Search from over 60,000 research works

Advanced Search

Multi-scale sensible heat fluxes in the urban environment from large aperture scintillometry and eddy covariance

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Ward, H. C., Evans, J. G. and Grimmond, C. S. B. orcid id iconORCID: https://orcid.org/0000-0002-3166-9415 (2014) Multi-scale sensible heat fluxes in the urban environment from large aperture scintillometry and eddy covariance. Boundary-Layer Meteorology, 152 (1). pp. 65-89. ISSN 0006-8314 doi: 10.1007/s10546-014-9916-4

Abstract/Summary

Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/36102
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Springer
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar