecasting.  404 

Naturally, increasing physical complexity leads to increased computational expense and 405 

computational expense is also affected by the number of layers in the snow model. Most land surface 406 

models typically limit the number of snow layers, with the ECMWF’s Tiled ECMWF Scheme for 407 

Surface Exchange over Land (TESSEL) limited to one layer (Dutra, et al., 2010) whereas the Joint 408 

UK Land Environment Simulator (JULES) can run up to a user-defined number of layers, with new 409 

layers only introduced beyond certain thickness thresholds (Best, et al., 2011).  410 
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In reality snowpacks almost always have distinct physical layers and this stratigraphic contrast can 411 

have important effects on the radiative transfer. Lemmetyinen et al. (2010) compared passive 412 

microwave measurements taken in-situ with layered snow information and found that the simulated 413 

brightness temperature was affected by whether or not snow layering was included. These approaches 414 

used field-observed layer properties, but did not consider how the radiative transfer model would 415 

perform if provided with profile information as it would be output by a model.  416 

This is assessed here through the experiments detailed in Section 4, where measured snow profiles 417 

from CLPX snowpits are resampled to differing layering structures. After a scene simulation 418 

experiment to confirm that the HUT radiative transfer model is able to reproduce observations within 419 

acceptable uncertainties, the simulated       values for each snowpit when resampled to different 420 

layering structures are compared. This comparison across a large number of snowpits allows 421 

estimation of the bias and variance introduced when the layering structure is simplified. 422 

 4. Methods 423 

4.1 The Cold Land Processes Experiment (CLPX) Resampled Snowpits 424 

The CLPX dataset (detailed in Cline, et al., 2002) provides snow profiles from a large number of 425 

snowpits over four Intensive Observation Periods (IOPs). Two of these periods, IOP3 and IOP4 426 

coincide with measurements of microwave brightness temperature from both SSM/I and AMSR-E 427 

and as such these periods are assessed here. Snowpit profiles provided snow properties for HUT 428 

radiative transfer simulations, which were compared with the satellite retrievals to confirm HUT's 429 

applicability. 430 

Figure 3 shows the CLPX study area, largely in Colorado, US and the snowpits were within the three 431 

Mesoscale Study Areas (MSAs) each of which is approximately 25 km by 25 km, the size to which 432 

AMSR-E and SSM/I 19V and 37V brightness temperatures are resampled. 433 

For the first       simulations, snow profiles were produced with layers of 10 cm thickness, limited 434 

by the spatial resolution of the temperature and density measurements. These profiles are referred to 435 

here as the N-layer case and are assumed to represent truth. In reality, snow layers are of irregular 436 

depth, but LSMs often feature prescribed layer depths and the aim of this experiment is to compare 437 

LSM-like outputs. 438 

Density and temperature were drawn directly from the field measurements, while the mean of the 439 

minimum and maximum extent of the average common grain was taken as the grain size, following 440 

Davenport et al. (2012). Grain sizes were reported by the observers by stratigraphic layer, rather than 441 

at 10 cm intervals, and these were mass weighted onto the 10 cm profile. 442 
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As LSMs commonly feature a thin top layer to improve numerical handling of the surface energy 443 

exchange, snowpits were resampled from the CLPX observational data with and without a 2 cm 444 

surface layer. This did not affect any of the key results, and so arbitrarily the case with a 2 cm surface 445 

layer is presented.  446 

The snowpits were then resampled to profiles of 1 to 5 equally sized layers subject to a minimum 447 

layer size of 10 cm, with the mass-weighted grain size, temperature and density from the relevant 448 

observational layers applied to each of the resampled layers. Figure 4 illustrates sample layering 449 

profiles, where the 2 cm top layer is excluded from the layer count and for a snowpit of depth   each 450 

of the   main layers is of depth (   )   cm. The minimum layer size criterion meant that, for 451 

example, a snowpit of 12 cm depth would be identical in all layer cases and consist of a single 10 cm 452 

layer and the top 2 cm layer, even in the 5- or N- layer cases. 453 

This approach attempts to mimic a depth structure that might be output by an LSM. A key feature is 454 

the prescribed layer thicknesses, as each layer depth can be determined uniquely from the total snow 455 

depth, thus removing the need for layer thickness components in the snow state vector. However, it is 456 

not necessarily representative of an individual LSM snow scheme, as a variety exist and rather than 457 

select some arbitrary combination of layer sizes for each of the 1- to 5-layer schemes a more 458 

simplistic approach was adopted. 459 

Ground surface temperature was taken to be the temperature measured at 0 cm height. Missing data 460 

were linearly interpolated or, if they were at the top or bottom of the pack then the nearest 461 

neighbouring value was used. If too many data were missing for this interpolation, then the pit was 462 

removed from the analysis. 463 

4.2 Comparison: Layered HUT Scene Simulation versus Observations 464 

The HUT performance was first assessed by simulating the scene brightness temperatures based on 465 

the snowpit information, and comparing these simulations with satellite retrievals. The multi-layer 466 

implementation of the HUT model (Lemmetyinen et al., 2010) simulated the brightness temperatures 467 

at 18.7 GHz and 36.5 GHz vertical polarisation for each snowpit with each of the layering structures 468 

described in Section 4.1. The brightness temperature difference, 469 

                         (12) 470 

was considered throughout, for consistency with the Globsnow product. This offers the further 471 

advantage of being less sensitive to errors in ground or exposed-vegetation temperatures. 472 

In addition to the HUT simulations, a Chang-algorithm output based on Equation (1) and using the 473 

CLPX coefficients reported in Section 2.3 was produced for each snowpit. 474 
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In each of the CLPX Mesoscale Study Areas (MSAs), the snowpits were assumed to be representative 475 

of the actual snowpack, such that the mean       of all of the snowpits within the MSA represents the 476 

      contribution of the snow within that MSA. The scene brightness temperature has contributions 477 

from snow, open ground and vegetation over snow.  478 

                            (    )                      (13) 479 

where   is the fractional area of the pixel that is either open or snow covered and FF is the forest 480 

fraction. With the assumption that           , the equation becomes: 481 

            (    )                     (14) 482 

Since the distribution of the snowpit properties is assumed to match the distribution of the snow 483 

within the scene, then the brightness temperature difference of the snow should be equivalent to the 484 

average brightness temperature difference of the   snowpits. 485 

            (    )
     

 
∑        
 
      (15) 486 

where         is the brightness temperature difference between 18.7 GHz and 36.5 GHz at vertical 487 

polarisation for the     snowpit. 488 

Snow properties were assumed to be static throughout an IOP such that all measurements within each 489 

IOP could be used in the same analysis. 490 

The fractional area of snow for each IOP and for each MSA was estimated by using the 8-day 491 

maximum extent snow cover map from MODIS (Haran, 2003), taken as the fraction of snow covered 492 

area divided by the total non-cloud covered area. This offers the advantage of minimising the effect of 493 

cloud cover, although can provide inconsistent results if significant snowfall or melt occurs during the 494 

8 days. The MODIS product is at 500 m spatial resolution, so features 2,500 pixels within each 25 km 495 

passive microwave grid point.  496 

Forest cover was estimated for each MSA using QuickSCAT data available from Nilsson (2003) and 497 

the forest correction factor applied individually for each MSA. More complex forest correction 498 

approaches exist (e.g. as shown in Foster, et al., 2005), but are not adopted here. 499 

Six sets of simulated scene       values were produced, for each of the layering structures (1- to 5- 500 

layer plus the N-layer truth) and these were compared with SSM/I and AMSR-E values, where all 501 

measurements within a day of each IOP period were recorded. It should be noted that for IOP4, many 502 

snowpacks reported temperatures around the melt point, suggesting the presence of liquid water, 503 

which acts to reduce the brightness temperature difference through greater absorption and emission at 504 
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both wavelengths (Hallikainen, 1989). However, the percentage of snowpits that were noted by 505 

fieldworkers as 'wet' in the metadata did not exceed 3% in either period. 506 

4.3 Comparison: N-layer versus Fewer Layers of Stratigraphic Information 507 

Using the same resampled snowpit data to represent realistic profiles as might be output by an LSM, 508 

the       values simulated by the 1- to 5- layer simulations were assessed relative to the N-layer 509 

simulations, which were assumed to be truth.  510 

Uncertainty introduced into the       by simplification of the model layering was determined from 511 

the difference between outputs for each of the 1- to 5-layer models versus the N-layer model. Bias and 512 

standard deviation of these residuals is reported in Section 5.3 for each of the simpler models as a 513 

function of the model layer thickness.  514 

5. Results and Analysis 515 

5.1 Snow Properties at CLPX Sites 516 

Table 3 summarises the main snow properties recorded from the snowpits and MODIS data, including 517 

the number of relevant snowpits once those with insufficient data were deleted. Notably, the snow in 518 

IOP4 during March was thicker than during IOP3 in February, although the snow cover fraction had 519 

declined from universal coverage to around 80%. 520 

It should be noted that the average depth and SWE is not necessarily a good representation, as the 521 

distribution of snowpit values is not symmetric, with a bias towards thin pits in IOP3 and a bimodal 522 

distribution in IOP4, with a number of pits showing thin snow (< 50 cm) and a number showing 523 

thicker snow (~ 200 cm). The overall distribution is shown in Figure 5 although thicker snow 524 

predominated at Rabbit Ears and Fraser, and thinner snow at North Park. Additionally, IOP3 saw 525 

generally cooler snow (-3.6 C versus -2.2 C) and marginally smaller average grain sizes (0.57 mm 526 

versus 0.60 mm). 527 

5.2 Simulated Scene Brightness Temperatures 528 

Figure 6 shows the simulated scene       from Equation (15), using the N-layer and 1-layer HUT 529 

model compared with AMSR-E and SSM/I retrievals. Here the scene is represented by the average of 530 

all 3 MSAs. The difference between the N-layer and 1-layer simulations is minimal (0.01 K in IOP3, 531 

0.40 K in IOP4) compared with the difference between simulations and observations, of 532 

approximately 3 K in IOP3 and 2 K in IOP4.  533 

Table 4 shows the brightness temperature difference simulated using different model layering profiles 534 

versus the observations. There is a negligible difference in the mean simulated by different layering 535 
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profiles. The overall Chang estimates are close to observations at IOP3, but are too high during IOP4. 536 

The Chang algorithm's poorer performance at individual MSAs (RMSE = 17 K) versus HUT (RMSE 537 

= 8 K) is hidden by the averaging over the 3 MSAs. During IOP3 use of the Chang algorithm results 538 

in a large       overestimate at Rabbit Ears MSA, which is counteracted by a large underestimate at 539 

North Park MSA. During IOP4, a very large (32 K) overestimate by the Chang algorithm due to 540 

saturation in the deep snowpits is partially offset by a 13 K underestimate at North Park. 541 

The largest contributor to the HUT RMSE was due to a large underestimate during IOP4 at North 542 

Park, where simulated       were of order 1 K versus observed values of 14 K. This is consistent 543 

with the results of Davenport et al. (2012) for IOP4 and suggest that the average snowpack was 544 

deeper than that sampled by the snowpits. The majority of North Park snowpits occurred near roads 545 

and might therefore be biased toward thinner snow and excluding IOP4 North Park results, the HUT 546 

RMSE drops from 8 K to 6 K, while Chang increases from 17 K to 18 K. The increase in Chang error 547 

is due to its North Park error being an underestimate and therefore limited in size to below the 14 K 548 

observation. 549 

A number of assumptions contribute to the uncertainty in the       estimates: static snow properties, 550 

dry snowpits, a simplified vegetation model and unbiased sampling of the real snow by the snowpits. 551 

Furthermore, other work (Picard et al. 2009) has found that effective microwave grainsize does not 552 

necessarily match that estimated by field observations. In light of these assumptions, the HUT 553 

simulations are largely consistent with the satellite observations and therefore justify continued 554 

assessment using this model. 555 

The small differences in scene simulated       values when using the N-layer or 1-layer HUT 556 

realisations does not necessarily indicate that they are equally valid, as the averaging over a large 557 

number of simulations will suppress the variance. In the Globsnow assimilation scheme a single snow 558 

profile is taken to represent the snow at each grid point, rather than the average of 59 profiles used 559 

here, and for a single simulation, the output       depends on the layering structure provided to the 560 

profile.  561 

5.3 Differences Due to Layering Detail 562 

It appears that for the CLPX pits, using the HUT radiative transfer model to generate the scene 563 

brightness temperature difference improves the simulation relative to using the Chang algorithm 564 

approach. Furthermore, Lemmetyinen et al. (2010) reported that RMSE and bias were reduced at 565 

these microwave channels when HUT accounted for the multiple layering of snow, rather than using 566 

bulk averages in a single layer. 567 
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It was therefore assumed that the best simulation of       was provided by the HUT model run with 568 

the N-layer realisation of the CLPX snowpit properties, and the performance of simplified layer 569 

models should be compared to this. Here the same brightness temperature simulations as in Section 570 

5.2 were used, based on the CLPX snowpits as these represent realistic snow profiles. 571 

Simulated       was compared on a pit-by-pit basis, where the simulation for the Chang algorithm 572 

and the 1- to 5- layer realisations of HUT were compared to the N-layer output. Figure 7 demonstrates 573 

the comparison for the Chang algorithm and the 1- and 5-layer HUT output. 574 

For these snow properties the Chang estimate shows a low bias in simulated     across much of the 575 

range, but a very large positive bias at high values of SWE. This is due to the CLPX snow properties 576 

differing from those assumed by Chang for the low values of SWE, and by saturation of the signal at 577 

higher SWE values. 578 

For the HUT simulations, bias is much smaller and scatter is reduced relative to the Chang estimate. 579 

This scatter is an estimate of the uncertainty introduced by simplifying the model to fewer layers. At 580 

the lowest brightness temperature differences, the scatter is zero as the minimum layer depth criterion 581 

ensures that for pits of depth < 12 cm, the 1-layer and N-layer realisations are identical. The scatter is 582 

less prominent for IOP3 than for IOP4, possibly due to IOP4 featuring a larger number of thicker 583 

snowpacks with potentially more complex stratigraphy. 584 

In an assimilation system, the snow model may output a single profile for each grid point, equivalent 585 

to a single point on the graphs in Figure 7, and the deviation about the 1:1 line indicates that use of a 586 

simplified profile will lead to different simulated       values relative to the best simulation provided 587 

by the N-layer realisation. 588 

To quantify this deviation, the residuals from the 1:1 fit were considered, i.e. the values  589 

                         (     )           (16) 590 

where       is the brightness temperature difference simulated with i layers, i is an integer from one to 591 

five and       is the brightness temperature difference when a maximum of N layers are included in 592 

the model profile. As throughout,       represents the brightness temperature difference described in 593 

Equation (1). 594 

The bias and standard deviation varies with snow thickness, and as such the residual in Equation (16) 595 

was returned as a function of layer thickness in the 1,...,5 layer models and the results are shown in 596 

Figure 8, where only snow pits of depths up to 100 cm are considered. Beyond this value, signal 597 

saturation would reduce the weighting applied to the microwave observational increment in an 598 

assimilation scheme, justifying the neglect of thicker pits. 599 
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It is apparent that as layer thickness is increased, the average deviation from the N-layer simulation 600 

(which contains layers of 10 cm thickness) increases, and there is also an increase in bias, most likely 601 

due to layer boundary effects. 602 

As the Globsnow approach is allowed to freely scale grain size at the snow depth observation 603 

locations, it is plausible that it accounts for this bias by artificially increasing the grain size depending 604 

on snow thickness. Changing the effective grain size is already known to account for variation in 605 

vegetation outside the model assumptions. 606 

This would have a secondary level effect on the Globsnow assimilation scheme, by changing the 607 

variance of estimated grain size       in Equation (11) if the ensemble of stations used for the 608 

averaging have different snow depths (and therefore different grain size biases). 609 

The main concern for the assimilation scheme, however, is the random variance that is introduced, as 610 

this means that the simulated           in the assimilation cost minimisation function (Equation (10)) 611 

should have additional variance associated with the neglect of snow stratigraphy. This variance is not 612 

accounted for in Equation (11) which defines the weight given to the observational increment based 613 

on the estimated variance. Instead, it is calculated from the single-layer model's brightness 614 

temperature sensitivity to grain size, and the statistics of the ensemble of nearest station grain sizes. 615 

It was suggested in Section 3.2.2 that future implementations of Globsnow might be improved by 616 

using a LSM to provide grain size estimates in every grid cell, thus accounting for regional changes in 617 

geography and meteorology that are beyond the Globsnow kriging approach, and for the well noted 618 

bias in observation location towards low latitudes, altitudes and canopy cover.  619 

Even if an LSM were to provide the snow state forecasts, the current weighting scheme would not 620 

account for the variance introduced by its simplified layering relative to the truth. The LSM could be 621 

allowed to increase in complexity and contain more layers, but computational expense would rise both 622 

in the forecast step and in solving the update equation as the snow state vector and relevant covariance 623 

matrices would grow to contain more layer properties.  624 

A user could apply the approach adopted here to estimate the extra variance introduced to their 625 

simulations as a function of the snow depth and their layering structure. Taking the gradient of the 626 

standard deviation graph in Figure 9, the increase in error due to thickening of snow layers beyond 10 627 

cm was found to be 0.053 ± 0.006 K cm
-1

. The total error from loss of stratigraphic information can 628 

therefore be estimated from the snow depth and number of layers and is presented as a function of 629 

SWE (calculated by applying the CLPX average density for snowpits < 100 cm depth) in Figure 10 630 

for snowpits whose stratigraphy is averaged to 1, 2 or 3 layers.. 631 
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Additionally, the estimated error in       can be interpreted as an estimate of the SWE error for this 632 

regime where the roughly linear relationship between     and SWE holds, similarly to Equation (1) 633 

but for vertically rather than horizontally polarised microwaves.       (     ) was calculated 634 

from linear regression of the known SWE and N-layer calculated       values for the pits of depth 635 

<100 cm, and found to be 2.45±0.09 mmSWE K
-1

, and so error in      ,  (     ) was converted into 636 

an approximate SWE error using: 637 

     
    

 (     )
 (     )     (17) 638 

For a CLPX snow profile of 100 cm depth (170 mm SWE), simplification of the stratigraphy from the 639 

measurement resolution of 10 cm down to a single layer of average properties leads to       640 

simulations that contain a 4.8 K error related to the loss of stratigraphic information, equivalent to 13 641 

mm SWE (7% of total). In a 2-layer model, this error would be reduced to 2.1 K (5.6 mm SWE, 3% 642 

of total) and for a 3-layer model 1.2 K (3.3 mm SWE, 2% of total).  643 

The individual user must decide model detail based on the trade-off between precision and 644 

computational expense, and it is hoped that this approach will inform such decisions. A user might 645 

determine a given threshold for fractional or absolute error in SWE, and from this information could 646 

determine the number of layers to use in their model based on the snow depth. 647 

6. Discussion and Conclusions 648 

Snow is extremely important in terms of meteorology, climatology and hydrology. Its surface 649 

properties can affect atmospheric chemistry and the energy balance, and an abundance of remote 650 

sensing products with well characterised errors assess a wide variety of these surface properties, from 651 

grain size to contaminants to surface melt. 652 

Snow Water Equivalent is of great interest and estimates of SWE are most easily defined as a remote 653 

sensing, model, reanalysis or station-based product. Each of these approaches provides its own 654 

advantages, but each also has drawbacks: reanalyses and station-based products suffer from sparse 655 

observations, models have uncertainties due to limitations in the physical modelling of complex 656 

processes in snow, and remote sensing products are global, but limited by signal saturation and do not 657 

provide a unique SWE solution on inversion due to their high sensitivity to other snow properties.  658 

Data assimilation techniques that use microwave information to update a forecast from other sources 659 

have been suggested to improve snow mass estimation. ESA’s GlobSnow uses modern assimilation 660 

techniques to bring together ground observations and remote sensing products, and has shown that 661 

assimilating microwave measurements does improve SWE estimates. GlobSnow isolates and accounts 662 

for the snow microstructure's contribution through a grain size parameter which is obtained by fitting 663 
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ground measurements to satellite retrievals while assuming a single homogeneous snow layer. The 664 

brightness temperature observable chosen by Globsnow is the difference between brightness 665 

temperatures at 19 GHz and 37 GHz vertically polarised microwaves,      . 666 

The GlobSnow grain size estimate is reliant on point measurements of snow, which may vary greatly 667 

over relatively small areas (e.g. Hall, et al., 1991; Derksen, et al., 2009), and it is suggested that 668 

physically based snow models could provide an alternate source of information to improve the 669 

inversion of the passive microwave signal. 670 

Snow forms in layers and its stratigraphy can be complex, though physical models are capable of 671 

reproducing this layering. Lemmetyinen et al. (2010) and Durand et al. (2011) showed that for 672 

simulation of brightness temperatures over small areas of snow, this complexity can be an important 673 

contribution to the signal. Globsnow ignores this complexity in determining the error covariance for 674 

weighting the observational increment in the update step, and this might lead to suboptimal updates. 675 

The HUT radiative transfer model used in Globsnow was able to simulate satellite-observed       676 

with an RMSE of 8 K, down from the 17 K RMSE associated with estimates made using the Chang 677 

algorithm typical of stand-alone microwave SWE products. The HUT RMSE was 6 K excluding one 678 

site where it was believed that snowpits were biased towards thin snow. 679 

After confirming that the HUT radiative transfer model used in Globsnow was able to simulate 680 

satellite-observed scene brightness temperatures at NASA's CLPX, the HUT-simulated       values 681 

for CLPX snowpits resampled to different layering structures were compared. Simulated       for 682 

snow with the maximum possible level of stratigraphic detail based on the 10 cm resolution of CLPX 683 

density and temperature measurements was taken as truth, and deviations from this were treated as 684 

due to errors introduced by simplification of the stratigraphy to fewer layers. 685 

Removing layering detail leads to a bias in the simulated      , likely due to the removal of reflection 686 

effects at layer boundaries and possibly due to nonlinearities in the       response to snow grainsize 687 

and density. Globsnow can freely vary the grain size to account for this, but this is likely to have 688 

second-order effects on the assimilation scheme. 689 

Simulated       values for the same snowpit at different levels of layering detail were found to vary, 690 

with the standard deviation increasing approximately linearly with snow depth. For snow of depth 100 691 

cm (172 mm SWE at the CLPX sites), the standard deviation in simulated       values for a single-692 

layer model versus the N-layer model was estimated at 4.8 K, equivalent to approximately 13 mm 693 

SWE (7% of total). Using 2 snow layers reduced the       error to 2.1 K (5.6 mm SWE, 3% of total).  694 
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Globsnow reports RMSE values of 40 mm for SWE < 150 mm using a single layer version of HUT, 695 

and the values found here suggest that layering could be a notable component of that RMSE.  696 

A number of groups are working on coupling physical snow models with microwave emission models 697 

to improve estimates of SWE, and these error assessments are important to help users decide on 698 

model complexity, which carries a potentially high computational cost. This paper argues that this is a 699 

promising avenue for improving global estimates of SWE, but that not accounting for the effects of 700 

detailed stratigraphy can introduce unaccounted-for variance which degrades the performance of an 701 

assimilation scheme. The approach adopted here quantifies this variance for the HUT radiative 702 

transfer model, and presents it in such a way that it could be used to determine the snow layering 703 

structure in an LSM for use in an assimilation system. 704 
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Tables 899 

Table 1 Summary of selected gridded time-series of snow mass or depth. 900 

Name Type Start Year End Year Coverage Resolution Reference 

ERA-40 Reanalysis 1957-09 2002-08 Global T159 Uppala et 

al., 2005 

ERA-

Interim 

Reanalysis 1989 present Global T255 Dee et 

al.,2011 

MERRA Reanalysis 1979 Present Global 0.5° x 0.66° Rienecker 

et al., 2010 

NCEP-

CFSR 

Reanalysis 1979 Present Global T382 Saha et 

al.,2010 

JRA-25 Reanalysis 1979 2004 Global T106 Onogi et al., 

2007 

ECMWF 

operational 

Offline 

model 

1987 Present Global T511 Drusch et 

al., 2004 

CNC Offline 

model 

1979 1997 North 

America 

0.3° x 0.3° Brown et 

al., 2003 

Kitaev et al Observations 1936 1995 Former 

Soviet 

Union 

3° x 5° Kitaev et 

al., 2002 

Dyer and 

Mote 

Observations 1960 2000 North 

America 

1° x 1° Dyer and 

Mote, 2006 

SNODAS Model plus 

in-situ 

observatinos 

2003-09-30 Present Contiguous 

United 

States 

1 km x 1 

km 

Carroll et 

al., 2001 

SSMR / 

SSM/I 

Microwave  1978-11 2007-05 Global 25 km x 25 

km 

Armstrong 

et al., 2005 

AMSR-E Microwave 2002-06 1978-11 Global 25 km x 25 

km 

Tedesco et 

al., 2004b 
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Table 2 Chang Sensitivity calculated from the trend in brightness temperature difference for the first 903 

100 mm of Snow Water Equivalent (SWE) for grain diameters of 0.2 mm to 1.0 mm. The snow and 904 

surface properties used are those from Figure 1. 905 

Grain Diameter (mm) Chang Sensitivity (mmSWE K
-1

) 

0.2 14.64 

0.4 4.18 

0.6 2.47 

0.8 1.85 

1.0 1.55 

 906 

Table 3 Summary of snow input data for each Intensive Observation Period (IOP) split by Mesoscale 907 

Study Area (MSA). 908 

 Dates MSA Snowpits Mean 

Depth (cm) 

Mean SWE 

(mm) 

Snow 

Cover (%) 

 

IOP3 

 

20-25
th
 Feb 

2003 

North Park 115 14.0 23.1 100 

Rabbit Ears 18 225.6 580 100 

Fraser 48 77.3 189 100 

 

IOP4 

26-30
th
 Mar 

2003 

North Park 68 5.3 9.6 57 

Rabbit Ears 44 229.0 758 100 

Fraser 48 143.2 381 92 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 



32 
 

Table 4 Average brightness temperature difference for each Intensive Observation Period (IOP) as 918 

simulated by inverting the Chang algorithm, using different numbers of layers in the Helsinki 919 

University of Technology (HUT) microwave emission model, and the average retrievals for Advanced 920 

Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave 921 

Imager (SSM/I). 922 

 TB(19H)-TB(37H) (K) 

 IOP3 IOP4 

Chang 18.58 24.72 

1-layer 20.23 13.86 

2-layer 20.19 13.18 

3-layer 20.24 13.31 

4-layer 20.21 13.35 

5-layer 20.23 13.32 

N-layer 20.24 13.46 

AMSR-E 16.03 15.71 

SSM/I 18.40 15.64 
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 927 

 928 

 929 



33 
 

Figures 930 

 931 

Figure 1 Simulated brightness temperature for a homogeneous snowpack as a function of Snow 932 

Water Equivalent (SWE) at the Advanced Microwave Scanning Radiometer for Earth Observing 933 

System (AMSR-E) channels near 19 GHz and 37 GHz horizontal polarisation. Snowpack properties 934 

are those average of Cold Land Processes Experiment (CLPX) snowpits where depth was < 120 cm. 935 

Density of 170 kg m
-3

, grain size of 0.53 mm, snow temperature -4.6 °C and ground temperature -1.5 936 

°C. The upper dashed lines show the brightness temperature at 19H and 37H as labelled, the solid line 937 

is the difference brightness temperature between the two (see Equation (1)), offset by 3 K to ensure 938 

that the value is zero when no snow is present. The straight dashed line is the best fit to the first 100 939 

mm of SWE. 940 
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 941 

Figure 2 Brightness temperature difference as a function of Snow Water Equivalent (SWE) for the 942 

same snow properties as in Figure 1, except that grain diameter is varied from 0.2 mm to 1.0 mm in 943 

0.2 mm increments. The caption (top left) indicates which line style refers to each grain size value. 944 

The shaded straight line is the linear best fit to the first 50 mm SWE worth of the central grain size 945 

value. 946 
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 952 

 953 

Figure 3 Map of Cold Land Processes Experiment (CLPX) area showing the Mesoscale Study Areas 954 

(MSAs) in which the snowpits were dug. (after http://www.nohrsc.nws.gov/~cline/clpx.html) 955 
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 961 

Figure 4 Example of the how snowpit data were restructured. The left hand bar represents the 962 

observation profile where depth and temperature are recorded for each 10 cm of the snow. The N-963 

layer resampling maintains 10 cm layer thicknesses but adds a 2 cm interaction layer at the surface, as 964 

is common in a number of Land Surface Models' snow schemes. The other layering schemes apply a 2 965 

cm top layer and then evenly split the remaining snow depth, with density, snow and grain size mass-966 

weighted according to the observations. All layer structures from 1 to 5 inclusive were calculated, but 967 

only 1 and 5 are shown here for simplicity. 968 

 969 

 970 
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 971 

Figure 5 Count of snowpits by depth for each Intensive Observation Period (IOP). 972 

 973 

 974 

 975 

Figure 6 Brightness temperature difference retrievals for Special Sensor Microwave Imager (SSM/I) 976 

(triangles), Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) 977 

(squares) and the average simulated snowpit data processed through the Helsinki University of 978 

Technology (HUT) microwave emission model. HUT simulations are provided for the N-layer case 979 

(circles) and for a single layer case where all properties were averaged to one layer (triangles). 980 

Caption in bottom right identifies marker shapes and line styles. 981 
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 982 

Figure 7 Brightness temperature differences simulated for each pit during Intesive Observation 983 

Period (IOP) 3 (left) and IOP4 (right). The ordinate in each case is the simulated brightness 984 

temperature difference using the N-layer model, and the abscissa shows the Chang output (top), 1-985 

layer Helsinki University of Technology model (HUT) output (centre) and 5-layer HUT (bottom) 986 

output as labelled. The dotted line is the one-to-one correspondence line. 987 
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 992 

 993 

Figure 8 Residual between brightness temperature difference simulated for models with layer 994 

thickness >10 cm versus the 10 cm layer simulation, and plotted as a function of this bulk-layer 995 

thickness. All data represented as open circles. 996 
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 998 

 999 
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 1000 

Figure 9 Bias in simulated brightness temperature difference for snow profiles of thicker layers, 1001 

relative to an  N-layer model with 10 cm layer thicknesses (left), , where error bars are 2-sigma (left). 1002 

The standard deviation of brightness temperature difference relative to an  N-layer model is quantified 1003 

as a function of layer size (right), with an approximately linear increase in simulated brightness 1004 

temperature difference error as snow stratigraphy is simplified into thicker layers. 1005 
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 1006 

Figure 10 Absolute error in SWE introduced via simplification of the Cold Land Processes 1007 

Experiment (CLPX) pit stratigraphy from N-layers to fewer layers, as a function of total Snow Water 1008 

Equivalent (SWE). Lines represent output using a one- (dotted line), two- (dashed line) or three-layer 1009 

(solid line) snow profile. 1010 
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