Sea surface temperature climate change initiative: alternative image classification algorithms for sea-ice affected oceans

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Bulgin, C. E. orcid id iconORCID: https://orcid.org/0000-0003-4368-7386, Eastwood, S., Embury, O. orcid id iconORCID: https://orcid.org/0000-0002-1661-7828, Merchant, C. J. orcid id iconORCID: https://orcid.org/0000-0003-4687-9850 and Donlon, C. (2015) Sea surface temperature climate change initiative: alternative image classification algorithms for sea-ice affected oceans. Remote Sensing of Environment, 162. pp. 396-407. ISSN 0034-4257 doi: 10.1016/j.rse.2013.11.022

Abstract/Summary

We present a Bayesian image classification scheme for discriminating cloud, clear and sea-ice observations at high latitudes to improve identification of areas of clear-sky over ice-free ocean for SST retrieval. We validate the image classification against a manually classified dataset using Advanced Along Track Scanning Radiometer (AATSR) data. A three way classification scheme using a near-infrared textural feature improves classifier accuracy by 9.9 % over the nadir only version of the cloud clearing used in the ATSR Reprocessing for Climate (ARC) project in high latitude regions. The three way classification gives similar numbers of cloud and ice scenes misclassified as clear but significantly more clear-sky cases are correctly identified (89.9 % compared with 65 % for ARC). We also demonstrate the poetential of a Bayesian image classifier including information from the 0.6 micron channel to be used in sea-ice extent and ice surface temperature retrieval with 77.7 % of ice scenes correctly identified and an overall classifier accuracy of 96 %.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/36200
Identification Number/DOI 10.1016/j.rse.2013.11.022
Refereed Yes
Divisions No Reading authors. Back catalogue items
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Elsevier
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar