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Abstract Dipolar streamers are coronal structures formed by open solar flux converging from coronal
holes of opposite polarity. Thus, the dipolar streamer belt traces the coronal foot point of the heliospheric
current sheet, and it is strongly associated with the origin of slow solar wind. Pseudostreamers, on the other
hand, separate converging regions of open solar flux from coronal holes of the same polarity and do not
contain current sheets. They have recently received a great deal of interest as a possible additional source
of slow solar wind. Here we add to that growing body of work by using the potential-field source-surface
model to determine the occurrence and location of dipolar and pseudostreamers over the last three solar
cycles. In addition to providing new information about pseudostreamer morphology, the results help
explain why the observations taken during the first Ulysses perihelion pass in 1995 showed noncoincidence
between dipolar streamer belt and the locus of slowest flow. We find that Carrington rotation averages of
the heliographic latitudes of dipolar and pseudostreamer belts are systematically shifted away from the
equator, alternately in opposite directions, with a weak solar cycle periodicity, thus keeping slow wind from
the web of combined streamer belts approximately symmetric about the equator. The largest separation of
dipolar and pseudostreamer belts occurred close to the Ulysses pass, allowing a unique opportunity to see
that slow wind from pseudostreamer belts north of the southward displaced dipolar belt was responsible
for the noncoincident pattern.

1. Introduction

The Ulysses mission confirmed the inherently bimodal nature of the solar wind [e.g., Geiss et al., 1995]. At
solar minimum, slow, hot solar wind forms a relatively narrow band around the heliographic equator, while
the fast, cool wind fills the midlatitude and polar heliosphere, whereas at solar maximum, the slow wind
extends to much higher latitudes [McComas et al., 2003]. In this view the slow solar wind is collocated with
the dipolar streamer belt, the region where open solar magnetic field lines from opposite polarity polar
coronal holes converge to form the heliospheric current sheet. If the dipolar streamer belt is tilted and/or
warped with respect to the heliographic equator, fast wind extends to low latitudes and interacts with slow
wind to form a heliographic latitudinal band of variability characterized by corotating interaction regions
[e.g., Pizzo, 1991]. To first order, then, the maximum latitude of the band of variability follows a solar cycle
variation which tracks the latitudinal extent of the heliospheric current sheet [Hoeksema et al., 1982].

The perihelion pass by the Ulysses spacecraft near the end of cycle 22 highlighted a discrepancy in the dipo-
lar streamer model of the slow solar wind. On a synoptic map of solar wind speed generated from both
Ulysses and Wind data, Crooker et al. [1997] found that the locus of slowest flow was displaced northward
from the dipolar streamer belt, while the streamer belt itself was displaced southward of the heliographic
equator. The study reported here shows how this discrepancy arose from the fact that the dipolar streamer
belt is not the sole source of slow solar wind.

We now understand that pseudostreamers provide an additional source of slow solar wind [Antiochos et al.,
2011; Riley and Luhmann, 2012; Crooker et al., 2012]. Pseudostreamers form at the boundary between coro-
nal magnetic flux from two coronal holes of the same polarity [Eselevich, 1998; Eselevich et al., 1999; Zhao
and Webb, 2003; Wang et al., 2007]. Pseudostreamers form arc-like bands, which may not close on them-
selves, but rather connect to the dipolar streamer belt [Crooker et al., 2012]. We refer to the latitudinal band
in which pseudostreamers occur as the “pseudostreamer belt” (as illustrated in Figures 1 and 2), which forms
a “web” of slow wind sources [Crooker et al., 2012]. This study shows how the dipolar and pseudostreamer
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Figure 1. The PFSS solution for Carrington rotation 2056 (May 2007), using a WSO magnetogram. (top) A sin 𝜃 − 𝜙 map of log(dS′) at
the source surface. (bottom, left) The streamer map obtained by applying a threshold of log(dS′) > 1. Black (red) lines show the result-
ing dipolar streamers (pseudostreamers). (bottom, right) Longitudinal averages of dipolar (black) and pseudostreamer (red) occurrence
as a function of sin 𝜃.

components of the web vary over the solar cycle. These results then provide the context for understanding
the above mentioned discrepancy in terms of hemispherical asymmetries.

In section 2 we use the potential-field source-surface model [Altschuler and Newkirk, 1969; Schatten et al.,
1969] constrained by Wilcox Solar Observatory (WSO) magnetograms to identify the locations of both dipo-
lar and pseudostreamers from 1976 to 2012. In section 4 we compare the occurrence and latitudinal extent
of dipolar and pseudostreamer belts over the last three solar cycles, in particular highlighting anomalies in

Figure 2. The PFSS solution for Carrington rotation 1955 (approximately spanning October 1999), in the same format as Figure 1.
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the most recent solar minimum between solar cycles 23 and 24. Finally, in section 5 we revisit the two solar
minimum Ulysses perihelion passes to determine the relative solar wind contributions from dipolar and
pseudostreamers.

2. Identifying Dipolar and Pseudostreamers

The potential-field source-surface (PFSS) model is routinely used to infer the magnetic structure of the
corona by extrapolating from line-of-sight observations of the photospheric magnetic field [Altschuler and
Newkirk, 1969; Schatten et al., 1969]. PFSS solutions are inherently steady state and assume no volumetric
currents in the corona, approximating the minimum energy state of the corona for a given photospheric
boundary condition. Furthermore, since the acquisition of full longitudinal coverage of the photosphere
from ground-based or near-Earth observatories takes approximately 27 days, PFSS solutions are most valid
when the corona does not vary significantly over this time (i.e., close to solar minimum). Despite these
approximations, the PFSS model has proved to be extremely useful in reconstructing the magnetic field
polarity [Arge and Pizzo, 2000] and strength [Wang et al., 2000] at the source surface [see also Mackay et al.,
2002, and references therein].

On the basis of approximate empirical relations, the expansion of coronal magnetic flux tubes between the
photosphere and the source surface has been used to infer the solar wind speed at the source surface [e.g.,
Wang and Sheeley, 1990; Arge et al., 2003]. In this model, the fastest solar wind comes from deep within coro-
nal holes, where flux tube expansion is generally limited to that associated with spherical geometry, while
slow wind is formed where flux tubes undergo superradial expansion near the edges of coronal holes. Thus,
in this approximation, dipolar streamers are the major source of slow solar wind, but pseudostreamers can
also contribute if the coronal flux tube expansion is sufficiently high [Wang et al., 2012]. Slow solar wind,
however, has been found to be associated with pseudostreamers which do not have large coronal expan-
sion factors [Riley and Luhmann, 2012], and conversely, other pseudostreamers have also been associated
with fast solar wind [Panasenco and Velli, 2012].

In this study, dipolar and pseudostreamers are identified in PFSS solutions independent of expansion fac-
tors and expected solar wind speed. We use a parameter dS, the distance between photospheric foot points
of magnetic flux tubes which are equally spaced on the source surface [Owens et al., 2013]. Since stream-
ers at the source surface are regions where flux tubes of different photospheric origin converge, they are
associated with much larger values of dS than the rest of the corona. In many cases, large dS is indeed asso-
ciated with large coronal flux tube expansion, but there are many instances where it is not [see also Riley
and Luhmann, 2012; Panasenco and Velli, 2012]. We note that dS is also closely related to the “squashing
factor,” Q, which quantifies gradients in magnetic field connectivity [e.g., Titov et al., 2011, and references
therein]. While Q is a more direct measure of separatrix layers than dS, in practice they identify very simi-
lar features. Dipolar streamers are differentiated from pseudostreamers by comparing the polarity of foot
points across the narrow peak in dS that identifies a streamer. Different (same) polarities indicate dipolar
streamers (pseudostreamers).

Owens et al. [2013] traced magnetic field lines from the source surface to the photosphere on a grid equally
spaced in Carrington longitude (𝜙) and sine solar latitude (sin 𝜃) and identified streamers crossing the eclip-
tic using a threshold in log(dS). Because the distance between adjacent points on the source surface grid
varies with latitude, both due to the sin 𝜃 grid spacing and the reduced circumference of the spherical cap,
a simple threshold in log(dS) will preferentially identify more streamers at higher latitudes. Indeed, for some
solar minimum PFSS solutions, a log(dS) threshold can misidentify magnetic flux tubes expanding nonra-
dially from within polar coronal holes as pseudostreamers. In this study, we use a modified version of the
streamer identification algorithm to identify streamers at all latitudes, not just in the ecliptic plane. Using
WSO magnetograms with a potential-source-surface model, we compute dS′, such that

dS′ =
dSPH

dSSS
(1)

where dSSS is the distance between points on the source surface and dSPH is the distance between their
respective points on the photosphere. For each point on the source surface grid, dS′ is computed relative to
the surrounding eight grid cells in latitude and longitude, and the maximum value is stored. For the highest
latitude source surface grid cells, dS′ is not calculated.
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In this study, field lines are traced from the source surface using a grid of points equally spaced in 𝜙 and
sin 𝜃. We use 45 grid cells in 𝜙 and 90 grid cells in sin 𝜃. Increasing or decreasing the spatial resolution at
which magnetic field lines are traced changes the magnitude of dS′, but the same basic features are present.
Most importantly, the fraction and latitudinal extent of streamers are largely unchanged.

Figure 1 (top) shows a 𝜙 − sin 𝜃 map of log(dS′) for Carrington rotation (CR) 2056, which approximately
spans May 2007, close to solar minimum at the end of solar cycle 23. The dS′ enhancements, shown as bright
regions, are confined to the equatorial regions, as expected for the streamer belt close to solar minimum.
Figure 1 (bottom, left) shows the result of applying a log(dS′) > 1 threshold. Black points are associated with
changing foot point polarity, which classifies them as dipolar streamers, and red points have no polarity
change which classifies them as pseudostreamers. The pseudostreamer close to the solar equator at Carring-
ton longitudes 0◦ to 50◦ has a dS′ as large as the dipolar streamer belt. The pseudostreamers at Carrington
longitudes 230◦ to 320◦, however, have lower dS′ values, and only parts of the structures seen in Figure 1
(top) meet the log(dS′) > 1 threshold. Thus, while the dipolar streamers form a continuous belt around
the Sun collocated with the heliospheric current sheet (HCS), by our selection criteria, pseudostreamers can
“fade out” without reaching back to the dipolar streamer belt or other pseudostreamers, even though they
must do so topologically [Antiochos et al., 2011]. Figure 1 (bottom, right) shows the percentage of grid points
at each latitude which are identified as either dipolar (black) or psuedostreamers (red), equivalent to longi-
tudinally averaged occurrence rate. This again shows that both dipolar and pseudostreamers are confined
to the equatorial regions at this phase of the solar cycle, but it also highlights a slight northward shift of the
dipolar streamer belt and a slight southward shift of the pseudostreamer belt.

Figure 2 shows Carrington rotation 1955, approximately spanning October 1999, close to the maximum of
solar cycle 23. Streamers span a much greater latitudinal extent at this time than during CR2056. The dipolar
streamer belt again forms a continuous belt around the Sun, while pseudostreamers branch off both it and
each other. For this Carrington rotation, the dipolar streamer belt is approximately symmetric about the
helioequator, while pseudostreamer occurrence peaks in the Southern Hemisphere.

Through visual inspection of dS′ for all CRs from 1642 to 2120, the threshold of log(dS′) > 1 was found to be
sufficient to identify dipolar streamers along the entirety of the heliospheric current sheet as well as pick out
the obvious pseudostreamers. The threshold is arbitrary only to the extent that increasing/decreasing it by
an order of magnitude does result in identification of fewer/more pseudostreamers. On the other hand, the
threshold is high enough to identify only tight pseudostreamer belts which are only one or two grid cells
wide, rather than broad pseudostreamer patches.

3. Latitudinal Variations Over the Solar Cycle

Figure 3 (middle and bottom) shows longitudinal averages of the percentage of source surface grid cells
associated with dipolar (Figure 3, middle) and pseudostreamers (Figure 3, bottom) as a function of latitude
and time. The lower right plots of Figures 2 and 1 are examples of slices through these panels at any one
time. Figure 3 (top) gives the sunspot cycles by plotting 27 day means of the international sunspot number.
In Figure 3 (middle), the extent of nonzero values (i.e., nonblack regions) follows the maximum latitudi-
nal extension of the HCS (often referred to as the “HCS tilt angle,” [Wilcox and Hundhausen, 1983]) and the
HCS inclination index [Owens et al., 2011a], as expected. Thus, there is a general “sawtooth” envelope with
a sharp rise in the latitudinal extent of dipolar streamers in the rise phase of the solar cycle followed by
an extended, approximately linear decline during the declining phase [e.g., Hoeksema et al., 1983]. As was
reported by Cliver and Ling [2001], the latitudinal extent of the HCS (and hence dipolar streamers) declines
more rapidly in solar cycle (SC) 22 than in SC21 and SC23. It has been suggested that this is related to the
odd/even, or peak/trough, variations observed in near-Earth galactic cosmic ray flux [Thomas et al., 2013].
SC21 and SC23, however, do display differences to each other. The SC23 decline is far more protracted than
SC21, and the solar minimum at the end of SC23 results in a much broader dipolar streamer (DS) belt than
either SC21 or SC22. Indeed, the white/yellow sectors around 1986–1987 and 1995–1996 show that the DS
belt was confined close to the solar equator for an extended period, while this situation was only reached for
one or two Carrington rotations in 2009. This is discussed further in section 4. There is also some evidence of
hemispheric asymmetries in DS occurrence. In particular, the end of SC22 (approximately 1994–1995) shows
a shift in the average DS position toward the Southern Hemisphere, in agreement with in situ spacecraft
measurements of the HCS at this time [Crooker et al., 1997; Mursula and Hiltula, 2003]. This DS hemispheric
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Figure 3. (top) Sunspot number. (middle and bottom) Longitudinal averages of the occurrence rates of dipolar streamers (pseu-
dostreamers) as a function of solar latitude and time.

asymmetry, although less apparent in other solar cycles and at other stages of the solar cycle, is investigated
further in section 5.

The pseudostreamer (PS) occurrence map, in the Figure 3 (bottom), also shows a strong solar cycle varia-
tion but with notable differences from the DS map. The PS latitudinal extent increases more rapidly than DS
during the rise phase of the solar cycle and decreases more steeply during the declining phase. A striking
difference is that pseudostreamers essentially disappear during the minima at the ends of SC21 and SC22
but remain throughout the minimum at the end of SC23. The most prominent hemispheric asymmetry of
PS is at the end of SC22, as for DS, but in the opposite sense, with the Northern Hemisphere containing
more PS.

4. Occurrence Rates of Streamers

Figure 4 shows time series of occurrence of dipolar and pseudostreamers as a percentage of the total source
surface (Figure 4, top) and percentage of the ecliptic plane’s intersection with the source surface (Figure 4,
middle). Thin lines show one Carrington rotation averages produced from PFSS solutions, while thick lines
show 1 year averages. The inclination of the ecliptic plane with the helioequator means polar magnetic
fields are preferentially observed in the Northern/Southern Hemispheres on a half yearly basis; thus, annual
means remove any signal created from this observational effect. As inferred from Figure 3, there is a strong
solar cycle variation in both DS and PS occurrence. Given the HCS must always encircle the Sun, the mini-
mum possible DS global occurrence is given by a single continuous DS belt forming a perfect great circle on
the source surface, resulting in approximately 4% global DS coverage at the source surface grid resolution
used in this study. This condition is approached at solar minimum, when the DS belt spans the solar equator.
Since the ecliptic plane and solar equator are approximately colocated, the ecliptic DS occurrence is peaked
at solar minimum, as seen in Figure 3 (middle). Note that the DS belt is not as confined to the ecliptic plane
during the minimum at the end of SC23 as it was at the end of SC21 and SC22.

OWENS ET AL. ©2013. American Geophysical Union. All Rights Reserved. 5
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Figure 4. Time series of DS (black) and PS (red) occurrence over the last three solar cycles. Thick (thin) lines show 1 year (Carrington
rotation) averages. (top) The global occurrence of DS and PS structures, as a percentage covering of the total source surface. (middle)
The percentage of the ecliptic plane at the source surface covered by DS and PS structures. (bottom) The mean latitude of DS and PS
occurrence.

Returning to Figure 4 (top), we see that global PS occurrence is comparable to DS occurrence at solar max-
imum but drops to near zero at solar minimum, resulting in a much higher amplitude solar cycle variation.
(We note that using different dS′ thresholds changes the magnitude of PS occurrence, but the solar cycle
trends are essentially the same). Both global and ecliptic PS occurrence reaches zero at the minima of
SC21 and SC22, in 1985–1986 and 1995–1996, but not during the minimum of SC23, in 2008–2009. SC23
is also different from the previous two cycles in that the PS occurrence during the declining phase remains
elevated long after the DS occurrence has decreased.

The PS and DS variations can also be considered in terms of solar cycle phase, using solar cycle start/end
times of 1976.6, 1986.7, 1996.8, and 2009.2 [Owens et al., 2011b]. (Plots normalized by phase are not shown,
but the features are apparent in Figure 4.) Many of the differences between cycles are then removed. All
three cycle exhibit a rise in DS occurrence to approximately 8% within about a quarter of a solar cycle,
though SC23 then declines more rapidly in the second quarter of the cycle than in either SC21 or SC22. In
the declining phase of the cycle, both SC21 and SC23 retain a greater fraction of DS than SC22, in agree-
ment with the HCS tilt between odd and even cycles [Cliver and Ling, 2001; Thomas et al., 2013]. All three
cycles show a rise to a maximum PS occurrence of around 10% within a quarter of the solar cycle. During
the declining phase, PS occurrence in SC23 remains more elevated than in SC21 and SC22. This is the most
notable SC23 anomaly which cannot be explained by increased solar cycle length.

5. Hemispheric Asymmetry and Association of Streamers With Slow Solar Wind

Hemispheric asymmetries in the time variations of DS and PS locations are apparent in Figure 4 (bottom).
There is a clear and persistent anticorrelation between the mean latitude of DS (black) and PS (red) occur-
rence. When the dipolar streamer belt is displaced northward, the pseudostreamer belts are displaced
southward, and vice versa, so that the web of slow solar wind emerging from both PS and DS tends to be
centered on the equator. Although the linear correlation coefficient (using Carrington rotation averages)
is only −0.43, it is statistically significant at the 95% confidence level for the given number of data points.
There also appears to be a weak solar cycle periodicity in the mean latitudes, with PS occurrence biased to
the Northern (Southern) Hemisphere at solar minimum (maximum).

The largest hemispheric asymmetry occurred during 1992–1995, when the PS belt was shifted more than
10◦ northward and the DS belt was centered at approximately 5◦ southward. Fortuitously, the Ulysses
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Figure 5. Ulysses in situ observations and PFSS model estimates during the first Ulysses perihelion pass (January–March 1995), as a
function of solar latitude. (top) Solar wind speed. (middle) The Ne/O ratio, a proxy for coronal source temperature. A threshold of 0.2 is
used to define the band of solar wind variability, shown as the vertical dashed lines. (bottom) The average DS and PS occurrence during
the four Carrington rotations in which Ulysses passed from −40◦ to 40◦ latitude.

perihelion pass that uncovered the discrepancy in the dipolar streamer model, discussed in section 1,
occurred at the start of 1995. This pass provides a unique opportunity to investigate the solar wind originat-
ing from DS and PS regions. We note that because this period is very close to solar minimum, the corona is
relatively stable over a number of Carrington rotations, which makes the PFSS solution particularly reliable.

Figure 5 shows a summary of Ulysses in situ solar wind observations and PFSS estimates during the first
perihelion pass (taken to be 1995.0 to 1995.3, the time between which Ulysses traveled from −40◦ to 40◦

latitude). Figure 5 (top) shows 1 h averages of solar wind speed from the Solar Wind Observations Over the
Poles of the Sun instrument [Bame et al., 1992], Figure 5, middle shows 3 h averages of the Ne/O abundance
ratio from the Solar Wind Ion Composition Spectrometer instrument [Gloeckler et al., 1992], a diagnostic
of the temperature of the coronal source of the solar wind. (The more commonly used O7+∕O6+ and Mg/O
ratio data were both unavailable for this interval.) Throughout this period, there is a strong anticorrelation
between coronal temperature and solar wind speed, as expected [Gloeckler et al., 2003]. We take a threshold
of Ne to O abundances exceeding 0.2, corresponding to relatively hot coronal source regions, to define the
band of variability, shown as the vertical dashed lines, where Ulysses encountered intervals of slow solar
wind from the web of dipolar and pseudostreamers.

Figure 5 (bottom) shows the DS and PS occurrence averaged over the four Carrington rotations (CRs 1891
through 1894) of the perihelion pass. Because the corona is so stable at this time, this average is representa-
tive of any one of the four rotations. Ulysses’ entry into the slow solar wind at approximately −22◦ latitude
is coincident with the southernmost extension of the dipolar streamer belt. The DS belt is skewed to the
Southern Hemisphere at this time (as seen in Figure 4 (bottom)) and only reaches up to approximately 10◦

latitude, while the slow solar wind band extends to nearly 20◦. This “extra” slow solar wind appears to be
strongly associated with the PS belt, which extends to just over 20◦. Thus, the reason for the northward dis-
placement of the slow wind from the dipolar streamer belt found by Crooker et al. [1997] is that the slow
wind from pseudostreamers came predominantly from the north side of the dipolar streamer belt. This pat-
tern is clear in the map of log(dS′) for CR1893 shown in Figure 6, where all but one of the pseudostreamer
belts lie north of the dipolar belt.

The second Ulysses perihelion pass (not shown) occurred early in 2001, during the solar maximum of SC23.
It was not useful for our purposes because the corona at maximum is highly dynamic, and the solar wind
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Figure 6. The PFSS solution for Carrington rotation 1893, in the same format as Figure 1.

displays no coherent structure with latitude. PS and DS extend to all latitudes so that their relative solar wind
contributions cannot be readily separated.

The third Ulysses perihelion pass occurred during June–September 2007, just prior to solar minimum at
the end of SC23. Figure 7 shows a summary of Ulysses and PFSS results for this period. The band of vari-
ability is much wider than during the first perihelion pass, and there appear to be short excursions back
into slow wind beyond the marked region. The PFSS streamer belts are also wider, with the PS (DS) belt
slightly offset to the south (north). Although the belts overlap at most latitudes, the net latitudinal offset is
striking because it is opposite to that in Figure 5. Here the pseudostreamer belts lie predominantly south
rather than north of the dipolar belt. This pattern can already be seen in the map of log(dS′) for CR2056

Figure 7. The third Ulysses perihelion pass (June–September 2007), in the same format as Figure 5.

OWENS ET AL. ©2013. American Geophysical Union. All Rights Reserved. 8
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shown in Figure 1, just prior to the Ulysses pass. Of the three pseudostreamer belts there, two lie south of
the dipolar belt, in contrast to the opposite pattern in the map of log(dS′) for CR1893 shown in Figure 6.

6. Summary and Discussion

We have outlined a method for identifying solar wind streamers in potential-field source-surface solutions
which is independent empirical relations to solar wind speed. The polarities of the field on the two sides of
the streamer readily identify dipolar streamers (DS) and pseudostreamers (PS). Applying this algorithm to
Wilcox Solar Observatory magnetograms from 1976 to 2013, we find the following:

1. The latitudinal extent of the DS belt is governed by the heliospheric current sheet “tilt angle” and hence
shows an approximately sawtooth variation over the solar cycle. The PS latitudinal extent also shows a
solar cycle variation, but with a more rapid growth and decline.

2. Pseudostreamers disappeared during the minima at the end of solar cycles 21 and 22, while dipolar
streamers were confined to the solar equator. During the minimum at the end of solar cycle (SC) 23,
however, pseudostreamers persisted and dipolar streamers were less tightly confined to the solar equator.

3. Pseudostreamers were more abundant during the declining phase of SC23 compared to SC21 and SC22.
This effect can be largely attributed to the extended length of SC23.

4. The mean latitudes of the PS and DS belts are anticorrelated, with the result that the average streamer belt
is approximately symmetric about the solar equator. The PS and DS mean latitudes also display a weak
solar cycle variation.

5. The largest hemispheric asymmetry occurred during the end of SC22, when the PS (DS) belt was displaced
10◦ northward (5◦ southward). This pattern was responsible for what was, at the time it was reported by
Crooker et al. [1997], a puzzling displacement of the dipolar streamer belt from the locus of slow flow.

6. The latitudinal extent of the domain of slow solar wind in the band of variability observed by Ulysses can
only be explained by a combination of dipolar and pseudostreamer contributions.

Implicit in our discussion throughout much of this paper is the assumption that pseudostreamers are a
source of slow wind. As mentioned in section 2, this is not always true [e.g., Panasenco and Velli, 2012], but
it appears to be true most of the time. Signatures of slow wind from pseudostreamers, first identified by
Neugebauer et al. [2004], are commonly found on the slow wind side of stream interfaces at 1 AU [Crooker
and McPherron, 2012]. While their speeds are somewhat elevated compared to slow wind from the dipo-
lar streamer belt, their O7+∕O6+ levels meet the criteria for slow wind [Zhao et al., 2009]. Moreover, synoptic
maps of solar wind speed predicted by the Wang-Sheeley-Arge model [Arge et al., 2003] show webs of slow
wind sources that in most cases, match the source surface pattern of linked dipolar and pseudostreamers
[Crooker et al., 2012]

The solar cycle variations in DS and PS occurrence appear to approximately follow the solar quadrupole
moment variation inferred by Wang et al. [2002], suggesting they are related to solar magnetic field com-
plexity. Increasing numbers and strength of coronal active regions distort open flux foot points away from
the polar coronal holes which dominate at solar minimum, which increases the warped nature of the helio-
spheric current sheet [e.g., Riley et al., 2002] and hence the total length of the dipolar streamer belt. Similarly,
as coronal hole morphology increases in complexity, there is more opportunity for open flux from distant
regions of the same coronal hole (or from separate coronal holes of the same polarity) to converge at the
source surface, forming pseudostreamers. The rapid formation/disappearance of pseudostreamers over the
solar cycle suggests there is a threshold of complexity for PS formation. It is likely that this complexity is
governed by the strength of small-scale ephemeral regions relative to that of the low-order magnetic field
components so may increase as the dipolar magnetic field weakens.

The declining phase of SC23 and the minimum at the end of SC23 were unusual in a number of ways. Pseu-
dostreamers were more common through the declining phase than during the same phase SC21 and SC22,
though this can be at least partly attributed to the extended length of SC23. Increased solar cycle length,
however, cannot explain the persistence of pseudostreamers and the increased DS latitudinal range through
the minimum at the end of SC23. We speculate that this is due to weaker polar fields and hence a weaker
dipolar moment of the global solar magnetic field which allows the higher order moments to dominate
[Wang et al., 2009]. The increased PS and reduced DS abundance in the ecliptic plane compared to the min-
ima at the end of SC21 and SC22 may explain the differences in the near-Earth solar wind [Lee et al., 2009;
Luhmann et al., 2009; Cliver and Ling, 2011]. Extrapolating these trends to grand solar minima, when the solar
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magnetic field strength is greatly reduced [e.g., Owens et al., 2012], suggests an even larger fraction of the
heliosphere would be filled with slow solar wind.

Perhaps the most surprising finding of this study is the systematic way in which pseudostreamer belts seem
to balance out the spatial distribution of slow wind sources in the course of a solar cycle. When the dipolar
streamer belt is displaced southward (northward), the pseudostreamer belts extend northward (south-
ward). Examples of opposite displacement patterns have been presented with data from the first and third
Ulysses perihelion passes. They demonstrate that both dipolar and pseudostreamer belts are required to
account for the full width of the band of variability created by slow wind sources. This may result in symmet-
ric solar momentum fluxes from the north and south solar hemispheres, even when magnetic asymmetries
are present.
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